Created
November 10, 2019 20:50
-
-
Save 8bit-pixies/163548b607e091f601876bfcf6e8888d to your computer and use it in GitHub Desktop.
This is an implementation of grucell in Keras. This shoudl allow for a bit more flexibility when not working under the "recurrent" framework
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This is a manual implementaiton of grucell so that it will work in more | |
general envrionments... | |
""" | |
import tensorflow as tf | |
input_size = 64 | |
cell_size = 32 | |
inputs = tf.keras.layers.Input(shape=(input_size,)) | |
states = tf.keras.layers.Input(shape=(cell_size,)) | |
#inputs_z = inputs | |
#inputs_r = inputs | |
#inputs_h = inputs | |
#h_tm1_z = h_tm1 | |
#h_tm1_r = h_tm1 | |
#h_tm1_h = h_tm1 | |
x_z = tf.keras.layers.Dense(cell_size, activation=None, name='z')(inputs) | |
x_r = tf.keras.layers.Dense(cell_size, activation=None, name='r')(inputs) | |
x_h = tf.keras.layers.Dense(cell_size, activation=None, name='h')(inputs) | |
recurrent_z = tf.keras.layers.Dense(cell_size, activation=None, name='r_z')(states) | |
recurrent_r = tf.keras.layers.Dense(cell_size, activation=None, name='r_r')(states) | |
z = tf.keras.layers.Activation('sigmoid')(tf.keras.layers.Add()([x_z, recurrent_z])) | |
r = tf.keras.layers.Activation('sigmoid')(tf.keras.layers.Add()([x_r, recurrent_r])) | |
recurrent_h = tf.keras.layers.Dense(cell_size, activation=None)(tf.keras.layers.Multiply()([r, states])) | |
hh = tf.keras.layers.Activation('tanh')(tf.keras.layers.Add()([x_h, recurrent_h])) | |
h = tf.keras.layers.Lambda(lambda tensors : tensors[0] * tensors[1] + (1 - tensors[0]) * tensors[2])([z, states, hh]) | |
model = tf.keras.models.Model(inputs=[inputs, states], outputs=h) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment