-
-
Save 74th/31eacbbac6351649caa417b19231f09e to your computer and use it in GitHub Desktop.
diff --git a/tensorflow/core/framework/variant.h b/tensorflow/core/framework/variant.h | |
index c02391dae3..7f76609814 100644 | |
--- a/tensorflow/core/framework/variant.h | |
+++ b/tensorflow/core/framework/variant.h | |
@@ -152,7 +152,8 @@ bool DecodeVariant(const string& buf, T* value); | |
// | |
class Variant { | |
public: | |
- constexpr Variant() noexcept = default; | |
+// constexpr Variant() noexcept = default; | |
+ Variant() noexcept = default; | |
Variant(const Variant& other) | |
: value_(other.is_empty() ? std::unique_ptr<ValueInterface>() | |
diff --git a/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc b/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc | |
index a561d918bd..785e0ddf4e 100644 | |
--- a/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc | |
+++ b/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc | |
@@ -69,7 +69,7 @@ __global__ void concat_variable_kernel( | |
IntType num_inputs = input_ptr_data.size; | |
// verbose declaration needed due to template | |
- extern __shared__ __align__(sizeof(T)) unsigned char smem[]; | |
+ extern __shared__ unsigned char smem[]; | |
IntType* smem_col_scan = reinterpret_cast<IntType*>(smem); | |
if (useSmem) { | |
diff --git a/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc b/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc | |
index 94989089ec..a2e3e8bc87 100644 | |
--- a/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc | |
+++ b/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc | |
@@ -172,7 +172,7 @@ __global__ __launch_bounds__(1024, 2) void DepthwiseConv2dGPUKernelNHWCSmall( | |
const DepthwiseArgs args, const T* input, const T* filter, T* output) { | |
assert(CanLaunchDepthwiseConv2dGPUSmall(args)); | |
// Holds block plus halo and filter data for blockDim.x depths. | |
- extern __shared__ __align__(sizeof(T)) unsigned char shared_memory[]; | |
+ extern __shared__ unsigned char shared_memory[]; | |
T* const shared_data = reinterpret_cast<T*>(shared_memory); | |
const int num_batches = args.batch; | |
@@ -452,7 +452,7 @@ __global__ __launch_bounds__(1024, 2) void DepthwiseConv2dGPUKernelNCHWSmall( | |
const DepthwiseArgs args, const T* input, const T* filter, T* output) { | |
assert(CanLaunchDepthwiseConv2dGPUSmall(args)); | |
// Holds block plus halo and filter data for blockDim.z depths. | |
- extern __shared__ __align__(sizeof(T)) unsigned char shared_memory[]; | |
+ extern __shared__ unsigned char shared_memory[]; | |
T* const shared_data = reinterpret_cast<T*>(shared_memory); | |
const int num_batches = args.batch; | |
@@ -1118,7 +1118,7 @@ __launch_bounds__(1024, 2) void DepthwiseConv2dBackpropFilterGPUKernelNHWCSmall( | |
const DepthwiseArgs args, const T* output, const T* input, T* filter) { | |
assert(CanLaunchDepthwiseConv2dBackpropFilterGPUSmall(args, blockDim.z)); | |
// Holds block plus halo and filter data for blockDim.x depths. | |
- extern __shared__ __align__(sizeof(T)) unsigned char shared_memory[]; | |
+ extern __shared__ unsigned char shared_memory[]; | |
T* const shared_data = reinterpret_cast<T*>(shared_memory); | |
const int num_batches = args.batch; | |
@@ -1388,7 +1388,7 @@ __launch_bounds__(1024, 2) void DepthwiseConv2dBackpropFilterGPUKernelNCHWSmall( | |
const DepthwiseArgs args, const T* output, const T* input, T* filter) { | |
assert(CanLaunchDepthwiseConv2dBackpropFilterGPUSmall(args, blockDim.x)); | |
// Holds block plus halo and filter data for blockDim.z depths. | |
- extern __shared__ __align__(sizeof(T)) unsigned char shared_memory[]; | |
+ extern __shared__ unsigned char shared_memory[]; | |
T* const shared_data = reinterpret_cast<T*>(shared_memory); | |
const int num_batches = args.batch; | |
diff --git a/tensorflow/core/kernels/split_lib_gpu.cu.cc b/tensorflow/core/kernels/split_lib_gpu.cu.cc | |
index 393818730b..a7d9e02853 100644 | |
--- a/tensorflow/core/kernels/split_lib_gpu.cu.cc | |
+++ b/tensorflow/core/kernels/split_lib_gpu.cu.cc | |
@@ -121,7 +121,7 @@ __global__ void split_v_kernel(const T* input_ptr, | |
int num_outputs = output_ptr_data.size; | |
// verbose declaration needed due to template | |
- extern __shared__ __align__(sizeof(T)) unsigned char smem[]; | |
+ extern __shared__ unsigned char smem[]; | |
IntType* smem_col_scan = reinterpret_cast<IntType*>(smem); | |
if (useSmem) { | |
diff --git a/tensorflow/workspace.bzl b/tensorflow/workspace.bzl | |
index 48728ac131..268e4fe2e6 100644 | |
--- a/tensorflow/workspace.bzl | |
+++ b/tensorflow/workspace.bzl | |
@@ -330,11 +330,11 @@ def tf_workspace(path_prefix="", tf_repo_name=""): | |
tf_http_archive( | |
name = "protobuf_archive", | |
urls = [ | |
- "https://mirror.bazel.build/github.com/google/protobuf/archive/396336eb961b75f03b25824fe86cf6490fb75e3a.tar.gz", | |
- "https://github.com/google/protobuf/archive/396336eb961b75f03b25824fe86cf6490fb75e3a.tar.gz", | |
