Last active
August 17, 2024 08:17
-
-
Save AFAgarap/326af55e36be0529c507f1599f88c06e to your computer and use it in GitHub Desktop.
TensorFlow 2.0 implementation for a vanilla autoencoder. Link to tutorial: https://medium.com/@abien.agarap/implementing-an-autoencoder-in-tensorflow-2-0-5e86126e9f7
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""TensorFlow 2.0 implementation of vanilla Autoencoder.""" | |
import numpy as np | |
import tensorflow as tf | |
__author__ = "Abien Fred Agarap" | |
np.random.seed(1) | |
tf.random.set_seed(1) | |
batch_size = 128 | |
epochs = 10 | |
learning_rate = 1e-2 | |
intermediate_dim = 64 | |
original_dim = 784 | |
(training_features, _), _ = tf.keras.datasets.mnist.load_data() | |
training_features = training_features / np.max(training_features) | |
training_features = training_features.reshape(training_features.shape[0], | |
training_features.shape[1] * training_features.shape[2]) | |
training_features = training_features.astype('float32') | |
training_dataset = tf.data.Dataset.from_tensor_slices(training_features) | |
training_dataset = training_dataset.batch(batch_size) | |
training_dataset = training_dataset.shuffle(training_features.shape[0]) | |
training_dataset = training_dataset.prefetch(batch_size * 4) | |
class Encoder(tf.keras.layers.Layer): | |
def __init__(self, intermediate_dim): | |
super(Encoder, self).__init__() | |
self.hidden_layer = tf.keras.layers.Dense( | |
units=intermediate_dim, | |
activation=tf.nn.relu, | |
kernel_initializer='he_uniform' | |
) | |
self.output_layer = tf.keras.layers.Dense( | |
units=intermediate_dim, | |
activation=tf.nn.sigmoid | |
) | |
def call(self, input_features): | |
activation = self.hidden_layer(input_features) | |
return self.output_layer(activation) | |
class Decoder(tf.keras.layers.Layer): | |
def __init__(self, intermediate_dim, original_dim): | |
super(Decoder, self).__init__() | |
self.hidden_layer = tf.keras.layers.Dense( | |
units=intermediate_dim, | |
activation=tf.nn.relu, | |
kernel_initializer='he_uniform' | |
) | |
self.output_layer = tf.keras.layers.Dense( | |
units=original_dim, | |
activation=tf.nn.sigmoid | |
) | |
def call(self, code): | |
activation = self.hidden_layer(code) | |
return self.output_layer(activation) | |
class Autoencoder(tf.keras.Model): | |
def __init__(self, intermediate_dim, original_dim): | |
super(Autoencoder, self).__init__() | |
self.encoder = Encoder(intermediate_dim=intermediate_dim) | |
self.decoder = Decoder( | |
intermediate_dim=intermediate_dim, | |
original_dim=original_dim | |
) | |
def call(self, input_features): | |
code = self.encoder(input_features) | |
reconstructed = self.decoder(code) | |
return reconstructed | |
autoencoder = Autoencoder( | |
intermediate_dim=intermediate_dim, | |
original_dim=original_dim | |
) | |
opt = tf.optimizers.Adam(learning_rate=learning_rate) | |
def loss(model, original): | |
reconstruction_error = tf.reduce_mean(tf.square(tf.subtract(model(original), original))) | |
return reconstruction_error | |
def train(loss, model, opt, original): | |
with tf.GradientTape() as tape: | |
gradients = tape.gradient(loss(model, original), model.trainable_variables) | |
gradient_variables = zip(gradients, model.trainable_variables) | |
opt.apply_gradients(gradient_variables) | |
writer = tf.summary.create_file_writer('tmp') | |
with writer.as_default(): | |
with tf.summary.record_if(True): | |
for epoch in range(epochs): | |
for step, batch_features in enumerate(training_dataset): | |
train(loss, autoencoder, opt, batch_features) | |
loss_values = loss(autoencoder, batch_features) | |
original = tf.reshape(batch_features, (batch_features.shape[0], 28, 28, 1)) | |
reconstructed = tf.reshape(autoencoder(tf.constant(batch_features)), (batch_features.shape[0], 28, 28, 1)) | |
tf.summary.scalar('loss', loss_values, step=step) | |
tf.summary.image('original', original, max_outputs=10, step=step) | |
tf.summary.image('reconstructed', reconstructed, max_outputs=10, step=step) |
Hi, thanks for sharing this. As you suggested in your Medium article I tried to implement a CNN architecture but something isn't working properly. My restructured images are all black. And this is the loss I get:
The code: click here
Can you help me? What am I doing wrong? Thanks for your appreciated help!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
OK good to know, thanks!