Created
November 16, 2023 22:58
-
-
Save 3outeille/b73be24d209b25e136bb39a57d78a807 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from copy import deepcopy | |
import torch | |
from datasets import load_dataset | |
from torch.optim import SGD | |
from torch.utils.data import DataLoader | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import random | |
import os | |
import numpy as np | |
def seed_everything(seed: int): | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = True | |
if __name__ == "__main__": | |
import wandb | |
# MODEL = "bigscience/bloom-560m" | |
MODEL = "gpt2" | |
DATASET = "imdb" | |
NUM_EPOCHS = 25 | |
LR = 1e-2 | |
SEED = 69 | |
torch.cuda.empty_cache() | |
seed_everything(SEED) | |
train_dataset = load_dataset("imdb", split="train[:1]") | |
train_dataset = train_dataset.map(lambda x: {"text": "I rented I"}) | |
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=False) | |
model_cpu = AutoModelForCausalLM.from_pretrained(MODEL) | |
model_gpu = deepcopy(model_cpu).to("cuda") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
optim_cpu = SGD(model_cpu.parameters(), lr=LR) | |
optim_gpu = SGD(model_gpu.parameters(), lr=LR) | |
model_cpu.train() | |
model_gpu.train() | |
def get_time_name(): | |
import datetime | |
today = datetime.datetime.now() | |
return today.strftime("%d/%m/%Y_%H:%M:%S") | |
wandb.init( | |
project="sanity-check", | |
name=f"{get_time_name()}.test", | |
config={ | |
"model": MODEL, | |
"dataset": DATASET, | |
"epochs": NUM_EPOCHS, | |
"learning_rate": LR, | |
"seed": SEED, | |
}, | |
) | |
for epoch in range(NUM_EPOCHS): | |
for batch in train_dataloader: | |
inputs = tokenizer(batch["text"], padding=True, truncation=True, return_tensors="pt") | |
inputs_cpu = {name: tensor for name, tensor in inputs.items()} | |
inputs_gpu = {name: tensor.to("cuda") for name, tensor in inputs.items()} | |
labels_cpu = inputs_cpu["input_ids"] | |
labels_gpu = inputs_gpu["input_ids"] | |
outputs_cpu = model_cpu(**inputs_cpu, labels=labels_cpu) | |
outputs_gpu = model_gpu(**inputs_gpu, labels=labels_gpu) | |
optim_cpu.zero_grad() | |
outputs_cpu.loss.backward() | |
optim_cpu.step() | |
optim_gpu.zero_grad() | |
outputs_gpu.loss.backward() | |
optim_gpu.step() | |
wandb.log({"train_loss_cpu": outputs_cpu.loss, "train_loss_gpu": outputs_gpu.loss, "epoch": epoch}) | |
wandb.finish() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment