Last active
October 8, 2018 12:47
-
-
Save 3h4/dba4f7d86077fa962fe0626c2de5d8c7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 | |
echo_step = 3 | |
batch_size = 5 | |
num_batches = total_series_length//batch_size//truncated_backprop_length | |
num_layers = 3 | |
def generateData(): | |
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) | |
y = np.roll(x, echo_step) | |
y[0:echo_step] = 0 | |
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows | |
y = y.reshape((batch_size, -1)) | |
return (x, y) | |
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) | |
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length]) | |
init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size]) | |
state_per_layer_list = tf.unpack(init_state, axis=0) | |
rnn_tuple_state = tuple( | |
[tf.nn.rnn_cell.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1]) | |
for idx in range(num_layers)] | |
) | |
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32) | |
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32) | |
# Forward passes | |
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True) | |
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True) | |
states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state) | |
states_series = tf.reshape(states_series, [-1, state_size]) | |
logits = tf.matmul(states_series, W2) + b2 #Broadcasted addition | |
labels = tf.reshape(batchY_placeholder, [-1]) | |
logits_series = tf.unpack(tf.reshape(logits, [batch_size, truncated_backprop_length, num_classes]), axis=1) | |
predictions_series = [tf.nn.softmax(logit) for logit in logits_series] | |
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) | |
total_loss = tf.reduce_mean(losses) | |
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) | |
def plot(loss_list, predictions_series, batchX, batchY): | |
plt.subplot(2, 3, 1) | |
plt.cla() | |
plt.plot(loss_list) | |
for batch_series_idx in range(5): | |
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :] | |
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) | |
plt.subplot(2, 3, batch_series_idx + 2) | |
plt.cla() | |
plt.axis([0, truncated_backprop_length, 0, 2]) | |
left_offset = range(truncated_backprop_length) | |
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue") | |
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red") | |
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green") | |
plt.draw() | |
plt.pause(0.0001) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
plt.ion() | |
plt.figure() | |
plt.show() | |
loss_list = [] | |
for epoch_idx in range(num_epochs): | |
x,y = generateData() | |
_current_state = np.zeros((num_layers, 2, batch_size, state_size)) | |
print("New data, epoch", epoch_idx) | |
for batch_idx in range(num_batches): | |
start_idx = batch_idx * truncated_backprop_length | |
end_idx = start_idx + truncated_backprop_length | |
batchX = x[:,start_idx:end_idx] | |
batchY = y[:,start_idx:end_idx] | |
_total_loss, _train_step, _current_state, _predictions_series = sess.run( | |
[total_loss, train_step, current_state, predictions_series], | |
feed_dict={ | |
batchX_placeholder: batchX, | |
batchY_placeholder: batchY, | |
init_state: _current_state | |
}) | |
loss_list.append(_total_loss) | |
if batch_idx%100 == 0: | |
print("Step",batch_idx, "Batch loss", _total_loss) | |
plot(loss_list, _predictions_series, batchX, batchY) | |
plt.ioff() | |
plt.show() | |
Updated to TENSORFLOW 1.8, thanks to @chunleili
from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
num_layers = 3
def generateData():
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows
y = y.reshape((batch_size, -1))
return (x, y)
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size])
state_per_layer_list = tf.unstack(init_state, axis=0)
rnn_tuple_state = tuple(
[tf.nn.rnn_cell.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1])
for idx in range(num_layers)]
)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)
# Forward passes
#cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True)
#cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell(
[tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True) for i in range(num_layers)], state_is_tuple=True)
states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state)
states_series = tf.reshape(states_series, [-1, state_size])
logits = tf.matmul(states_series, W2) + b2 #Broadcasted addition
labels = tf.reshape(batchY_placeholder, [-1])
logits_series = tf.unstack(tf.reshape(logits, [batch_size, truncated_backprop_length, num_classes]), axis=1)
predictions_series = [tf.nn.softmax(logit) for logit in logits_series]
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batch_series_idx in range(5):
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
plt.subplot(2, 3, batch_series_idx + 2)
plt.cla()
plt.axis([0, truncated_backprop_length, 0, 2])
left_offset = range(truncated_backprop_length)
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
plt.ion()
plt.figure()
plt.show()
loss_list = []
for epoch_idx in range(num_epochs):
x,y = generateData()
_current_state = np.zeros((num_layers, 2, batch_size, state_size))
print("New data, epoch", epoch_idx)
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx]
batchY = y[:,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict={
batchX_placeholder: batchX,
batchY_placeholder: batchY,
init_state: _current_state
})
loss_list.append(_total_loss)
if batch_idx%100 == 0:
print("Step",batch_idx, "Batch loss", _total_loss)
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
need to change to
cell = tf.nn.rnn_cell.MultiRNNCell(
[tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True) for i in range(num_layers)], state_is_tuple=True)