Last active
February 2, 2017 13:47
-
-
Save 5S/296f05879f3dc9ded3f913e87961a6b9 to your computer and use it in GitHub Desktop.
パケットを復号化したり暗号化したりするやつ
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import base64 | |
import json | |
import msgpack | |
import os | |
import rijndael | |
def new_key(): | |
return base64.b64encode(os.urandom(24)) | |
def clean_udid(s): | |
return "".join(chr(ord(c) - 10) for c in s[6::4][:int(s[:4], 16)]).replace("-", "").encode("ascii") | |
def decrypt_cbc(s, iv, key): | |
p = b"".join(rijndael.decrypt(key, bytes(s[i:i + len(iv)])) for i in range(0, len(s), len(iv))) | |
return bytes((iv + s)[i] ^ p[i] for i in range(len(p))) | |
def encrypt_cbc(s, iv, key): | |
if len(s) % 32: | |
s += b"\x00" * (32 - (len(s) % 32)) | |
out = [iv] | |
for i in range(0, len(s), 32): | |
blk = bytes(s[i + j] ^ out[-1][j] for j in range(32)) | |
out.append(rijndael.encrypt(key, blk)) | |
return b"".join(out[1:]) | |
def unpack(data, udid): | |
iv = clean_udid(udid) | |
reply = base64.b64decode(data) | |
crypted_payload = reply[:-32] | |
key = reply[-32:] | |
plain = decrypt_cbc(crypted_payload, iv, key).rstrip(b"\x00") | |
payload = msgpack.unpackb(base64.b64decode(plain), encoding="utf8") | |
return payload | |
def pack(data, udid, key=None): | |
iv = clean_udid(udid) | |
if key is None: | |
key = new_key() | |
payload_mp = base64.b64encode(msgpack.packb(data)) | |
crypted_payload = base64.b64encode(encrypt_cbc(payload_mp, iv, key) + key) | |
return crypted_payload | |
mode = input("Which do you want to do? [D/E]: ") | |
if mode.lower() == "d": | |
udid = input("UDID > ") | |
b64 = input("BASE64 > ") | |
res = unpack(b64, udid) | |
json = json.dumps(res, indent=4, separators=(',', ': ')) | |
print(json) | |
elif mode.lower() == "e": | |
udid = input("UDID > ") | |
json = input("JSON > ") | |
res = pack(json, udid) | |
print(res) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Authors: | |
# Bram Cohen - main author | |
# Trevor Perrin - minor changes for Python compatibility | |
# | |
# See the LICENSE file for legal information regarding use of this file. | |
# Also see Bram Cohen's statement below | |
################ RIJNDAEL ### | |
# Trevor edited below code for python 3, and ease of packaging | |
""" | |
A pure python (slow) implementation of rijndael with a decent interface | |
To include - | |
from rijndael import rijndael | |
To do a key setup - | |
r = rijndael(key, block_size = 16) | |
key must be a string of length 16, 24, or 32 | |
blocksize must be 16, 24, or 32. Default is 16 | |
To use - | |
ciphertext = r.encrypt(plaintext) | |
plaintext = r.decrypt(ciphertext) | |
If any strings are of the wrong length a ValueError is thrown | |
""" | |
# ported from the Java reference code by Bram Cohen, [email protected], April 2001 | |
# this code is public domain, unless someone makes | |
# an intellectual property claim against the reference | |
# code, in which case it can be made public domain by | |
# deleting all the comments and renaming all the variables | |
import copy | |
#TREV 2011 - is this still needed? seems not | |
#----------------------- | |
#TREV - ADDED BECAUSE THERE'S WARNINGS ABOUT INT OVERFLOW BEHAVIOR CHANGING IN | |
#2.4..... | |
#import os | |
#if os.name != "java": | |
# import exceptions | |
# if hasattr(exceptions, "FutureWarning"): | |
# import warnings | |
# warnings.filterwarnings("ignore", category=FutureWarning, append=1) | |
#----------------------- | |
shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]], | |
[[0, 0], [1, 5], [2, 4], [3, 3]], | |
[[0, 0], [1, 7], [3, 5], [4, 4]]] | |
# [keysize][block_size] | |
num_rounds = {16: {16: 10, 24: 12, 32: 14}, | |
24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}} | |
A = [[1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 1, 1, 1, 1, 1], | |
[1, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 1, 1, 1], | |
[1, 1, 1, 0, 0, 0, 1, 1], | |
[1, 1, 1, 1, 0, 0, 0, 1]] | |
# produce log and alog tables, needed for multiplying in the | |
# field GF(2^m) (generator = 3) | |
alog = [1] | |
for i in range(255): | |
j = (alog[-1] << 1) ^ alog[-1] | |
if j & 0x100 != 0: | |
j ^= 0x11B | |
alog.append(j) | |
log = [0] * 256 | |
for i in range(1, 255): | |
log[alog[i]] = i | |
# multiply two elements of GF(2^m) | |
def mul(a, b): | |
if a == 0 or b == 0: | |
return 0 | |
return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] | |
# substitution box based on F^{-1}(x) | |
box = [[0] * 8 for i in range(256)] | |
box[1][7] = 1 | |
for i in range(2, 256): | |
j = alog[255 - log[i]] | |
for t in range(8): | |
box[i][t] = (j >> (7 - t)) & 0x01 | |
B = [0, 1, 1, 0, 0, 0, 1, 1] | |
# affine transform: box[i] <- B + A*box[i] | |
cox = [[0] * 8 for i in range(256)] | |
for i in range(256): | |
for t in range(8): | |
cox[i][t] = B[t] | |
for j in range(8): | |
cox[i][t] ^= A[t][j] * box[i][j] | |
# S-boxes and inverse S-boxes | |
S = [0] * 256 | |
Si = [0] * 256 | |
for i in range(256): | |
S[i] = cox[i][0] << 7 | |
for t in range(1, 8): | |
S[i] ^= cox[i][t] << (7-t) | |
Si[S[i] & 0xFF] = i | |
# T-boxes | |
G = [[2, 1, 1, 3], | |
[3, 2, 1, 1], | |
[1, 3, 2, 1], | |
[1, 1, 3, 2]] | |
AA = [[0] * 8 for i in range(4)] | |
for i in range(4): | |
for j in range(4): | |
AA[i][j] = G[i][j] | |
AA[i][i+4] = 1 | |
for i in range(4): | |
pivot = AA[i][i] | |
if pivot == 0: | |
t = i + 1 | |
while AA[t][i] == 0 and t < 4: | |
t += 1 | |
assert t != 4, 'G matrix must be invertible' | |
for j in range(8): | |
AA[i][j], AA[t][j] = AA[t][j], AA[i][j] | |
pivot = AA[i][i] | |
for j in range(8): | |
if AA[i][j] != 0: | |
AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255] | |
for t in range(4): | |
if i != t: | |
for j in range(i+1, 8): | |
AA[t][j] ^= mul(AA[i][j], AA[t][i]) | |
AA[t][i] = 0 | |
iG = [[0] * 4 for i in range(4)] | |
for i in range(4): | |
for j in range(4): | |
iG[i][j] = AA[i][j + 4] | |
def mul4(a, bs): | |
if a == 0: | |
return 0 | |
r = 0 | |
for b in bs: | |
r <<= 8 | |
if b != 0: | |
r = r | mul(a, b) | |
return r | |
T1 = [] | |
T2 = [] | |
T3 = [] | |
T4 = [] | |
T5 = [] | |
T6 = [] | |
T7 = [] | |
T8 = [] | |
U1 = [] | |
U2 = [] | |
U3 = [] | |
U4 = [] | |
for t in range(256): | |
s = S[t] | |
T1.append(mul4(s, G[0])) | |
T2.append(mul4(s, G[1])) | |
T3.append(mul4(s, G[2])) | |
T4.append(mul4(s, G[3])) | |
s = Si[t] | |
T5.append(mul4(s, iG[0])) | |
T6.append(mul4(s, iG[1])) | |
T7.append(mul4(s, iG[2])) | |
T8.append(mul4(s, iG[3])) | |
U1.append(mul4(t, iG[0])) | |
U2.append(mul4(t, iG[1])) | |
U3.append(mul4(t, iG[2])) | |
U4.append(mul4(t, iG[3])) | |
# round constants | |
rcon = [1] | |
r = 1 | |
for t in range(1, 30): | |
r = mul(2, r) | |
rcon.append(r) | |
del A | |
del AA | |
del pivot | |
del B | |
del G | |
del box | |
del log | |
del alog | |
del i | |
del j | |
del r | |
del s | |
del t | |
del mul | |
del mul4 | |
del cox | |
del iG | |
class rijndael: | |
def __init__(self, key, block_size = 16): | |
if block_size != 16 and block_size != 24 and block_size != 32: | |
raise ValueError('Invalid block size: ' + str(block_size)) | |
if len(key) != 16 and len(key) != 24 and len(key) != 32: | |
raise ValueError('Invalid key size: ' + str(len(key))) | |
self.block_size = block_size | |
ROUNDS = num_rounds[len(key)][block_size] | |
BC = block_size // 4 | |
# encryption round keys | |
Ke = [[0] * BC for i in range(ROUNDS + 1)] | |
# decryption round keys | |
Kd = [[0] * BC for i in range(ROUNDS + 1)] | |
ROUND_KEY_COUNT = (ROUNDS + 1) * BC | |
KC = len(key) // 4 | |
# copy user material bytes into temporary ints | |
tk = [] | |
for i in range(0, KC): | |
tk.append((key[i * 4] << 24) | (key[i * 4 + 1] << 16) | | |
(key[i * 4 + 2]) << 8 | key[i * 4 + 3]) | |
# copy values into round key arrays | |
t = 0 | |
j = 0 | |
while j < KC and t < ROUND_KEY_COUNT: | |
Ke[t // BC][t % BC] = tk[j] | |
Kd[ROUNDS - (t // BC)][t % BC] = tk[j] | |
j += 1 | |
t += 1 | |
tt = 0 | |
rconpointer = 0 | |
while t < ROUND_KEY_COUNT: | |
# extrapolate using phi (the round key evolution function) | |
tt = tk[KC - 1] | |
tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^ \ | |
(S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \ | |
(S[ tt & 0xFF] & 0xFF) << 8 ^ \ | |
(S[(tt >> 24) & 0xFF] & 0xFF) ^ \ | |
(rcon[rconpointer] & 0xFF) << 24 | |
rconpointer += 1 | |
if KC != 8: | |
for i in range(1, KC): | |
tk[i] ^= tk[i-1] | |
else: | |
for i in range(1, KC // 2): | |
tk[i] ^= tk[i-1] | |
tt = tk[KC // 2 - 1] | |
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \ | |
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \ | |
(S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \ | |
(S[(tt >> 24) & 0xFF] & 0xFF) << 24 | |
for i in range(KC // 2 + 1, KC): | |
tk[i] ^= tk[i-1] | |
# copy values into round key arrays | |
j = 0 | |
while j < KC and t < ROUND_KEY_COUNT: | |
Ke[t // BC][t % BC] = tk[j] | |
Kd[ROUNDS - (t // BC)][t % BC] = tk[j] | |
j += 1 | |
t += 1 | |
# inverse MixColumn where needed | |
for r in range(1, ROUNDS): | |
for j in range(BC): | |
tt = Kd[r][j] | |
Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \ | |
U2[(tt >> 16) & 0xFF] ^ \ | |
U3[(tt >> 8) & 0xFF] ^ \ | |
U4[ tt & 0xFF] | |
self.Ke = Ke | |
self.Kd = Kd | |
def encrypt(self, plaintext): | |
if len(plaintext) != self.block_size: | |
raise ValueError('wrong block length, expected ' + | |
str(self.block_size) + ' got ' + str(len(plaintext))) | |
Ke = self.Ke | |
BC = self.block_size // 4 | |
ROUNDS = len(Ke) - 1 | |
if BC == 4: | |
SC = 0 | |
elif BC == 6: | |
SC = 1 | |
else: | |
SC = 2 | |
s1 = shifts[SC][1][0] | |
s2 = shifts[SC][2][0] | |
s3 = shifts[SC][3][0] | |
a = [0] * BC | |
# temporary work array | |
t = [] | |
# plaintext to ints + key | |
for i in range(BC): | |
t.append((plaintext[i * 4 ] << 24 | | |
plaintext[i * 4 + 1] << 16 | | |
plaintext[i * 4 + 2] << 8 | | |
plaintext[i * 4 + 3] ) ^ Ke[0][i]) | |
# apply round transforms | |
for r in range(1, ROUNDS): | |
for i in range(BC): | |
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^ | |
T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^ | |
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^ | |
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i] | |
t = copy.copy(a) | |
# last round is special | |
result = [] | |
for i in range(BC): | |
tt = Ke[ROUNDS][i] | |
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF) | |
result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF) | |
result.append((S[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF) | |
result.append((S[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF) | |
return bytearray(result) | |
def decrypt(self, ciphertext): | |
if len(ciphertext) != self.block_size: | |
raise ValueError('wrong block length, expected ' + | |
str(self.block_size) + ' got ' + str(len(ciphertext))) | |
Kd = self.Kd | |
BC = self.block_size // 4 | |
ROUNDS = len(Kd) - 1 | |
if BC == 4: | |
SC = 0 | |
elif BC == 6: | |
SC = 1 | |
else: | |
SC = 2 | |
s1 = shifts[SC][1][1] | |
s2 = shifts[SC][2][1] | |
s3 = shifts[SC][3][1] | |
a = [0] * BC | |
# temporary work array | |
t = [0] * BC | |
# ciphertext to ints + key | |
for i in range(BC): | |
t[i] = (ciphertext[i * 4 ] << 24 | | |
ciphertext[i * 4 + 1] << 16 | | |
ciphertext[i * 4 + 2] << 8 | | |
ciphertext[i * 4 + 3] ) ^ Kd[0][i] | |
# apply round transforms | |
for r in range(1, ROUNDS): | |
for i in range(BC): | |
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^ | |
T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^ | |
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^ | |
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i] | |
t = copy.copy(a) | |
# last round is special | |
result = [] | |
for i in range(BC): | |
tt = Kd[ROUNDS][i] | |
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF) | |
result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF) | |
result.append((Si[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF) | |
result.append((Si[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF) | |
return bytearray(result) | |
def encrypt(key, block): | |
return rijndael(key, len(block)).encrypt(block) | |
def decrypt(key, block): | |
return rijndael(key, len(block)).decrypt(block) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment