Skip to content

Instantly share code, notes, and snippets.

@Abhishek-Deshmukh
Created October 6, 2021 21:36
Show Gist options
  • Save Abhishek-Deshmukh/a2f4ccf22a4e30f331e9651d9b5b6943 to your computer and use it in GitHub Desktop.
Save Abhishek-Deshmukh/a2f4ccf22a4e30f331e9651d9b5b6943 to your computer and use it in GitHub Desktop.
Calculating day length based on angular displacement
from sklearn.cluster import KMeans
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
time_diff_mins = 1
shape = [3468, 4624]
cutoff = 95
box = (0, shape[1]*0.1, shape[0]*0.5, shape[1]*0.4)
file_names = ["1.jpg", "2.jpg"]
star_count = 27
img_1, img_2 = map(
lambda file_name: np.array(Image.open(file_name).crop(box).convert("L")),
file_names
)
# Maximising the contrast
img_1_1D_array = np.reshape(img_1, (img_1.shape[0]*img_1.shape[1]))
img_1_1D_array[img_1_1D_array <= cutoff] = 0
img_1_1D_array[img_1_1D_array > cutoff] = 1
img_1 = np.reshape(img_1_1D_array, img_1.shape)
img_2_1D_array = np.reshape(img_2, (img_2.shape[0]*img_2.shape[1]))
img_2_1D_array[img_2_1D_array <= cutoff] = 0
img_2_1D_array[img_2_1D_array > cutoff] = 1
img_2 = np.reshape(img_2_1D_array, img_2.shape)
# seeing images
img_1_img = Image.fromarray(img_1*255)
img_1_img.save("1_contrast_100.png")
img_2_img = Image.fromarray(img_2*255)
img_2_img.save("2_contrast_100.png")
##############
# star centers
##############
# creating the feature vectors
x_1, x_2 = np.nonzero(img_1)
X_1 = np.array([x_1, x_2]).T
# clustering
kmeans_1 = KMeans(star_count, init="random").fit(X_1)
cluster_centers_1 = kmeans_1.cluster_centers_
# creating the feature vectors
x_1, x_2 = np.nonzero(img_2)
X_2 = np.array([x_1, x_2]).T
# clustering
kmeans_2 = KMeans(star_count, init="random").fit(X_2)
cluster_centers_2 = kmeans_2.cluster_centers_
# seeing them
y_1, x_1 = cluster_centers_1.T
y_2, x_2 = cluster_centers_2.T
plt.clf()
fig, ax = plt.subplots(1, 1)
ax.scatter(x_1, y_1, label="1", alpha=0.5)
ax.scatter(x_2, y_2, label="2", alpha=0.5)
ax.invert_yaxis()
plt.legend()
plt.grid()
plt.savefig("cluster_centers.png")
# pairing them
def distance(a, b):
c = a - b
return np.sqrt(c[0]**2 + c[1]**2)
pairs = []
for center_1 in cluster_centers_1:
min_dist = 100
for center_2 in cluster_centers_2:
if distance(center_1, center_2) < min_dist:
pair = center_2
min_dist = distance(center_1, pair)
pairs.append([center_1, pair, distance(center_1, pair)])
# filtering outliers
centers_1, centers_2, distances = np.array(list(filter(lambda x: x[2] < 30, pairs))).T
# average displacement vector
diff_of_centers = centers_1-centers_2
adv = sum(diff_of_centers)/len(diff_of_centers)
# results
pixel_displacement = np.sqrt(adv[0]**2 + adv[1]**2)
angular_displacement = pixel_displacement/416.535 # by comparing distance in orion's legs
angular_displacement/=(np.cos(np.deg2rad(20.25)))
minutes = 360/(angular_displacement/time_diff_mins)
hours = minutes/60
print(f"minutes: {minutes}")
print(f"hours: {hours}")
print(f"days: {hours/24}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment