Last active
February 3, 2019 21:44
-
-
Save 3h4/5fd3182b1676bf78219e5bc43534cc5f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 | |
echo_step = 3 | |
batch_size = 5 | |
num_batches = total_series_length//batch_size//truncated_backprop_length | |
def generateData(): | |
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) | |
y = np.roll(x, echo_step) | |
y[0:echo_step] = 0 | |
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows | |
y = y.reshape((batch_size, -1)) | |
return (x, y) | |
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) | |
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length]) | |
init_state = tf.placeholder(tf.float32, [batch_size, state_size]) | |
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32) | |
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32) | |
# Unpack columns | |
inputs_series = tf.split(1, truncated_backprop_length, batchX_placeholder) | |
labels_series = tf.unpack(batchY_placeholder, axis=1) | |
# Forward passes | |
cell = tf.nn.rnn_cell.BasicRNNCell(state_size) | |
states_series, current_state = tf.nn.rnn(cell, inputs_series, init_state) | |
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] #Broadcasted addition | |
predictions_series = [tf.nn.softmax(logits) for logits in logits_series] | |
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series,labels_series)] | |
total_loss = tf.reduce_mean(losses) | |
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) | |
def plot(loss_list, predictions_series, batchX, batchY): | |
plt.subplot(2, 3, 1) | |
plt.cla() | |
plt.plot(loss_list) | |
for batch_series_idx in range(5): | |
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :] | |
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) | |
plt.subplot(2, 3, batch_series_idx + 2) | |
plt.cla() | |
plt.axis([0, truncated_backprop_length, 0, 2]) | |
left_offset = range(truncated_backprop_length) | |
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue") | |
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red") | |
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green") | |
plt.draw() | |
plt.pause(0.0001) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
plt.ion() | |
plt.figure() | |
plt.show() | |
loss_list = [] | |
for epoch_idx in range(num_epochs): | |
x,y = generateData() | |
_current_state = np.zeros((batch_size, state_size)) | |
print("New data, epoch", epoch_idx) | |
for batch_idx in range(num_batches): | |
start_idx = batch_idx * truncated_backprop_length | |
end_idx = start_idx + truncated_backprop_length | |
batchX = x[:,start_idx:end_idx] | |
batchY = y[:,start_idx:end_idx] | |
_total_loss, _train_step, _current_state, _predictions_series = sess.run( | |
[total_loss, train_step, current_state, predictions_series], | |
feed_dict={ | |
batchX_placeholder:batchX, | |
batchY_placeholder:batchY, | |
init_state:_current_state | |
}) | |
loss_list.append(_total_loss) | |
if batch_idx%100 == 0: | |
print("Step",batch_idx, "Loss", _total_loss) | |
plot(loss_list, _predictions_series, batchX, batchY) | |
plt.ioff() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment