Created
November 18, 2016 14:30
-
-
Save 3h4/f6e9cabbead201056c4705c2590d3d21 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import time | |
def get_times(maximum_time): | |
device_times = { | |
"/gpu:0":[], | |
"/cpu:0":[] | |
} | |
matrix_sizes = range(500,50000,50) | |
for size in matrix_sizes: | |
for device_name in device_times.keys(): | |
print("####### Calculating on the " + device_name + " #######") | |
shape = (size,size) | |
data_type = tf.float16 | |
with tf.device(device_name): | |
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
dot_operation = tf.matmul(r2, r1) | |
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session: | |
start_time = time.time() | |
result = session.run(dot_operation) | |
time_taken = time.time() - start_time | |
print(result) | |
device_times[device_name].append(time_taken) | |
print(device_times) | |
if time_taken > maximum_time: | |
return device_times, matrix_sizes | |
device_times, matrix_sizes = get_times(1.5) | |
gpu_times = device_times["/gpu:0"] | |
cpu_times = device_times["/cpu:0"] | |
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 'o-') | |
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-') | |
plt.ylabel('Time') | |
plt.xlabel('Matrix size') | |
plt.show() |
Replace "tf" with "tf.compat.v1"
Add "tf.compat.v1.disable_eager_execution()"
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Does not work with TensorFlow V2.0
Tried fixing but as I am a beginner, I haven't been able to. Just porting using:
%tensorflow_version 1.x
in colab to get tensor flow v1
https://colab.research.google.com/notebooks/tensorflow_version.ipynb#scrollTo=NeWVBhf1VxlH