+ "https://mirror.bazel.build/github.com/dtrebbien/protobuf/archive/50f552646ba1de79e07562b41f3999fe036b4fd0.tar.gz", | |
+ "https://github.com/dtrebbien/protobuf/archive/50f552646ba1de79e07562b41f3999fe036b4fd0.tar.gz", | |
], | |
- sha256 = "846d907acf472ae233ec0882ef3a2d24edbbe834b80c305e867ac65a1f2c59e3", | |
- strip_prefix = "protobuf-396336eb961b75f03b25824fe86cf6490fb75e3a", | |
+ sha256 = "eb16b33431b91fe8cee479575cee8de202f3626aaf00d9bf1783c6e62b4ffbc7", | |
+ strip_prefix = "protobuf-50f552646ba1de79e07562b41f3999fe036b4fd0", | |
) | |
# We need to import the protobuf library under the names com_google_protobuf |
@xiaoyuin unluckily I've not a found any solution. I've just upgraded CUDA Driver to 396.148 (it is still not compatible with 10.13.5, requiring to use the NVIDIA Webdriver 387.10.10.10.35.106) but I still get signal 11. Let's see what happens with new NVIDIA drivers or with next Tensorflow 1.9.0
I've just compiled 1.9.0 and still segfaults 11 in the same part of Tensorflow (reporting last calls on stack):
void tensorflow::gtl::InlinedVector<tensorflow::EventMgr::InUse, 4>::emplace_back<tensorflow::EventMgr::InUse const&>(tensorflow::EventMgr::InUse const&&&) + 173
tensorflow::EventMgr::PollEvents(bool, tensorflow::gtl::InlinedVector<tensorflow::EventMgr::InUse, 4>) + 300
tensorflow::EventMgr::ThenExecute(stream_executor::Stream, std::__1::function<void ()>) + 194
tensorflow::GPUUtil::CopyCPUTensorToGPU(tensorflow::Tensor const*, tensorflow::DeviceContext const*, tensorflow::Device*, tensorflow::Tensor*, std::__1::function<void (tensorflow::Status const&)>)
Those who have segment 11 error.please check your clang version. The new anaconda3 installation have its own clang installed. Change that clang into other name. Use apple clang provided by Xcode, and rebuild Tensorflow, then the segment 11 error will gone!
@bennix I've used clang:
Apple LLVM version 9.0.0 (clang-900.0.39.2)
Target: x86_64-apple-darwin17.7.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
that is clang provided with Xcode 9.2, the one supported by CUDA 9.1.
I've tried both 10.13.5 and 10.13.6.
Which clang/OSX version do you have ?
Looks like something with nsync in libtensorflow
Termination Signal: Segmentation fault: 11
Termination Reason: Namespace SIGNAL, Code 0xb
Terminating Process: exc handler [0]
Thread 0:: Dispatch queue: com.apple.main-thread
0 libsystem_kernel.dylib 0x00007fff63af3a1e __psynch_cvwait + 10
1 libsystem_pthread.dylib 0x00007fff63cbc589 pthread_cond_wait + 732
2 libc++.1.dylib 0x00007fff618fbcb0 std::1::condition_variable::wait(std::1::unique_lockstd::__1::mutex&) + 18
3 libtensorflow_framework.so 0x00000001091c8deb nsync::nsync_mu_semaphore_p_with_deadline(nsync::nsync_semaphore_s*, timespec) + 283
4 libtensorflow_framework.so 0x00000001091c5637 nsync::nsync_cv_wait_with_deadline_generic(nsync::nsync_cv_s, void, void ()(void), void ()(void), timespec, nsync::nsync_note_s*) + 423
5 libtensorflow_framework.so 0x00000001091c5da1 nsync::nsync_cv_wait(nsync::nsync_cv_s*, nsync::nsync_mu_s) + 49
6 _pywrap_tensorflow_internal.so 0x000000010eb9ceeb tensorflow::DirectSession::WaitForNotification(tensorflow::Notification, long long) + 155
7 _pywrap_tensorflow_internal.so 0x000000010eb931f6 tensorflow::DirectSession::WaitForNotification(tensorflow::DirectSession::RunState*, tensorflow::CancellationManager*, long long) + 38
8 _pywrap_tensorflow_internal.so 0x000000010eb92ab7 tensorflow::DirectSession::RunInternal(long long, tensorflow::RunOptions const&, tensorflow::CallFrameInterface*, tensorflow::DirectSession::ExecutorsAndKeys*, tensorflow::RunMetadata*) + 2615
9 _pywrap_tensorflow_internal.so 0x000000010eb93c51 tensorflow::DirectSession::Run(tensorflow::RunOptions const&, std::__1::vector<std::__1::pair<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator >, tensorflow::Tensor>, std::__1::allocator<std::__1::pair<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator >, tensorflow::Tensor> > > const&, std::__1::vector<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator > > > const&, std::__1::vector<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits, std::__1::allocator > > > const&, std::__1::vector<tensorflow::Tensor, std::__1::allocatortensorflow::Tensor >, tensorflow::RunMetadata) + 1473
Got this trying to run: https://www.tensorflow.org/tutorials/estimators/cnn
@iRonJ Do you fix this problem?
I encountered the Symbol not found: _ncclAllReduce
problem and can confirm that Orang-utan
's solution worked for me.
I have segment 11 error. finally I switch Xcode from 9.2 to 8.3.3 and it's OK now.
@yu-fei
I got Segmentation fault: 11 even with Xcode 8.3.3.
Was there any trick?
https://github.com/dtrebbien
This github page needed for the tensorflow patch is gone. So we cannot compile patched TF. How could we solve?
@Orang-utan this is a good work-around, thanks