Skip to content

Instantly share code, notes, and snippets.

@Abhayparashar31
Created June 3, 2022 06:38
Show Gist options
  • Save Abhayparashar31/c01583f56108537dd66b83f2cb93d4a8 to your computer and use it in GitHub Desktop.
Save Abhayparashar31/c01583f56108537dd66b83f2cb93d4a8 to your computer and use it in GitHub Desktop.
from sklearn.cluster import KMeans
wcss = []
silhouette_scores = []
calinski_harabasz_scores = []
davies_bouldin_scores = []
for i in range(2, 7):
kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
y_pred = kmeans.fit_predict(X)
wcss.append(kmeans.inertia_)
silhouette_scores.append(silhouette_score(X,y_pred))
calinski_harabasz_scores.append(calinski_harabasz_score(X,y_pred))
davies_bouldin_scores.append(davies_bouldin_score(X,y_pred))
print(f'WCSS At k = {i}: ',kmeans.inertia_)
print('Silhouette Cofficient: ',silhouette_score(X,y_pred))
print('Calinski-Harabasz Index: ',calinski_harabasz_score(X,y_pred))
print('Davies-Bouldin Index: ',davies_bouldin_score(X,y_pred))
print('--------------------------------')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment