-
-
Save 4PixelsDev/7400df5cd6f004c4d630c849660577d6 to your computer and use it in GitHub Desktop.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Writes metadata and label file to the image classifier models.""" | |
""" | |
Usage - Terminal command which execute the script accept 3 parameters: | |
-- model_file - path to .tflite model without metadata | |
-- label_file - path to .txt file with classes (1 class per row) | |
-- export_directory - path to generated .tflite model with metadata | |
""" | |
# python ./metadata_writer_for_object_detection.py \ | |
# --model_file=./model_without_metadata/final_model.tflite \ | |
# --label_file=./labels.txt \ | |
# --export_directory=./model_with_metadata | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import app | |
from absl import flags | |
import tensorflow as tf | |
import flatbuffers | |
# pylint: disable=g-direct-tensorflow-import | |
from tflite_support import metadata_schema_py_generated as _metadata_fb | |
from tflite_support import metadata as _metadata | |
# pylint: enable=g-direct-tensorflow-import | |
FLAGS = flags.FLAGS | |
def define_flags(): | |
flags.DEFINE_string("model_file", None, | |
"Path and file name to the TFLite model file.") | |
flags.DEFINE_string("label_file", None, "Path to the label file.") | |
flags.DEFINE_string("export_directory", None, | |
"Path to save the TFLite model files with metadata.") | |
flags.mark_flag_as_required("model_file") | |
flags.mark_flag_as_required("label_file") | |
flags.mark_flag_as_required("export_directory") | |
class ModelSpecificInfo(object): | |
"""Holds information that is specificly tied to an image classifier.""" | |
def __init__(self, name, version, image_width, image_height, image_min, | |
image_max, mean, std, num_classes): | |
self.name = name | |
self.version = version | |
self.image_width = image_width | |
self.image_height = image_height | |
self.image_min = image_min | |
self.image_max = image_max | |
self.mean = mean | |
self.std = std | |
self.num_classes = num_classes | |
_MODEL_INFO = { | |
"final_model.tflite": | |
ModelSpecificInfo( | |
name="MobileNetV1 image classifier", | |
version="v1", | |
image_width=300, | |
image_height=300, | |
image_min=0, | |
image_max=255, | |
mean=[127.5], | |
std=[127.5], | |
num_classes=1) | |
} | |
class MetadataPopulatorForObjectDetection(object): | |
"""Populates the metadata for an image classifier.""" | |
def __init__(self, model_file, model_info, label_file_path): | |
self.model_file = model_file | |
self.model_info = model_info | |
self.label_file_path = label_file_path | |
self.metadata_buf = None | |
def populate(self): | |
"""Creates metadata and then populates it for an image classifier.""" | |
self._create_metadata() | |
self._populate_metadata() | |
def _create_metadata(self): | |
"""Creates the metadata for an image classifier.""" | |
# Creates model info. | |
model_meta = _metadata_fb.ModelMetadataT() | |
model_meta.name = self.model_info.name | |
model_meta.description = ("Equipment.") | |
model_meta.version = self.model_info.version | |
model_meta.author = "TensorFlow" | |
model_meta.license = ("Apache License. Version 2.0 " | |
"http://www.apache.org/licenses/LICENSE-2.0.") | |
# Creates input info. | |
input_meta = _metadata_fb.TensorMetadataT() | |
input_meta.name = "image" | |
input_meta.description = ("The expected image is 300 x 300, with three channels " | |
"(red, blue, and green) per pixel. Each value in the tensor is between" | |
" 0 and 1.") | |
input_meta.content = _metadata_fb.ContentT() | |
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() | |
input_meta.content.contentProperties.colorSpace = ( | |
_metadata_fb.ColorSpaceType.RGB) | |
input_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.ImageProperties) | |
input_normalization = _metadata_fb.ProcessUnitT() | |
input_normalization.optionsType = ( | |
_metadata_fb.ProcessUnitOptions.NormalizationOptions) | |
input_normalization.options = _metadata_fb.NormalizationOptionsT() | |
input_normalization.options.mean = self.model_info.mean | |
input_normalization.options.std = self.model_info.std | |
input_meta.processUnits = [input_normalization] | |
input_stats = _metadata_fb.StatsT() | |
input_stats.max = [self.model_info.image_max] | |
input_stats.min = [self.model_info.image_min] | |
input_meta.stats = input_stats | |
# Creates output info. | |
output_location_meta = _metadata_fb.TensorMetadataT() | |
output_location_meta.name = "location" | |
output_location_meta.description = "The locations of the detected boxes." | |
output_location_meta.content = _metadata_fb.ContentT() | |
output_location_meta.content.contentPropertiesType = (_metadata_fb.ContentProperties.BoundingBoxProperties) | |
output_location_meta.content.contentProperties = (_metadata_fb.BoundingBoxPropertiesT()) | |
output_location_meta.content.contentProperties.index = [1, 0, 3, 2] | |
output_location_meta.content.contentProperties.type = (_metadata_fb.BoundingBoxType.BOUNDARIES) | |
output_location_meta.content.contentProperties.coordinateType = (_metadata_fb.CoordinateType.RATIO) | |
output_location_meta.content.range = _metadata_fb.ValueRangeT() | |
output_location_meta.content.range.min = 2 | |
output_location_meta.content.range.max = 2 | |
output_class_meta = _metadata_fb.TensorMetadataT() | |
output_class_meta.name = "category" | |
output_class_meta.description = "The categories of the detected boxes." | |
output_class_meta.content = _metadata_fb.ContentT() | |
output_class_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_class_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
output_class_meta.content.range = _metadata_fb.ValueRangeT() | |
output_class_meta.content.range.min = 2 | |
output_class_meta.content.range.max = 2 | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = os.path.basename(self.label_file_path) | |
label_file.description = "Label of objects that this model can recognize." | |
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_VALUE_LABELS | |
output_class_meta.associatedFiles = [label_file] | |
output_score_meta = _metadata_fb.TensorMetadataT() | |
output_score_meta.name = "score" | |
output_score_meta.description = "The scores of the detected boxes." | |
output_score_meta.content = _metadata_fb.ContentT() | |
output_score_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_score_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
output_score_meta.content.range = _metadata_fb.ValueRangeT() | |
output_score_meta.content.range.min = 2 | |
output_score_meta.content.range.max = 2 | |
output_number_meta = _metadata_fb.TensorMetadataT() | |
output_number_meta.name = "number of detections" | |
output_number_meta.description = "The number of the detected boxes." | |
output_number_meta.content = _metadata_fb.ContentT() | |
output_number_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_number_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
# Creates subgraph info. | |
group = _metadata_fb.TensorGroupT() | |
group.name = "detection result" | |
group.tensorNames = [ output_location_meta.name, output_class_meta.name, output_score_meta.name ] | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [input_meta] | |
subgraph.outputTensorMetadata = [output_location_meta, output_class_meta, output_score_meta,output_number_meta] | |
subgraph.outputTensorGroups = [group] | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish( | |
model_meta.Pack(b), | |
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
self.metadata_buf = b.Output() | |
def _populate_metadata(self): | |
"""Populates metadata and label file to the model file.""" | |
populator = _metadata.MetadataPopulator.with_model_file(self.model_file) | |
populator.load_metadata_buffer(self.metadata_buf) | |
populator.load_associated_files([self.label_file_path]) | |
populator.populate() | |
def main(_): | |
model_file = FLAGS.model_file | |
model_basename = os.path.basename(model_file) | |
if model_basename not in _MODEL_INFO: | |
raise ValueError( | |
"The model info for, {0}, is not defined yet.".format(model_basename)) | |
export_model_path = os.path.join(FLAGS.export_directory, model_basename) | |
# Copies model_file to export_path. | |
tf.io.gfile.copy(model_file, export_model_path, overwrite=True) | |
# Generate the metadata objects and put them in the model file | |
populator = MetadataPopulatorForObjectDetection( | |
export_model_path, _MODEL_INFO.get(model_basename), FLAGS.label_file) | |
populator.populate() | |
# Validate the output model file by reading the metadata and produce | |
# a json file with the metadata under the export path | |
displayer = _metadata.MetadataDisplayer.with_model_file(export_model_path) | |
export_json_file = os.path.join(FLAGS.export_directory, | |
os.path.splitext(model_basename)[0] + ".json") | |
json_file = displayer.get_metadata_json() | |
with open(export_json_file, "w") as f: | |
f.write(json_file) | |
print("Finished populating metadata and associated file to the model:") | |
print(model_file) | |
print("The metadata json file has been saved to:") | |
print(export_json_file) | |
print("The associated file that has been been packed to the model is:") | |
print(displayer.get_packed_associated_file_list()) | |
if __name__ == "__main__": | |
define_flags() | |
app.run(main) |
@agql, it's because your model has 8 output tensors, but this metadata writer script only creates metadata for four tensors, which doesn't fit your model. Normally, an object detection model should only have four output tensors. You may want to double check if there's anything wrong with your tflite conversion script.
Hello sir, I tried running your script and I faced one error ValueError: "The model info for, {0}, is not defined yet.".format(model_basename))
could u please help me rectify my mistake. I have used ssd_mobilenet_v2_320*320 model.
@DivyaJain04, if you are looking for solutions to populate metadata for object detection models, please refer to this StackOverflow answer.
Dear Igor,
I am trying to convert a working TF2 model into the TFLite format to be used in a mobile App. I have found your excellent code but I get one error message in line 210.
ValueError: The number of output tensors (8) should match the number of output tensor metadata (4)
I have been trying to solve it without success.
Any ideas on how to proceed?
Thanks so much
@agql Where did you was your error after all?? I am facing the same issue....
Dear Igor,
I am trying to convert a working TF2 model into the TFLite format to be used in a mobile App. I have found your excellent code but I get one error message in line 210.
ValueError: The number of output tensors (8) should match the number of output tensor metadata (4)
I have been trying to solve it without success.
Any ideas on how to proceed?
Thanks so much@agql Where did you was your error after all?? I am facing the same issue....
@MikeMpapa
Hello, I am not sure about it, but i think it might be a problem of conversion (your trained model -> your trained model in tflite)
Before using this script, you have to be sure your model is converted in the right way.
I first use the code : export_tflite_graph_tf2.py that you can find here https://github.com/tensorflow/models/tree/master/research/object_detection
And then I convert this new model in tflite using this code :
` import tensorflow as tf
#Convert the model
saved_model_dir = " path to your saved_model_dir "
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]
tflite_model = converter.convert()
open("name_model.tflite", "wb").write(tflite_model) `
After that, there is no more issues with the number of output tensors
Hello sir, I tried running your script and I faced one error ValueError: "The model info for, {0}, is not defined yet.".format(model_basename)) could u please help me rectify my mistake. I have used ssd_mobilenet_v2_320*320 model.
Hii, try changing the above code in the script based on your model configuration, works for me....
Dear Igor,
I am trying to convert a working TF2 model into the TFLite format to be used in a mobile App. I have found your excellent code but I get one error message in line 210.
ValueError: The number of output tensors (8) should match the number of output tensor metadata (4)
I have been trying to solve it without success.
Any ideas on how to proceed?
Thanks so much@agql Where did you was your error after all?? I am facing the same issue....
@MikeMpapa Hello, I am not sure about it, but i think it might be a problem of conversion (your trained model -> your trained model in tflite) Before using this script, you have to be sure your model is converted in the right way.
I first use the code : export_tflite_graph_tf2.py that you can find here https://github.com/tensorflow/models/tree/master/research/object_detection
And then I convert this new model in tflite using this code :
` import tensorflow as tf
#Convert the model saved_model_dir = " path to your saved_model_dir "
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops. tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops. ] tflite_model = converter.convert() open("name_model.tflite", "wb").write(tflite_model) `
After that, there is no more issues with the number of output tensors
works for me, thankss
Dear Igor,
I am trying to convert a working TF2 model into the TFLite format to be used in a mobile App. I have found your excellent code but I get one error message in line 210.
ValueError: The number of output tensors (8) should match the number of output tensor metadata (4)
I have been trying to solve it without success.
Any ideas on how to proceed?
Thanks so much