Skip to content

Instantly share code, notes, and snippets.

@Abhayparashar31
Created June 4, 2022 04:16
Show Gist options
  • Save Abhayparashar31/fd1b22af88b8695fa8dc6f63259e85ad to your computer and use it in GitHub Desktop.
Save Abhayparashar31/fd1b22af88b8695fa8dc6f63259e85ad to your computer and use it in GitHub Desktop.
## Base Model
logrec = LogisticRegression()
## Parameter Grid
param_grid = [
{'penalty' : ['l1', 'l2', 'elasticnet', 'none'],
'C' : np.logspace(-4, 4, 20),
'solver' : ['lbfgs','newton-cg','liblinear','sag','saga'],
'max_iter' : [100, 800,1000, 1200]
}
]
### Hyper parameter Tuning
from sklearn.model_selection import GridSearchCV
clf = GridSearchCV(logModel, param_grid = param_grid, cv = 3, verbose=True)
gsc = clf.fit(X,y)
print(gsc.best_estimator_)
----------------------------------------
LogisticRegression(C=6.15848, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1, l1_ratio=None,
max_iter=800, multi_class='auto', n_jobs=None, penalty='l2',
random_state=None, solver='newton-cg', tol=0.0001, verbose=0,
warm_start=False)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment