Created
August 15, 2012 23:34
-
-
Save 5outh/3364744 to your computer and use it in GitHub Desktop.
Fraction
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Fraction | |
( | |
Fraction, | |
(%), | |
simplify, | |
num, | |
denom | |
) where | |
import Data.Monoid | |
import Data.Ratio hiding ((%)) | |
data Fraction = Frac Integer Integer -- Numerator Denominator | |
--Type constructor | |
(%) :: Integer -> Integer -> Fraction | |
(%) a = simplify . Frac a | |
instance Show Fraction where | |
show (Frac a b) = (show a) ++ " / " ++ (show b) | |
instance Num Fraction where | |
(-) f (Frac a b) = f + (Frac (-a) b) | |
(+) (Frac a b) (Frac c d) = Frac num denom | |
where denom = lcm b d | |
num = a * (denom `quot` b) + c * (denom `quot` d) | |
(*) (Frac a b) (Frac c d) = Frac (a*c) (b*d) | |
negate (Frac a b) = Frac (-a) b | |
abs f = fmapF abs f | |
where fmapF f (Frac a b) = Frac (f a) (f b) | |
fromInteger x = Frac x 1 | |
signum (Frac a b) = if a == 0 then 0 | |
else if b > 0 then | |
if a < 0 then (-1) | |
else 1 | |
else if a < 0 then 1 | |
else (-1) | |
instance Fractional Fraction where | |
(/) f = (*) f . recip | |
recip (Frac a b) = Frac b a | |
fromRational r = Frac (numerator r) (denominator r) | |
instance Eq Fraction where | |
(/=) f = not . (==) f | |
(==) f f' = (x == x') && (y == y') | |
where (Frac x y) = simplify f | |
(Frac x' y') = simplify f' | |
instance Ord Fraction where | |
compare (Frac a b) (Frac c d) = compare (a `quot` b) (c `quot` d) | |
(<) f = (==) LT . compare f | |
(>) f = (==) GT . compare f | |
(>=) f = not . (<) f | |
(<=) f = not . (>) f | |
max f f' = if f < f' then f' else f | |
min f f' = if f < f' then f else f' | |
instance Monoid Fraction where | |
mempty = 0 | |
mappend = (+) | |
mconcat = foldr mappend mempty | |
simplify :: Fraction -> Fraction | |
simplify (Frac a b) = Frac (a `quot` factor) (b `quot` factor) | |
where factor = gcd a b | |
num :: Fraction -> Integer | |
num (Frac a _) = a | |
denom :: Fraction -> Integer | |
denom (Frac _ b) = b |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment