Last active
September 29, 2019 05:20
-
-
Save AFAgarap/17adebb2578ac746c0d57d0ba4eac1ef to your computer and use it in GitHub Desktop.
Loading MNIST dataset and creating a tf.data.Dataset object for it. Link to blog: https://towardsdatascience.com/how-can-i-trust-you-fb433a06256c?source=friends_link&sk=0af208dc53be2a326d2407577184686b
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(train_features, train_labels), (test_features, test_labels) = tf.keras.datasets.mnist.load_data() | |
train_features = train_features.reshape(-1, 28, 28, 1) | |
train_features = train_features.astype('float32') | |
train_features = train_features / 255. | |
test_features = test_features.reshape(-1, 28, 28, 1) | |
test_features = test_features.astype('float32') | |
test_features = test_features / 255. | |
train_labels = tf.keras.utils.to_categorical(train_labels) | |
test_labels = tf.keras.utils.to_categorical(test_labels) | |
validation_features, test_features, validation_labels, test_labels = train_test_split(test_features, | |
test_labels, | |
test_size=0.50, | |
stratify=test_labels) | |
train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_labels)) | |
train_dataset = train_dataset.prefetch(BATCH_SIZE * 8) | |
train_dataset = train_dataset.shuffle(train_features.shape[0]) | |
train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=True) | |
validation_dataset = tf.data.Dataset.from_tensor_slices((validation_features, validation_labels)) | |
validation_dataset = validation_dataset.batch((BATCH_SIZE // 4)) | |
test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_labels)) | |
test_dataset = test_dataset.batch((BATCH_SIZE // 4)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment