Created
February 2, 2017 08:04
-
-
Save AashishTiwari/5388ec904737f5f28316c617fbb5f0d3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
"""Variational auto-encoder for MNIST data. | |
Assumes the directories "img/" and "data/mnist/" exist. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import edward as ed | |
import tensorflow as tf | |
from edward.models import Bernoulli, Normal | |
from keras import backend as K | |
from keras.layers import Dense | |
from progressbar import ETA, Bar, Percentage, ProgressBar | |
from scipy.misc import imsave | |
from tensorflow.examples.tutorials.mnist import input_data | |
ed.set_seed(42) | |
M = 100 # batch size during training | |
d = 2 # latent dimension | |
# Probability model (subgraph) | |
z = Normal(mu=tf.zeros([M, d]), sigma=tf.ones([M, d])) | |
hidden = Dense(256, activation='relu')(z.value()) | |
x = Bernoulli(logits=Dense(28 * 28)(hidden)) | |
# Variational model (subgraph) | |
x_ph = tf.placeholder(tf.float32, [M, 28 * 28]) | |
hidden = Dense(256, activation='relu')(x_ph) | |
qz = Normal(mu=Dense(d)(hidden), | |
sigma=Dense(d, activation='softplus')(hidden)) | |
mnist = input_data.read_data_sets("data/mnist", one_hot=True) | |
sess = ed.get_session() | |
K.set_session(sess) | |
# Bind p(x, z) and q(z | x) to the same TensorFlow placeholder for x. | |
data = {x: x_ph} | |
inference = ed.KLqp({z: qz}, data) | |
optimizer = tf.train.RMSPropOptimizer(0.01, epsilon=1.0) | |
inference.initialize(optimizer=optimizer) | |
init = tf.global_variables_initializer() | |
init.run() | |
n_epoch = 100 | |
n_iter_per_epoch = 1000 | |
for epoch in range(n_epoch): | |
avg_loss = 0.0 | |
widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] | |
pbar = ProgressBar(n_iter_per_epoch, widgets=widgets) | |
pbar.start() | |
for t in range(n_iter_per_epoch): | |
pbar.update(t) | |
x_train, _ = mnist.train.next_batch(M) | |
info_dict = inference.update(feed_dict={x_ph: x_train}) | |
avg_loss += info_dict['loss'] | |
# Print a lower bound to the average marginal likelihood for an | |
# image. | |
avg_loss = avg_loss / n_iter_per_epoch | |
avg_loss = avg_loss / M | |
print("log p(x) >= {:0.3f}".format(avg_loss)) | |
# Prior predictive check. | |
imgs = sess.run(x.value()) | |
for m in range(M): | |
imsave("img/%d.png" % m, imgs[m].reshape(28, 28)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment