Created
May 16, 2016 12:49
-
-
Save AFAgarap/eeccaee03cfaa5342cc840eb2cf97514 to your computer and use it in GitHub Desktop.
Simpson's method for approximating definite integral
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Numerical Analysis | |
# Simpson's Method | |
# Author: A.F. Agarap | |
# Function = (h / 3) (f(x[0]) + 4f(x[1]) + 2f(x[2]) + 4f(x[3]) + 2f(x[4]) + ... + 4f(x[n-1]) + f(x[n])) | |
# f(x) = cos(x**2) * exp(x**3) | |
import definite_integral as di | |
import os | |
def main(): | |
formula = input("Enter f(x): ") | |
a = int(input("Enter value for a: ")) | |
b = int(input("Enter value for b: ")) | |
n = int(input("Enter value for n: ")) | |
while (n % 2 != 0): | |
n = int(input("Enter value for n: ")) | |
x = di.generate_set(a, b, n) | |
result = 0 | |
for i in range(0, (n + 1)): | |
if (i == 0) or (i == n): | |
result += di.function(formula, x[i]) | |
elif (i % 2 == 0): | |
result += (2 * di.function(formula, x[i])) | |
elif (i % 2 != 0 and (i != 0 or i != n)): | |
result += (4 * di.function(formula, x[i])) | |
result *= ((abs(a - b) / n) / 3) | |
print(result) | |
# os.system('pause') # For Windows OS | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The source program for
definite_integral
:from math import *
def generate_set(a, b, n):
x = []
h = abs(a - b) / n
for i in range(n + 1):
x.append(a + (i \* h))
return x
def function(formula, x):
# return math.cos(x**2) \* math.exp(x**3)
return eval(formula)