Last active
February 10, 2020 12:21
-
-
Save AJamesPhillips/9570158 to your computer and use it in GitHub Desktop.
Reorder arguments in bruteForceV1 signature
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
''' | |
Simple example of encrypting, sending and decrypting a message using RSA. | |
Also included is how a third party without permission, would need | |
to use a very time consuming (brute force) approach to decrypt | |
the message. This is done by finding the two prime numbers that make up | |
part of the public key so that you can read the encrypted message. | |
Implemented in python. | |
forked from: https://gist.github.com/JonCooperWorks/5314103 | |
''' | |
import math | |
import random | |
from datetime import datetime | |
''' | |
Euclid's algorithm for determining the greatest common divisor | |
Use iteration to make it faster for larger integers | |
''' | |
def gcd(a, b): | |
while b != 0: | |
a, b = b, a % b | |
return a | |
''' | |
Euclid's extended algorithm for finding the multiplicative inverse of two numbers | |
''' | |
def multiplicative_inverse(e, phi): | |
f = 0 | |
x1 = 0 | |
x2 = 1 | |
y1 = 1 | |
temp_phi = phi | |
while e > 0: | |
temp1 = temp_phi/e | |
temp2 = temp_phi - (temp1 * e) | |
temp_phi = e | |
e = temp2 | |
x = x2- temp1 * x1 | |
y = f - temp1 * y1 | |
x2 = x1 | |
x1 = x | |
f = y1 | |
y1 = y | |
if temp_phi == 1: | |
return f + phi | |
''' | |
Tests to see if a number is prime. | |
''' | |
def is_prime(num): | |
if num in (2, 3): | |
return True | |
if num < 2 or num % 2 == 0: | |
return False | |
for n in xrange(3, int(num**0.5)+2, 2): | |
if num % n == 0: | |
return False | |
return True | |
def generate_keypair(p, q, e=None): | |
if not (is_prime(p) and is_prime(q)): | |
raise ValueError('Both numbers must be prime.') | |
elif p == q: # does this matter? | |
raise ValueError('p and q cannot be equal') | |
# n = pq | |
n = p * q | |
# Phi is the totient of n | |
phi = (p-1) * (q-1) | |
if e is None: | |
# Choose an integer e such that e and phi(n) are coprime | |
# Use Euclid's Algorithm to verify that e and phi(n) are comprime | |
haveCoPrime = False | |
while not haveCoPrime: | |
e = random.randrange(1, phi) | |
g = gcd(e, phi) | |
haveCoPrime = (g == 1) | |
# Use Extended Euclid's Algorithm to generate the private key | |
d = multiplicative_inverse(e, phi) | |
# Return public and private keypair | |
# Public key is (e, n) and private key is (d, n) | |
return ((e, n), (d, n)) | |
def encrypt(pk, plaintext): | |
# Unpack the key into it's components | |
e, n = pk | |
# Convert each letter in the plaintext to numbers based on the character using a^b mod m | |
#cipher = [(ord(char) ** e) % n for char in plaintext] | |
cipher = [pow(ord(char), e, n) for char in plaintext] | |
# Return the array of bytes | |
return cipher | |
def decrypt(pk, ciphertext): | |
# Unpack the key into its components | |
d, n = pk | |
# Generate the plaintext based on the ciphertext and key using a^b mod m | |
#plain = [chr((char ** d) % n) for char in ciphertext] | |
plain = [chr(pow(char, d, n)) for char in ciphertext] | |
# Return the array of bytes as a string | |
return ''.join(plain) | |
def primeFactorizationV1(n): | |
""" | |
Finds the prime factors of `n` | |
(This is not a state of the art algorithm) | |
""" | |
primeFactors = [] | |
limit = int(math.sqrt(n)) + 1 | |
check = 2 | |
if n == 1: return [1] | |
for check in range(2, limit): | |
while n % check == 0: | |
primeFactors.append(check) | |
n /= check | |
if n > 1: | |
primeFactors.append(n) | |
return primeFactors | |
def bruteForceV1(publicN, publicE, encrypted_msg): | |
start = datetime.now() | |
print "bruteForceV1:\nFirst we factor n: {} to find it's two prime numbers . . .".format(publicN) | |
(p, q) = primeFactorizationV1(publicN) | |
print "That took: {} find private (p, q) of n as {}".format(datetime.now() - start, (p, q)) | |
public, uncoveredPrivateKey = generate_keypair(p, q, publicE) | |
message = decrypt(uncoveredPrivateKey, encryptedMessage) | |
print "Revealed message: {}".format(message) | |
def _backspace(message): | |
return chr(8)*len(str(defaultP)) | |
if __name__ == '__main__': | |
print "RSA Encrypter/ Decrypter" | |
# List some primes | |
primes = [] | |
for x in xrange(29999900, 30000000): | |
isPrime = is_prime(x) | |
if isPrime: | |
primes.append(str(x)) | |
print "{} are prime!".format(", ".join(primes)) | |
defaultP = 29999947 | |
p = int(raw_input("Enter a prime number (17, 19, 23, etc): {}".format(defaultP) + _backspace(defaultP) ) or defaultP) | |
defaultQ = 29999999 | |
q = int(raw_input("Enter another prime number (Not one you entered above): {}".format(defaultQ) + _backspace(defaultQ)) or defaultQ) | |
print "Generating your public/private keypairs now . . ." | |
public, private = generate_keypair(p, q) | |
print "Your public key is ", public, " and your private key is ", private | |
defaultMessage = 'hello world' | |
message = raw_input("Enter a message to encrypt with your private key: {}".format(defaultMessage) + _backspace(defaultMessage)) or defaultMessage | |
print "Your message is: {}".format(message) | |
encrypted_msg = encrypt(public, message) | |
print "Your encrypted message is: " | |
print ', '.join(map(str, encrypted_msg)) | |
print "Decrypting message with public key ", public, " . . ." | |
print "Your message is:" | |
print decrypt(private, encrypted_msg) | |
print "\nNow try to uncover the message with only information from the public key:" | |
publicN = public[1] | |
publicE = public[0] | |
print "n: {}".format(publicN) | |
print "e: {}".format(publicE) | |
print "and the encrypted message: {}".format(encrypted_msg) | |
bruteForceV1(publicN, publicE, encrypted_msg) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is SEVERELY broken
https://www.0xkasper.com/articles/hacktm-ctf-2020-qualifiers-write-up#rsa-is-easy-1
DO NOT USE FOR ANYTHING!