Created
October 3, 2020 05:33
-
-
Save Abhayparashar31/63b8cf909d7ab6efd2575791effda748 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
## importing dataframe | |
df = pd.read_csv("https://gist.githubusercontent.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb/raw/bf95a2e30fceb9f2ae990eac8379fc7d844a0196/weight-height.csv") | |
X=df['Height'].values[:,None] | |
y=df.iloc[:,2].values | |
## Visulization | |
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, | |
ncols=2, | |
figsize=(10, 8)) | |
fig.tight_layout(pad=3.0) | |
ax1.plot(X,y) | |
ax1.set_title("Weight and height") | |
ax1.set_xlabel("Height") | |
males=df[df['Gender']=='Male'] | |
females=df[df['Gender']=='Female'] | |
males.plot(kind='scatter',x='Height',y='Weight', | |
ax=ax2,color='blue',alpha=0.3, | |
title='Male and Female Populations') | |
females.plot(kind='scatter',x='Height',y='Weight', | |
ax=ax2,color='red',alpha=0.3, | |
title='Male and Female Populations'); | |
ax2.legend(['Males','Females']) | |
males['Height'].plot(kind='hist',ax=ax3,bins=50,range=(50,80),alpha=0.3,color='blue') | |
females['Height'].plot(kind='hist',ax=ax3,bins=50,range=(50,80),alpha=0.3,color='red') | |
ax3.set_title('Height distribution') | |
ax3.legend(['Males','Females']) | |
ax3.set_xlabel('Height in') | |
ax3.axvline(males['Height'].mean(),color='blue',linewidth=2) | |
ax3.axvline(females['Height'].mean(),color='red',linewidth=2); | |
ax4.hist(y) | |
ax4.set_title("Distribution of Weight") | |
plt.show() | |
## Modeling | |
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=1/3,random_state=0) | |
regressor = LinearRegression() | |
regressor.fit(X_train, y_train) | |
regressor.score(X_train,y_train) | |
##Prediction | |
y_pred = regressor.predict(X_test) | |
print(y_pred) | |
## Evaluation | |
from sklearn.metrics import mean_absolute_error,r2_score | |
print("mean_absolute_error: ",mean_absolute_error(y_test, y_pred)) | |
print("r2_score: ",r2_score(y_test,y_pred)) | |
## Visulizing results | |
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (14,6)) | |
ax1.scatter(X_train, y_train, color = 'red') | |
ax1.plot(X_train, regressor.predict(X_train), color = 'blue') | |
ax1.set_title('Traning Set') | |
ax1.set_xlabel('Height') | |
ax1.set_ylabel('Weight') | |
ax2.scatter(X_test, y_test, color = 'red') | |
ax2.plot(X_train, regressor.predict(X_train), color = 'blue') | |
ax2.set_title('Test Set') | |
ax2.set_xlabel('Height') | |
ax2.set_ylabel('Weight') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment