Created
March 23, 2024 12:58
-
-
Save AIAnytime/2630c0ba4f5ce05dbd82ca5d0970f65e to your computer and use it in GitHub Desktop.
Evaluation after FT LLM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## With Evaluation Harness | |
!pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git | |
!pip install bitsandbytes | |
!pip install --upgrade transformers | |
!pip install auto-gptq optimum autoawq | |
!lm_eval --model hf --model_args pretrained=google/gemma-7b --tasks winogrande,hellaswag,arc_challenge --device cuda:0 --num_fewshot 1 --batch_size 8 --output_path ./eval_harness/gemma-7b | |
!lm_eval --model hf --model_args pretrained=google/gemma-7b --tasks winogrande,hellaswag,arc_challenge --device cuda:0 --num_fewshot 5 --batch_size 8 --output_path ./eval_harness/gemma-7b-5shot | |
## The following cell runs the evaluation of the LoRA adapter on hellaswag, arc_challenge, and winogrande in a zero-shot setting. | |
## For LoRA adapters | |
!lm_eval --model hf \ | |
--model_args pretrained=mistralai/Mistral-7B-v0.1,peft=./drive/MyDrive/v2_mistral7b_lora_results/checkpoint-1230 \ | |
--tasks hellaswag,arc_challenge,winogrande --device cuda:0 --num_fewshot 0 --batch_size 4 --output_path ./eval_harness/Mistral7B-LoRA --log_samples | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment