Created
March 22, 2018 01:06
-
-
Save 5pecia1/4b18ae559c732777bf9d9b31fb61dc86 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
import tensorflow as tf | |
sess = tf.InteractiveSession() | |
x = tf.placeholder(tf.float32, shape=[None, 784]) | |
y_ = tf.placeholder(tf.float32, shape=[None, 10]) | |
W = tf.Variable(tf.zeros([784,10])) | |
b = tf.Variable(tf.zeros([10])) | |
sess.run(tf.global_variables_initializer()) | |
y = tf.nn.softmax(tf.matmul(x,W) + b) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
for i in range(1000): | |
batch = mnist.train.next_batch(50) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) | |
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) | |
def weight_variable(shape): | |
initial = tf.truncated_normal(shape, stddev=0.1) | |
return tf.Variable(initial) | |
def bias_variable(shape): | |
initial = tf.constant(0.1, shape=shape) | |
return tf.Variable(initial) | |
def conv2d(x, W): | |
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') | |
def max_pool_2x2(x): | |
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], | |
strides=[1, 2, 2, 1], padding='SAME') | |
W_conv1 = weight_variable([5, 5, 1, 32]) | |
b_conv1 = bias_variable([32]) | |
x_image = tf.reshape(x, [-1,28,28,1]) | |
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) | |
h_pool1 = max_pool_2x2(h_conv1) | |
W_conv2 = weight_variable([5, 5, 32, 64]) | |
b_conv2 = bias_variable([64]) | |
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) | |
h_pool2 = max_pool_2x2(h_conv2) | |
W_fc1 = weight_variable([7 * 7 * 64, 1024]) | |
b_fc1 = bias_variable([1024]) | |
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) | |
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) | |
keep_prob = tf.placeholder(tf.float32) | |
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) | |
W_fc2 = weight_variable([1024, 10]) | |
b_fc2 = bias_variable([10]) | |
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) | |
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) | |
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
sess.run(tf.global_variables_initializer()) | |
for i in range(20000): | |
batch = mnist.train.next_batch(50) | |
if i%100 == 0: | |
train_accuracy = accuracy.eval(feed_dict={ | |
x:batch[0], y_: batch[1], keep_prob: 1.0}) | |
print("step %d, training accuracy %g"%(i, train_accuracy)) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) | |
print("test accuracy %g"%accuracy.eval(feed_dict={ | |
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment