Created
February 7, 2018 08:17
-
-
Save 8q/a86b7bc75312d20b75c5048401fcf34b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
import sklearn | |
import numpy as np | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
from sklearn import preprocessing | |
from sklearn.metrics import f1_score | |
from keras.utils import to_categorical | |
from keras.layers import Dense, Activation | |
from keras.models import Sequential, Model | |
iris_X, iris_y = datasets.load_iris(return_X_y=True) | |
iris_X = preprocessing.scale(iris_X) | |
iris_y = to_categorical(iris_y) | |
train_X, test_X, train_y, test_y = train_test_split(iris_X, iris_y, test_size=0.25) | |
train_X, valid_X, train_y, valid_y = train_test_split(iris_X, iris_y, test_size=0.2) | |
model = Sequential() | |
model.add(Dense(10, input_dim=4, activation='relu')) | |
model.add(Dense(3, activation='softmax')) | |
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy']) | |
model.fit(train_X, train_y, epochs=30, batch_size=1, validation_data=(valid_X, valid_y)) | |
pred_y = model.predict(test_X) | |
print(f1_score(np.argmax(test_y, 1), np.argmax(pred_y, 1), average='macro')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment