Last active
February 20, 2020 15:49
-
-
Save AbbyGi/6bf4b148026bde9cd35f412874bd3b6a to your computer and use it in GitHub Desktop.
Beamline optimization code using differential evolution
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
from random import random, uniform | |
import math | |
import time | |
import copy | |
from ophyd import EpicsMotor, Device, Component as Cpt | |
''' | |
Give PV name without having to create the class? | |
''' | |
class TestingStage(Device): | |
x = Cpt(EpicsMotor, "1}Mtr") | |
class SampleStage(Device): | |
x = Cpt(EpicsMotor, "X}Mtr") | |
y = Cpt(EpicsMotor, "Y}Mtr") | |
z = Cpt(EpicsMotor, "Z}Mtr") | |
testing_stage = TestingStage(prefix='XF:08BM{MC:07-Ax:', name='testing_stage') | |
sample_stage = SampleStage(prefix='XF:08BMES-OP{SM:1-Ax:', name='sample_stage') | |
global positions | |
global intensities | |
motor_list = [sample_stage.x, sample_stage.y] # , sample_stage.z] | |
# get limits | |
l1 = (91.4 + 18) / 2 | |
l2 = (17.5 + 116.9) / 2 | |
l3 = (14 + 24) / 2 | |
l1diff = 91.4 - 18 | |
l2diff = 116.9 - 17.5 | |
l3diff = 10 | |
# limits = [(l1 - l1diff * 0.1, l1 + l1diff * 0.1), | |
# (l2 - l2diff * 0.1, l2 + l2diff * 0.1), | |
# (l3 - l3diff * 0.1, l3 + l3diff * 0.1)] | |
# print(limits) | |
limits = [(50, 60), (50, 60)] | |
best_gen_sol = [] # holding best individuals of each generation | |
best_fitness = [0] # holds fitness of best individuals of each generation | |
def test_velocity_using_time(m_pos, m_set, t): | |
motors = [sample_stage.x, sample_stage.y, sample_stage.z] | |
for i in range(len(motors)): | |
motors[i].move(m_pos[i]) | |
moving = [] | |
for i in range(len(motors)): | |
moving.append(np.abs(m_set[i] - motors[i].position)) | |
# set velocity to distance / time (t) | |
for i in range(len(motors)): | |
velocity = np.round(moving[i] / t, 1) | |
if motors[i].velocity.low_limit <= velocity <= motors[i].velocity.high_limit: | |
motors[i].velocity.set(velocity) | |
print(velocity) | |
else: | |
print('Bad velocity') | |
for i in range(len(motors)): | |
motors[i].set(m_set[i]) | |
print('done') | |
def test_motor_reading(pos): | |
# test function | |
position_list = [] | |
status = testing_stage.x.move(pos, wait=False) | |
while not status.done: | |
position_list.append(testing_stage.x.position) | |
num_of_positions = len(position_list) | |
return position_list, num_of_positions | |
def plot_test_motor_reading(position_list): | |
# test function | |
pos_index = np.arange(len(position_list)) | |
plt.figure() | |
plt.plot(pos_index, position_list) | |
def simple_parabola(x): | |
# function to optimize | |
x = np.asarray(x) | |
return -3 * x ** 2 + 3 | |
def beamline_test_function(x): | |
# function to optimize | |
x = np.asarray(x) | |
return np.sin(4 * x) - np.cos(8 * x) + 2 | |
def ensure_bounds(vec, bounds): | |
# Makes sure each individual stays within bounds and adjusts them if they aren't | |
vec_new = [] | |
# cycle through each variable in vector | |
for i in range(len(vec)): | |
# variable exceeds the minimum boundary | |
if vec[i] < bounds[i][0]: | |
vec_new.append(bounds[i][0]) | |
# variable exceeds the maximum boundary | |
if vec[i] > bounds[i][1]: | |
vec_new.append(bounds[i][1]) | |
# the variable is fine | |
if bounds[i][0] <= vec[i] <= bounds[i][1]: | |
vec_new.append(vec[i]) | |
return vec_new | |
def omea(population, motors): | |
ind_sol = [] | |
positions = [] | |
intensities = [] | |
watch_positions = [] | |
watch_intensities = [] | |
movements = [] | |
print('************', population) | |
def f(*args, **kwargs): | |
curr_pos = [] | |
for jj in range(len(motors)): | |
read_val = motors[jj].user_readback.get() | |
curr_pos.append(read_val) | |
watch_positions.append(curr_pos) | |
watch_intensities.append(xs.channel1.rois.roi01.value.get()) | |
print('Evaluating individuals\nProgress:') | |
print(str(1) + ' of ' + str(len(population))) | |
movements.clear() | |
# move all motors to the first individual | |
for i in range(len(motors)): | |
movements.append(np.abs(motors[i].position - population[0][i])) | |
max_move_index = movements.index(np.max(movements)) | |
for i in range(len(motors)): | |
# set motors to move to next individual | |
if i == max_move_index: | |
st = motors[i].set(population[0][i]) | |
else: | |
motors[i].set(population[0][i]) | |
st.watch(f) # use status on motor that needs to move the most | |
while not st.done: | |
time.sleep(0.00001) | |
# get intensity | |
ind_sol.append(xs.channel1.rois.roi01.value.get()) | |
for i in range(1, len(population)): | |
# now go through each individual and do OMEA | |
old_population = copy.deepcopy(population) # keeps track of where to move next | |
unique_between = [] | |
unique_eval = [] | |
positions.clear() | |
intensities.clear() | |
watch_positions.clear() | |
watch_intensities.clear() | |
print(str(i + 1) + ' of ' + str(len(population))) | |
curr_pos = [] | |
movements.clear() | |
for jj in range(len(motors)): | |
read_val = motors[jj].user_readback.get() | |
curr_pos.append(read_val) | |
movements.append(np.abs(motors[jj].position - old_population[i][jj])) | |
max_move_index = movements.index(np.max(movements)) | |
# change velocities before movement | |
update_velocity(motors, movements) | |
watch_positions.append(curr_pos) | |
watch_intensities.append(xs.channel1.rois.roi01.value.get()) | |
for j in range(len(motors)): | |
# set motors to move to next individual | |
if j == max_move_index: | |
st = motors[j].set(old_population[i][j]) | |
else: | |
motors[j].set(old_population[i][j]) | |
st.watch(f) # use status on motor that needs to move the most | |
while not st.done: | |
time.sleep(0.00001) | |
# time.sleep(1.0) | |
# fitness of next individual | |
ind_sol.append(xs.channel1.rois.roi01.value.get()) | |
positions = np.array(watch_positions) | |
positions = positions.reshape((positions.shape[0], len(motors))).tolist() | |
intensities = np.array(watch_intensities).tolist() | |
print('POSITIONS', positions) | |
for j in range(len(positions)): # *** | |
# gets unique positions | |
if positions[j] not in unique_between: | |
unique_between.append(positions[j]) | |
unique_eval.append(intensities[j]) | |
# cut out first and last elements (already accounted for) | |
between = unique_between[1:-1] | |
between_eval = unique_eval[1:-1] | |
# find index of max if values were found in between individuals | |
try: | |
ii = between_eval.index(np.max(between_eval)) | |
# update population and individual solutions (ind_sol) | |
if between_eval[ii] > ind_sol[i]: | |
ind_sol[i] = between_eval[ii] | |
for k in range(len(population[i])): | |
population[i][k] = between[ii][k] | |
except ValueError: | |
# this means nothing was found between individuals | |
# individuals are very close together or the same value | |
pass | |
return population, ind_sol | |
def rand_1(pop, popsize, t_indx, mut, bounds): | |
# mutation strategy | |
# v = x_r1 + F * (x_r2 - x_r3) | |
idxs = [idx for idx in range(popsize) if idx != t_indx] | |
a, b, c = np.random.choice(idxs, 3, replace=False) | |
x_1 = pop[a] | |
x_2 = pop[b] | |
x_3 = pop[c] | |
x_diff = [x_2_i - x_3_i for x_2_i, x_3_i in zip(x_2, x_3)] | |
v_donor = [x_1_i + mut * x_diff_i for x_1_i, x_diff_i in zip(x_1, x_diff)] | |
v_donor = ensure_bounds(v_donor, bounds) | |
return v_donor | |
def best_1(pop, popsize, t_indx, mut, bounds, ind_sol): | |
# mutation strategy | |
# v = x_best + F * (x_r1 - x_r2) | |
x_best = pop[ind_sol.index(np.max(ind_sol))] | |
idxs = [idx for idx in range(popsize) if idx != t_indx] | |
a, b = np.random.choice(idxs, 2, replace=False) | |
x_1 = pop[a] | |
x_2 = pop[b] | |
x_diff = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)] | |
v_donor = [x_b + mut * x_diff_i for x_b, x_diff_i in zip(x_best, x_diff)] | |
v_donor = ensure_bounds(v_donor, bounds) | |
return v_donor | |
def current_to_best_1(pop, popsize, t_indx, mut, bounds, ind_sol): | |
# mutation strategy | |
# v = x_curr + F * (x_best - x_curr) + F * (x_r1 - r_r2) | |
x_best = pop[ind_sol.index(np.max(ind_sol))] | |
idxs = [idx for idx in range(popsize) if idx != t_indx] | |
a, b = np.random.choice(idxs, 2, replace=False) | |
x_1 = pop[a] | |
x_2 = pop[b] | |
x_curr = pop[t_indx] | |
x_diff1 = [x_b - x_c for x_b, x_c in zip(x_best, x_curr)] | |
x_diff2 = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)] | |
v_donor = [x_c + mut * x_diff_1 + mut * x_diff_2 for x_c, x_diff_1, x_diff_2 | |
in zip(x_curr, x_diff1, x_diff2)] | |
v_donor = ensure_bounds(v_donor, bounds) | |
return v_donor | |
def best_2(pop, popsize, t_indx, mut, bounds, ind_sol): | |
# mutation strategy | |
# v = x_best + F * (x_r1 - x_r2) + F * (x_r3 - r_r4) | |
x_best = pop[ind_sol.index(np.max(ind_sol))] | |
idxs = [idx for idx in range(popsize) if idx != t_indx] | |
a, b, c, d = np.random.choice(idxs, 4, replace=False) | |
x_1 = pop[a] | |
x_2 = pop[b] | |
x_3 = pop[c] | |
x_4 = pop[d] | |
x_diff1 = [x_1_i - x_2_i for x_1_i, x_2_i in zip(x_1, x_2)] | |
x_diff2 = [x_3_i - x_4_i for x_3_i, x_4_i in zip(x_3, x_4)] | |
v_donor = [x_b + mut * x_diff_1 + mut * x_diff_2 for x_b, x_diff_1, x_diff_2 | |
in zip(x_best, x_diff1, x_diff2)] | |
v_donor = ensure_bounds(v_donor, bounds) | |
return v_donor | |
def rand_2(pop, popsize, t_indx, mut, bounds): | |
# mutation strategy | |
# v = x_r1 + F * (x_r2 - x_r3) + F * (x_r4 - r_r5) | |
idxs = [idx for idx in range(popsize) if idx != t_indx] | |
a, b, c, d, e = np.random.choice(idxs, 5, replace=False) | |
x_1 = pop[a] | |
x_2 = pop[b] | |
x_3 = pop[c] | |
x_4 = pop[d] | |
x_5 = pop[e] | |
x_diff1 = [x_2_i - x_3_i for x_2_i, x_3_i in zip(x_2, x_3)] | |
x_diff2 = [x_4_i - x_5_i for x_4_i, x_5_i in zip(x_4, x_5)] | |
v_donor = [x_1_i + mut * x_diff_1 + mut * x_diff_2 for x_1_i, x_diff_1, x_diff_2 | |
in zip(x_1, x_diff1, x_diff2)] | |
v_donor = ensure_bounds(v_donor, bounds) | |
return v_donor | |
def test_velocity_using_motor_moving_most(m_pos, m_set): | |
motors = [sample_stage.x, sample_stage.y, sample_stage.z] | |
for i in range(len(motors)): | |
motors[i].move(m_pos[i]) | |
moving = [] | |
for i in range(len(motors)): | |
moving.append(np.abs(m_set[i] - motors[i].position)) | |
# set velocity to distance / time (t) | |
max_to_move = np.max(moving) | |
max_moving_motor_index = moving.index(max_to_move) | |
motors[max_moving_motor_index].velocity.set(motors[max_moving_motor_index].velocity.high_limit) | |
time_needed = max_to_move / motors[max_moving_motor_index].velocity.high_limit | |
for i in range(len(motors)): | |
if i != max_moving_motor_index: | |
velocity = np.round(moving[i] / time_needed, 1) | |
if motors[i].velocity.low_limit <= velocity <= motors[i].velocity.high_limit: | |
motors[i].velocity.set(velocity) | |
else: | |
print("This is a problem that needs thinking and fixing") | |
for i in range(len(motors)): | |
motors[i].set(m_set[i]) | |
return | |
def update_velocity(motors, distances_to_move): | |
# call before any movement | |
max_distance = np.max(distances_to_move) | |
max_dist_index = distances_to_move.index(max_distance) | |
motors[max_dist_index].velocity.set(motors[max_dist_index].velocity.high_limit) # *** | |
time_needed = max_distance / motors[max_dist_index].velocity.get() | |
for i in range(len(motors)): | |
if i != max_dist_index: | |
velocity = np.round(distances_to_move[i] / time_needed, 1) | |
if motors[i].velocity.low_limit <= velocity <= motors[i].velocity.high_limit: | |
motors[i].velocity.set(velocity) | |
else: | |
if velocity < motors[i].velocity.low_limit: | |
motors[i].velocity.set(motors[i].velocity.low_limit) | |
elif velocity > motors[i].velocity.high_limit: | |
motors[i].velocity.set(motors[i].velocity.high_limit) | |
def mutate(population, strategy, mut, bounds, ind_sol): | |
mutated_indv = [] | |
for i in range(len(population)): | |
if strategy == 'rand/1': | |
v_donor = rand_1(population, len(population), i, mut, bounds) | |
elif strategy == 'best/1': | |
v_donor = best_1(population, len(population), i, mut, bounds, ind_sol) | |
elif strategy == 'current-to-best/1': | |
v_donor = current_to_best_1(population, len(population), i, mut, bounds, ind_sol) | |
elif strategy == 'best/2': | |
v_donor = best_2(population, len(population), i, mut, bounds, ind_sol) | |
elif strategy == 'rand/2': | |
v_donor = rand_2(population, len(population), i, mut, bounds) | |
mutated_indv.append(v_donor) | |
return mutated_indv | |
def crossover(population, mutated_indv, crosspb): | |
crossover_indv = [] | |
for i in range(len(population)): | |
v_trial = [] | |
x_t = population[i] | |
for j in range(len(x_t)): | |
crossover_val = random() | |
if crossover_val <= crosspb: | |
v_trial.append(mutated_indv[i][j]) | |
else: | |
v_trial.append(x_t[j]) | |
crossover_indv.append(v_trial) | |
return crossover_indv | |
def select(population, crossover_indv, ind_sol, motors): | |
positions = [elm for elm in crossover_indv] | |
positions.insert(0, population[0]) | |
positions, evals = omea(positions, motors) | |
positions = positions[1:] | |
evals = evals[1:] | |
for i in range(len(evals)): | |
if evals[i] > ind_sol[i]: | |
population[i] = positions[i] | |
ind_sol[i] = evals[i] | |
population.reverse() | |
ind_sol.reverse() | |
return population, ind_sol | |
def diff_ev(motors, threshold, bounds=None, popsize=10, crosspb=0.8, mut=0.05, mut_type='rand/1'): | |
if bounds is None: | |
bounds = [] | |
for i in range(len(motors)): | |
bounds.append((motor_list[i].low_limit, motor_list[i].high_limit)) | |
print('BOUNDS:', bounds) | |
xs.settings.acquire.put(0) | |
xs.settings.num_images.put(10000) | |
xs.settings.acquire_time.put(0.05) | |
xs.settings.acquire.put(1) | |
# Initial population | |
population = [] | |
init_indv = [] | |
movements = [] | |
# gets initial position of motors | |
for i in range(len(motors)): | |
init_indv.append(motors[i].position) | |
population.append(init_indv) | |
# randomize the rest of the population | |
for i in range(popsize - 1): | |
indv = [] | |
for j in range(len(bounds)): | |
indv.append(uniform(bounds[j][0], bounds[j][1])) | |
population.append(indv) | |
init_pop = population[:] | |
# evaluate fitness of individuals | |
pop, ind_sol = omea(init_pop, motors) | |
pop.reverse() | |
ind_sol.reverse() | |
# Termination conditions | |
v = 0 # generation number | |
consec_best_ctr = 0 # counting successive generations with no change to best value | |
old_best_fit_val = 0 | |
while not (consec_best_ctr >= 5 and old_best_fit_val >= threshold): | |
print('\nGENERATION ' + str(v + 1)) | |
best_gen_sol = [] # score keeping | |
print('Performing mutation, crossover, and selection') # *** | |
mutated_trial_pop = mutate(pop, mut_type, mut, bounds, ind_sol) | |
cross_trial_pop = crossover(pop, mutated_trial_pop, crosspb) | |
pop, ind_sol = select(pop, cross_trial_pop, ind_sol, motors) | |
# score keeping | |
gen_best = np.max(ind_sol) # fitness of best individual | |
best_indv = pop[ind_sol.index(gen_best)] # solution of best individual | |
best_gen_sol.append(best_indv) # list of best individuals | |
best_fitness.append(gen_best) | |
print(' > FITNESS:', gen_best) | |
print(' > BEST POSITIONS:', best_indv) | |
v += 1 | |
if np.round(gen_best, 6) == np.round(old_best_fit_val, 6): | |
consec_best_ctr += 1 | |
print('Counter:', consec_best_ctr) | |
else: | |
consec_best_ctr = 0 | |
old_best_fit_val = gen_best | |
if consec_best_ctr >= 5 and old_best_fit_val >= threshold: | |
print('Finished') | |
break | |
else: | |
# *** need to check this | |
# randomizes worst individual | |
# movements.clear() | |
new_pos = np.zeros(2) | |
curr_pos = [] | |
for k in range(len(motors)): | |
curr_pos.append(motors[k].position) | |
new_pos[0] = curr_pos | |
change_index = ind_sol.index(np.min(ind_sol)) | |
changed_indv = pop[change_index] | |
for k in range(len(changed_indv)): | |
changed_indv[k] = uniform(bounds[k][0], bounds[k][1]) | |
new_pos[1] = changed_indv | |
new_pos, randomized_sol = omea(new_pos, motors) | |
new_pos = new_pos[1:] | |
randomized_sol = randomized_sol[1:] | |
if randomized_sol[0] > ind_sol[change_index]: | |
ind_sol[change_index] = randomized_sol[0] | |
pop[change_index] = new_pos[0] | |
# # movements.append(np.abs(motors[k].position - changed_indv[k])) | |
# max_move_index = movements.index(np.max(movements)) | |
# update_velocity(motors, movements) | |
# for k in range(len(changed_indv)): | |
# if k == max_move_index: | |
# st = motors[k].set(changed_indv[k]) | |
# else: | |
# motors[k].set(changed_indv[k]) | |
# while not st.done: | |
# time.sleep(0.00001) | |
# ind_sol[change_index] = xs.channel1.rois.roi01.value.get() | |
# Stop xspress3 acquisition | |
xs.settings.acquire.put(0) | |
# best solution overall should be last one | |
x_best = best_gen_sol[-1] | |
print('\nThe best individual is', x_best, 'with a fitness of', gen_best) | |
print('It took', v, 'generations') | |
plot_index = np.arange(len(best_fitness)) | |
plt.figure() | |
plt.plot(plot_index, best_fitness) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment