Created
December 12, 2021 05:32
-
-
Save 9host1st/4b3dbc84f799ee3e48472de046fd4283 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Crypto.Util.number import * | |
n = 139167515668183984855584233262421636549219808362436809125322963984953234794207403032462532211718407628015534917936237180092470832870352873174416729863982860547330562153111496168661222608038945799305565324740297535609102402946273092600303759078983973524662838350143815732516927299895302494977521033451618509313 | |
e = 65537 | |
c = [(92641859227150025014514674882433433169736939888930400782213731523244191029744271714915087397818608658221982921496921528927873080896272971564627162670330785041427348269531449548757383647994986600796703130771466176972483905051546758332111818555173685323233367295631863710855125823503925281765070200264928761744, 1077078501560459546238096407664459657660011596619515007448272718633593622581663318232822694070053575817000584000976732545349394411037957356817674297166036371321332907845398174111343765006738074197964396832305908342965034091516961317164203682771449331094865994143953470394418754170915147984703343671839620070, 19878161032897109459692857500488708331148676837923170075630073845924376353394086221031683671854185288619608305138965881628353471119235227157715699650190844508727073649527735233175347600167954253143204293274253676829607434380971492999430389536409563073620686264607716424139208756197843637115228155976163983619, 122958657434560838063916316490126514822437273152981380647634868499620566657448363565613345650206126542999322277498960954804580159527199119604554047697342524367459283765958189416627623253226055220105627822118413649499651442079969872322463271891353808314530249098525814619479135297014148780695960117897387220659), (0, 85635304452753185796593135650704585992713419302092444931829191186284566226617686976975731459756968679710078670232999566062343743901469759277582454092882685887985731708244015567469990157564460035983017331880588783841581502687752495254387549274422591338211161917565559735193456411356422539814020979699927207024, 26528377397409932803048052918715873209845190225305139460936852681030879561522825277119360099719008486268731610926098705442795761739644784858085976938906030639986454157616558457541083641717564142619063815917161350343604401278251069255966146207538326575595944701499010180658631016268689550402326369924649514049, 17173480018007185616783556851363148729840100207266610547324632027095687866456613104465211034834604995290825437734467654701021261504226847008483339028335703977866796341754911432666568936460974103742649586111260163432789617417125379644939110280618415377202845096157056174169392363954229816964869557167190373166), (0, 0, 81417110160690915414859599923077760437964436481940074249510026432592954854440295980578313776441414052192070135409849396229653279814546498083873720679422968334818254076803899882280264290639872486915551889441082468560654475422089052988909565455596584407805229280743723696618903551087160338683566908533474596220, 88524270641123978066493517684012199807956329430551155649688209766850898125045959831704501988313531767120589113923546449704920649814085765896894870692227804052901254644766662594723181025793077392532746071480212649880063471693730914835259139038459097504431147211622052068997412540488201406879310193174863792764), (0, 0, 0, 130146806238985078905344376697263038970354607413027156915068014483770022716717215156189413217688976902906182579031431264733207976605553885314360422441780388319618199732296392330859801016851191010568169307878720202422104375360360029207688301496478751250969744747470242179561459045172707909287093959859681318497)] | |
def solve(): | |
m = Matrix(Zmod(n), c) | |
l = [] | |
for x in m[0]: | |
l.append(x) | |
p = int(gcd(l)) | |
print(p) | |
q = int(n // p) | |
print(q) | |
assert is_prime(p) and is_prime(q) | |
assert p * q == n | |
assert p.bit_length() == 512 and q.bit_length() == 512 | |
phi = (p - 1) * (q - 1) | |
e = 65537 | |
d = inverse(e, phi) | |
k=(m^d) | |
m1 = (long_to_bytes(gcd(Integer(k[1][1]), Integer(k[1][2])))) | |
m2 = (long_to_bytes(gcd(Integer(k[2][2]), Integer(k[2][3])))) | |
print(m1+m2) | |
solve() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment