Created
February 18, 2017 18:17
-
-
Save ARezaK/fe4b78cf04722fbcbe6b232f8cb3dd18 to your computer and use it in GitHub Desktop.
extract text from first aid
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#this is extremely ugly but I made it in 20 minutes so take it or leave it | |
import textract | |
from collections import Counter | |
text = textract.process("FA2016Unedited.pdf", method='pdfminer') | |
utftext = text.decode('utf8', errors='ignore') | |
ascii_ = utftext.encode('ascii', errors='ignore').lower().replace(',',' ').replace('.','').replace('(','').replace(')','') | |
stopwords = ['what','who','is','you', 'a','at','is','he', 'of', 'and', 'in', 'as', 'to', 'the', 'with', 'a', 'for', 'is', 'A', 'from', 'caused', 'eg', 'image', 'are', 'following', 'have', 'due', 'can', 'this', 'step', 'most', 'makes', 'common', 'and/or', 'work', 'dr.', 'but', 'effect', 'which', 'right', 'left', 'occur', 'clinical', 'review', 'pages', 'it', 'no', 'human', '+', '-', ':', 'that', 'section', 'syndrome', '(eg', 'cell', 'disease', 'may', 'available', 'that', 'under', 'iii','cells', 'associated', 'not', 'ou', 'work', 'derivative', 'work', 'use', 'type', 'adapted', 'source', 'courtesy', 'your', 'effects', 'cause', 'risk', 'been', 'all', 'learning', 'mediq', 'captions.', 'cropping', 'llc', 'often', 'also', 'causes', 'after', 'into', 'test', 'used', 'adverse', 'usually', 'more', 'when', 'other', 'via', 'has', 'include', 'time', 'will', 'first', 'commonly', 'doi', 'than', 'seen', 'key', 'lead', 'occurs', 'through', 'both', 'cells.', 'form', 'index', 'only', 'between', 'within', 'their', 'release', 'study', 'by,252', 'one', 'students', 'questions', 'question', 'its', 'same', 'long', 'group', 'new', 'see', 'make', 'vs.', 'sign', 'direct', 'cells', 'cards', 'out', 'and', 'what', 'cards', 'source', 'sources'] | |
def remove_stopwords(input_): | |
input_words = input_.split() | |
result_words = [word for word in input_words if word not in stopwords] | |
result = ' '.join(result_words) | |
return result | |
ascii_ = remove_stopwords(ascii_) | |
most_common = Counter(ascii_.split()).most_common() | |
fixed_most_common = [] | |
for item in most_common: # get rid of lot of 1 letter, 2 letter words | |
if len(item[0]) > 2: | |
fixed_most_common.append(item) | |
with open('first_aid.txt', 'w') as fp: # dump into file | |
fp.write('\n'.join('%s %s' % x for x in fixed_most_common)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment