Skip to content

Instantly share code, notes, and snippets.

@Abusagit
Created April 14, 2025 19:01
Show Gist options
  • Save Abusagit/6f18c74bb3be44dc0b2e16dc672adcc4 to your computer and use it in GitHub Desktop.
Save Abusagit/6f18c74bb3be44dc0b2e16dc672adcc4 to your computer and use it in GitHub Desktop.
tts.ipynb
This file has been truncated, but you can view the full file.
{
"cells": [
{
"cell_type": "markdown",
"id": "713c9f6c-02da-466e-8d9f-f51437565eb2",
"metadata": {
"id": "713c9f6c-02da-466e-8d9f-f51437565eb2"
},
"source": [
"# 00. Homework description\n",
"\n",
"For this assignment, your task is to develop the [FastPitch](https://arxiv.org/abs/2006.06873) synthesis model, train it, and generate several audio samples.\n",
"\n",
"The training and data processing code has already been provided for you. The training will be conducted on the LJspeech dataset.\n",
"\n",
"The total score for the homework is **10 points**, distributed as follows:\n",
"- 1 point for visualizing the input data\n",
"- 8 points for writing the model code and running training\n",
"- 1 point for pitch and duration manipulations during inference\n",
"\n",
"The homework submission **should include**:\n",
"- Completed notebook\n",
"- Attached WER and loss graphs from TensorBoard\n",
"- 1 audio file - the result of a regular model inference\n",
"- 4 additional audio files: you are encouraged to experiment with adjusting phoneme durations and pitch slightly and listen to the results."
]
},
{
"cell_type": "markdown",
"id": "97ec30da-c017-4e76-9235-bde5f55cedc4",
"metadata": {
"id": "97ec30da-c017-4e76-9235-bde5f55cedc4"
},
"source": [
"# 01. Preparation steps"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ebbf0771-c271-458f-8850-56149ae94767",
"metadata": {},
"outputs": [],
"source": [
"device = \"cuda\"\n",
"gpu_avaiable = \"1\" # Run nvidia-smi to find free GPU"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "UPSEbEsA8z_5",
"metadata": {
"id": "UPSEbEsA8z_5"
},
"outputs": [],
"source": [
"path_to_sources = \"../\" # Path to the the current week's source code, e.g. /home/user/speech_course/week_08_tts_am_vocoders"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5b371ad4-695f-4da7-bc26-9d4936a6ec70",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5b371ad4-695f-4da7-bc26-9d4936a6ec70",
"outputId": "768c54e0-6071-4fab-9ac6-e611d5415295"
},
"outputs": [],
"source": [
"# If running in colab\n",
"\n",
"# clone the repository:\n",
"# git clone https://github.com/yandexdataschool/speech_course.git\n",
"# !pip install -r speech_course/week_08_tts_am_vocoders/requirements.txt"
]
},
{
"cell_type": "markdown",
"id": "gibPkbI76I9y",
"metadata": {
"id": "gibPkbI76I9y"
},
"source": [
"### Dataset\n",
"\n",
"We will work with [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) -- a single-speaker dataset with 24 hours of speech.\n",
"\n",
"The data we will use contains pre-computed [MFA-alignments](https://montreal-forced-aligner.readthedocs.io/en/latest/user_guide/workflows/alignment.html) alongside with the original wavs and texts. If you are interested in the process of extracting such alignments, please refer to this [tutorial](https://colab.research.google.com/gist/NTT123/12264d15afad861cb897f7a20a01762e/mfa-ljspeech.ipynb).\n",
"\n",
"Download the dataset with precomputed alignments."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "WCHQ6ev56vpI",
"metadata": {
"id": "WCHQ6ev56vpI"
},
"outputs": [],
"source": [
"# import requests\n",
"# from urllib.parse import urlencode\n",
"# from io import BytesIO\n",
"# from zipfile import ZipFile\n",
"\n",
"# base_url = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?'\n",
"# public_key = 'https://disk.yandex.ru/d/PpgePfWcQTAbug'\n",
"\n",
"# final_url = base_url + urlencode(dict(public_key=public_key))\n",
"# response = requests.get(final_url)\n",
"# download_url = response.json()['href']\n",
"# response = requests.get(download_url)\n",
"\n",
"path_to_dataset = 'data/ljspeech' # Choose any appropriate local path\n",
"\n",
"# # If running in Colab:\n",
"# # path_to_dataset = '/content/ljspeech_aligned'\n",
"\n",
"# zipfile = ZipFile(BytesIO(response.content))\n",
"# zipfile.extractall(path=path_to_dataset)"
]
},
{
"cell_type": "markdown",
"id": "13f0767a-cea0-4cce-b851-dec751c6a91c",
"metadata": {
"id": "13f0767a-cea0-4cce-b851-dec751c6a91c"
},
"source": [
"### Hi-Fi GAN checkpoint"
]
},
{
"cell_type": "markdown",
"id": "d2811e21-c864-413e-9e9a-c53a7b651dbf",
"metadata": {
"execution": {
"iopub.execute_input": "2024-03-03T13:22:30.324480Z",
"iopub.status.busy": "2024-03-03T13:22:30.323558Z",
"iopub.status.idle": "2024-03-03T13:22:30.398663Z",
"shell.execute_reply": "2024-03-03T13:22:30.397377Z",
"shell.execute_reply.started": "2024-03-03T13:22:30.324430Z"
},
"id": "d2811e21-c864-413e-9e9a-c53a7b651dbf"
},
"source": [
"\n",
"Download a pretrained Hi-Fi GAN checkpoint (to generate audio from the predicted mel-spectrograms)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2306394e-8d09-437a-9eda-a7383749ba8f",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2306394e-8d09-437a-9eda-a7383749ba8f",
"outputId": "ac9e584b-25df-41d9-e342-0befeb568b6b",
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"# !wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/dle/hifigan__pyt_ckpt_ds-ljs22khz/versions/21.08.0_amp/zip -O hifigan_ckpt.zip\n",
"# !unzip hifigan_ckpt.zip\n",
"# !rm hifigan_ckpt.zip"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7b6f6634-2eb0-491e-8f80-6b36122b1ef7",
"metadata": {},
"outputs": [],
"source": [
"# In colab:\n",
"# !wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/dle/hifigan__pyt_ckpt_ds-ljs22khz/versions/21.08.0_amp/zip -O /content/hifigan_ckpt.zip\n",
"# !unzip /content/hifigan_ckpt.zip\n",
"# !rm /content/hifigan_ckpt.zip"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "78d3a5e8-094a-409b-b1a3-b17960ea3f2a",
"metadata": {},
"outputs": [],
"source": [
"path_to_hfg_ckpt = \"hifigan_gen_checkpoint_6500.pt\" "
]
},
{
"cell_type": "markdown",
"id": "5e6d3354-5dba-4515-8e52-89767be5d3d4",
"metadata": {
"id": "5e6d3354-5dba-4515-8e52-89767be5d3d4"
},
"source": [
"### Imports"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a4be695e",
"metadata": {},
"outputs": [],
"source": [
"# !pip install 'numpy<2.0'"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0b5208b7-46cd-47bc-b43d-fc0a3d7b990d",
"metadata": {
"id": "0b5208b7-46cd-47bc-b43d-fc0a3d7b990d",
"tags": []
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import json\n",
"import dataclasses\n",
"import torch\n",
"import subprocess as sp\n",
"import matplotlib.pylab as plt\n",
"import soundfile as sf\n",
"\n",
"from g2p_en import G2p\n",
"import IPython.display as Ipd"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3562828d-37c6-41a7-9780-5269f4c20c0a",
"metadata": {
"id": "3562828d-37c6-41a7-9780-5269f4c20c0a",
"tags": []
},
"outputs": [],
"source": [
"sys.path.append(path_to_sources)"
]
},
{
"cell_type": "markdown",
"id": "3ed4cee2-5589-443c-81d3-3bc51e55c3eb",
"metadata": {
"id": "3ed4cee2-5589-443c-81d3-3bc51e55c3eb"
},
"source": [
"# 02. See a data sample (1 point)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2d9b1ba7-124e-4c0b-a13f-92d31fbfa41d",
"metadata": {
"id": "2d9b1ba7-124e-4c0b-a13f-92d31fbfa41d",
"tags": []
},
"outputs": [],
"source": [
"from sources.fastpitch.hparams import HParamsFastpitch\n",
"from sources.fastpitch.data import prepare_loaders"
]
},
{
"cell_type": "markdown",
"id": "FqDAP7aA_E1H",
"metadata": {
"id": "FqDAP7aA_E1H"
},
"source": [
"The mfa alignment provides phonemes and their durations, which we will need during training:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "_WBHdedW_WRj",
"metadata": {
"id": "_WBHdedW_WRj"
},
"outputs": [
{
"data": {
"text/plain": [
"{'start': 0,\n",
" 'end': 9.655062,\n",
" 'tiers': {'words': {'type': 'interval',\n",
" 'entries': [[0.0, 0.69, 'printing'],\n",
" [0.69, 0.82, '<eps>'],\n",
" [0.82, 1.01, 'in'],\n",
" [1.01, 1.15, 'the'],\n",
" [1.15, 1.45, 'only'],\n",
" [1.45, 1.97, 'sense'],\n",
" [1.97, 2.14, 'with'],\n",
" [2.14, 2.39, 'which'],\n",
" [2.39, 2.54, 'we'],\n",
" [2.54, 2.71, 'are'],\n",
" [2.71, 2.89, 'at'],\n",
" [2.89, 3.28, 'present'],\n",
" [3.28, 4.0, 'concerned'],\n",
" [4.0, 4.41, '<eps>'],\n",
" [4.41, 5.01, 'differs'],\n",
" [5.01, 5.04, '<eps>'],\n",
" [5.04, 5.28, 'from'],\n",
" [5.28, 5.65, 'most'],\n",
" [5.65, 5.82, 'if'],\n",
" [5.82, 6.1, 'not'],\n",
" [6.1, 6.29, 'from'],\n",
" [6.29, 6.63, 'all'],\n",
" [6.63, 6.78, 'the'],\n",
" [6.78, 7.09, 'arts'],\n",
" [7.09, 7.22, 'and'],\n",
" [7.22, 7.8, 'crafts'],\n",
" [7.8, 8.45, 'represented'],\n",
" [8.45, 8.66, 'in'],\n",
" [8.66, 8.79, 'the'],\n",
" [8.79, 9.6, 'exhibition'],\n",
" [9.6, 9.655062, '<eps>']]},\n",
" 'phones': {'type': 'interval',\n",
" 'entries': [[0.0, 0.04, 'P'],\n",
" [0.04, 0.07, 'R'],\n",
" [0.07, 0.18, 'IH1'],\n",
" [0.18, 0.21, 'N'],\n",
" [0.21, 0.28, 'T'],\n",
" [0.28, 0.46, 'IH0'],\n",
" [0.46, 0.69, 'NG'],\n",
" [0.69, 0.82, 'sil'],\n",
" [0.82, 0.94, 'IH1'],\n",
" [0.94, 1.01, 'N'],\n",
" [1.01, 1.03, 'DH'],\n",
" [1.03, 1.15, 'IY0'],\n",
" [1.15, 1.27, 'OW1'],\n",
" [1.27, 1.34, 'N'],\n",
" [1.34, 1.39, 'L'],\n",
" [1.39, 1.45, 'IY0'],\n",
" [1.45, 1.64, 'S'],\n",
" [1.64, 1.76, 'EH1'],\n",
" [1.76, 1.84, 'N'],\n",
" [1.84, 1.97, 'S'],\n",
" [1.97, 2.01, 'W'],\n",
" [2.01, 2.05, 'IH0'],\n",
" [2.05, 2.14, 'TH'],\n",
" [2.14, 2.19, 'W'],\n",
" [2.19, 2.26, 'IH1'],\n",
" [2.26, 2.39, 'CH'],\n",
" [2.39, 2.44, 'W'],\n",
" [2.44, 2.54, 'IY1'],\n",
" [2.54, 2.65, 'AA1'],\n",
" [2.65, 2.71, 'R'],\n",
" [2.71, 2.78, 'AE1'],\n",
" [2.78, 2.89, 'T'],\n",
" [2.89, 2.95, 'P'],\n",
" [2.95, 2.98, 'R'],\n",
" [2.98, 3.05, 'EH1'],\n",
" [3.05, 3.13, 'Z'],\n",
" [3.13, 3.17, 'AH0'],\n",
" [3.17, 3.2, 'N'],\n",
" [3.2, 3.28, 'T'],\n",
" [3.28, 3.34, 'K'],\n",
" [3.34, 3.37, 'AH0'],\n",
" [3.37, 3.43, 'N'],\n",
" [3.43, 3.57, 'S'],\n",
" [3.57, 3.82, 'ER1'],\n",
" [3.82, 3.89, 'N'],\n",
" [3.89, 4.0, 'D'],\n",
" [4.0, 4.41, 'sil'],\n",
" [4.41, 4.47, 'D'],\n",
" [4.47, 4.55, 'IH1'],\n",
" [4.55, 4.64, 'F'],\n",
" [4.64, 4.8, 'ER0'],\n",
" [4.8, 5.01, 'Z'],\n",
" [5.01, 5.04, 'sil'],\n",
" [5.04, 5.11, 'F'],\n",
" [5.11, 5.14, 'R'],\n",
" [5.14, 5.17, 'AH1'],\n",
" [5.17, 5.28, 'M'],\n",
" [5.28, 5.32, 'M'],\n",
" [5.32, 5.49, 'OW1'],\n",
" [5.49, 5.59, 'S'],\n",
" [5.59, 5.65, 'T'],\n",
" [5.65, 5.7, 'IH0'],\n",
" [5.7, 5.82, 'F'],\n",
" [5.82, 5.88, 'N'],\n",
" [5.88, 5.99, 'AA1'],\n",
" [5.99, 6.1, 'T'],\n",
" [6.1, 6.16, 'F'],\n",
" [6.16, 6.19, 'R'],\n",
" [6.19, 6.22, 'AH1'],\n",
" [6.22, 6.29, 'M'],\n",
" [6.29, 6.59, 'AO1'],\n",
" [6.59, 6.63, 'L'],\n",
" [6.63, 6.69, 'DH'],\n",
" [6.69, 6.78, 'IY0'],\n",
" [6.78, 6.87, 'AA1'],\n",
" [6.87, 6.94, 'R'],\n",
" [6.94, 7.02, 'T'],\n",
" [7.02, 7.09, 'S'],\n",
" [7.09, 7.13, 'AH0'],\n",
" [7.13, 7.17, 'N'],\n",
" [7.17, 7.22, 'D'],\n",
" [7.22, 7.32, 'K'],\n",
" [7.32, 7.36, 'R'],\n",
" [7.36, 7.51, 'AE1'],\n",
" [7.51, 7.63, 'F'],\n",
" [7.63, 7.68, 'T'],\n",
" [7.68, 7.8, 'S'],\n",
" [7.8, 7.88, 'R'],\n",
" [7.88, 7.93, 'EH2'],\n",
" [7.93, 8.02, 'P'],\n",
" [8.02, 8.05, 'R'],\n",
" [8.05, 8.09, 'IH0'],\n",
" [8.09, 8.16, 'Z'],\n",
" [8.16, 8.24, 'EH1'],\n",
" [8.24, 8.27, 'N'],\n",
" [8.27, 8.34, 'T'],\n",
" [8.34, 8.39, 'IH0'],\n",
" [8.39, 8.45, 'D'],\n",
" [8.45, 8.61, 'IH0'],\n",
" [8.61, 8.66, 'N'],\n",
" [8.66, 8.68, 'DH'],\n",
" [8.68, 8.79, 'IY0'],\n",
" [8.79, 8.85, 'EH2'],\n",
" [8.85, 8.94, 'K'],\n",
" [8.94, 9.03, 'S'],\n",
" [9.03, 9.07, 'AH0'],\n",
" [9.07, 9.15, 'B'],\n",
" [9.15, 9.23, 'IH1'],\n",
" [9.23, 9.36, 'SH'],\n",
" [9.36, 9.43, 'AH0'],\n",
" [9.43, 9.6, 'N'],\n",
" [9.6, 9.655062, 'sil']]}}}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open(os.path.join(path_to_dataset, 'mfa_aligned', 'LJ001-0001.json')) as f:\n",
" utterance = json.load(f)\n",
"\n",
"utterance"
]
},
{
"cell_type": "markdown",
"id": "YhRhYzEMANqN",
"metadata": {
"id": "YhRhYzEMANqN"
},
"source": [
"Phoneme `sil` here denotes pause -- a period of silence between spoken phonemes. The phonemes are from [ARPA](https://en.wikipedia.org/wiki/ARPABET) alphabet."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9ae6c396-7b8b-4e4c-99cb-d63bb606c580",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9ae6c396-7b8b-4e4c-99cb-d63bb606c580",
"outputId": "f0086f71-e688-4715-8497-b4265fbf69d0",
"tags": []
},
"outputs": [],
"source": [
"hparams = HParamsFastpitch()\n",
"train_loader, val_loader = prepare_loaders(path_to_dataset, hparams)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "u31B2Ofw9Zl4",
"metadata": {
"id": "u31B2Ofw9Zl4"
},
"outputs": [],
"source": [
"train_iter = iter(train_loader)\n",
"batch = next(train_iter)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "K5Jb_3Aw9tRZ",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "K5Jb_3Aw9tRZ",
"outputId": "d766ec17-2980-418f-e38b-1ee28817f18b"
},
"outputs": [
{
"data": {
"text/plain": [
"['texts',\n",
" 'text_lengths',\n",
" 'mels',\n",
" 'mel_lengths',\n",
" 'pitches',\n",
" 'durations',\n",
" 'paces']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(dataclasses.asdict(batch).keys())"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "qu_9scr2-0N4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qu_9scr2-0N4",
"outputId": "de84900a-b7e7-4fec-e2ba-2337b1c7d320"
},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([32, 80, 869])"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch.mels.shape"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f4c54d1b-68e4-451d-b42b-87cf71df9a87",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([32, 107])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch.pitches.shape"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "f82c3a76-bb00-48d1-8e2b-b18514baf83d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([32, 107])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch.durations.shape"
]
},
{
"cell_type": "markdown",
"id": "a71fd436-c5f2-4df4-ac89-63b7586613b7",
"metadata": {},
"source": [
"## Task\n",
"\n",
"**(0.5 points)** Draw a combined image showing both the mel-spectrogram and pitch for a sample from the batch. Use durations to ensure proper alignment of their shapes in the image. \n",
"**(0.5 points)** Include phoneme labels near the time axis on the image from the previous step. (like in Figure 3 in the [paper](https://arxiv.org/pdf/2006.06873.pdf)). You may find the code from the seminar helpful."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4326347e-bf71-4f1a-af60-d5d2cbba195a",
"metadata": {},
"outputs": [],
"source": [
"# <YOUR CODE HERE>"
]
},
{
"cell_type": "markdown",
"id": "cded88b9-abb6-4b3a-bfec-1f31d8fbec5e",
"metadata": {
"id": "cded88b9-abb6-4b3a-bfec-1f31d8fbec5e"
},
"source": [
"# 03. Implement FastPitch model (9 points)"
]
},
{
"cell_type": "markdown",
"id": "4c224ecd-1529-4c14-b7e4-d9bb2d63f2e4",
"metadata": {},
"source": [
"Please implement the FastPitch model in the cell provided below. Running this cell will overwrite the model file in the repository. \n",
"- Run training (see next cells)\n",
"- Run inference (see next cells)\n",
"- When submitting the homework, please include\n",
" - the Word Error Rate (WER) and loss curves obtained from TensorBoard as attachments,\n",
" - the generated audio (see inference cells). If attaching an archive, use the name: `prediction.wav`\n",
"\n",
"By the end of training, the loss should reach approximately 0.69, and WER should be close to zero (around 0.006). The training process will take about 30 minutes (3,000 batches).\n",
"\n",
"**Important:** By the end of the training, the generated audio sample must be clear in terms of speech (WER close to 0) and maintain audio quality comparable to the original recordings (as logged in TensorBoard). **If these conditions are not met, the entire section will receive zero points**, regardless of how closely the model code resembles working code. Here is an example of how an audio from a well-trained model may sound:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "4f7764e4-b02f-4097-97e6-b5e7835985c8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRiT0BgBXQVZFZm10IBAAAAABAAEAIlYAAESsAAACABAAZGF0YQD0BgAJABMAEAAOAAUACgAKAAoACQABAAAAAQD5//b//f/7//n/+//2//v/+//9//n/+f/2//3/9//9//v//f8DAP//AAABAP//BwAAAAcAAwABAAcACQAJAAcAEAAKAAwAEwAQABMAEgAQAAwAEwAQABAADAADAAUA///3//D/8P/t/+X/6f/l/+X/4//l/+X/4v/n/+n/7v/2//v//f8AAAkACQAKABMAEwASABIAEwASAAkACgAJAAUABQD/////AAABAAMAAwD9//3/AAD9/wEACgADAAkADgAKAA4ACgAKAAMA//////3//f8AAP//AAAAAPv/AQD///T/8P/y//L/8v/u/+n/6f/e/97/4P/l//L/7v/0//n/+f/9//3/+f///wEA/f8BAP//AQD///3/AwAHAAwACQAOAAkACQASAAkAAwAOAA4ACgAKAA4ABwAHAAoAAwADAPf/+f///////f/7//f/8P/5//T/8v/w/+v/8v/0//L/8P/0//v/+//9//v/+/8BAAEAAwAHAAcAEAAKAAUAAwAFAAUAAwADAP3/+////wAA/f/9//v////5//f///8AAAUAAAAAAP//AwAAAPn//f/3/+7/8P/y//T/8P/2//T/6//0//b/9P/7/wEA//8DAAEAAwAJAAAABQAFAAUABQD///n/BwABAP3/9//0/+7/7v/3/+X/7v/u/+v/8v/y//L/7v/2////AQD9//v/AQD//wMABQADAP3/AQABAP//+/8AAAMA/f/5//T/9//5//v/9//9//b/AwAJAAUAAwAFAA4ACgAHAAcADAASABUAEAATABkAGQAHAP3/AQDy//D/9P/l/+L/4P/g/9X/2v/V/9P/2v/c/+D/1//j/+P/5f/i/+L/4//g/+n/7v/u/+3/8P/2//f/9P/5//f/+/8BAAAAAwAHAAUAEgASAAkADAAOABMAGwAkAB4AJAAgACAAKwAmACYAIAAmACAAJgAyADYAQQBBAD8AMgA9ADoALwApAB4AHgAZAAcA9P/w/9f/xv/I/8j/yP+0/63/pP+M/4f/gP9x/3f/df9k/2T/Vv9U/1j/S/9S/1T/Uv9U/03/T/9W/1//av9m/37/gv+L/5//l/+b/47/mf+V/6T/qP+t/9P/6/8BABMAIgAtAEoAbgCGAJ8AswDWAPgAEwEwAVEBcgGWAbMBzgHpAQgCKQI5Ak0CYQKFApIClwKoAqgCsQKtAqECjQJ1AlgCNgIXAvQBwwGSAVYBDAHMAIQAQwDy/6D/VP/7/p/+T/7//ab9SP3x/KP8SPz2+7D7dPsv+/j6vvqN+nD6Vfo++jX6L/or+kr6U/p7+rv67Poo+2X7svsb/HT80Pw7/Zr9Dv51/uf+Uv+//zYAnAATAYkB9gF1Au0CagPtA3ME6wRvBfIFbwbwBm8H1gdBCKgI/wg/CYAJrAm8CcMJvgmoCYAJRAnvCHsI9QdlB8IGCQZWBZMEvQPiAgECLQFXAHr/m/6+/eb8E/xQ+4j63/lJ+bj4KvjB90f37va09oL2WvY+9jD2FfYn9jD2T/Z39qD23PYP90/3kvfh9yr4iPju+EH5l/n5+Vz6xPoo+5j7EPyN/P/8bv3e/VP+2f51/yIA1wCSAVMCGgPuA8QEkwVpBkEHAwjLCIkJRgr2CokL+QtaDLYM4wz7DO4MvQxxDBMMqAsTC34KywntCBIILwdBBnEFkASpA9wCDwJTAaEAAQCA//3+bv76/Yn9K/3k/Iv8Pfzs+4v7OPvu+qX6cvoq+uf5sPlp+TX59/i4+Gj4MPjr95f3ZPcG97/2b/Yq9vj10PW19YT1bPVz9Xn1mfW89eD1MPar9i73uPdC+Of4svmV+m37O/wg/SX+RP9nAJkB2QITBFAFegaeB84I/QkjCzMMFg3aDZkOUg/WD0cQjBCpELcQkRA+EMYPNQ+XDtcN7AzwC+IK1AnECJgHbQZUBU0EKgP9AQEBKwBq/87+J/6j/QX9jfwn/ML7i/tG+/r6svpy+ib68fmw+W/5L/nM+Gr4GPjP96f3Y/cL98j2avYX9sn1gvVY9Tb1D/Xe9L70wfTA9OT0AfUj9VH1rfUY9n72Avek91L4CfmZ+T76Dvvs+878wf3S/vb/SgGHAs4DBgVDBp4H1ggKCksLlAy5DbcOgw9BEPwQnREVEjgSKxIHErURSBG8ECQQUg9UDgsNpgs2CgcJrAdABhEFuAOCAlMBLQAe/1H+mP0F/XT82/t2+xn7Avvs+uP6z/qu+pb6dPpg+mL6PPoC+tT5f/kd+an4Ofje91/31/ZJ9sP1MPW89Fz06/OA8ybz3/KT8lDyNPIm8lnynvLf8jTzpvM59PL0v/WZ9pn3jviB+ar6A/yP/Rj/zgCZAhEEpwVSB/EIrwoyDKQN9w40EE4RVRI5E+YThxS4FMcUlhQ1FO0TUROhEpMRfRBOD+UNdQzpCmkJuwdQBqcE/wLFAZoAnf+t/tn9//xl/Nj7eftn+yb7EPsM+wP7Gfv6+h37KPv6+vX6oPpb+ij60/mZ+Tj5zPhL+MT3Sfei9hz2m/Uc9br0T/T683DzOvMA88fyf/JI8jbyC/JO8oHypfLs8h3zgvP485L0TfU+9oX33/iY+hP82f3i/7wBFAQCBh8IPQp1DLAOghBqEgYUgBXjFrQXWRi1GL4Y+hiaGAcYERfyFa8UIhN2EVUPkA16C4sJqgelBQsEUQIgAcj/XP5q/aj8/vtT+0H78/oH+0b7Svuw+7P77/sT/A78K/z1+xL82fuW+0P7u/pX+rb5B/kA+Ar3RvZE9Xv0kfPA8urxIfGg8LjvAu+Z7kTuIe4K7gjuMO6n7vvuqe+T8FXxffKh86/06fU399z4EvtL/Q3/EwEBAwAFiAduCSILzAzuDgMRjRLOE6oU8BX1Fn8XhRfwFhQXSxe7FtcVCxV5FIIT8RKwEJkOvw2oDNELCAoiCKMGegXyA8UBtwE+A1oDiQHb/W37i/tV/Iv7Avng9533bPet9mz1FfXr9U32hvQr8q7wXvGo8sLx/e707dzvcvKs8iXv5OsS61Hrhun25cDj4OSZ5yTo2OYq5tznbOrb61HsROyO7jn1cP6HCpcVOx77IPsdXBwaHggk9SolMHIyPjIEMgswIi3NKr8loh51FrcOowpKCXAHIwRh/1D6IvX/7mboHORR5DzlFOYA5pnm7+rK7/7zIPWC9ef4afy0/4MDxweXDTsSRhLRDvYLiQzwDjEPygz1CCwGlQWMBK8CX/8O/Cz4+vIo7jjriulZ6D7m+OPk4T/iRuGg3SrcGdqf27/dBd8N3nbest+H49nlBeqJ68DrLuy99hEWjS4APPYtexjMG4QtrD27Qis+0UJSSaVFTjq8LvIu/CxjHb8F1/Yb+kkDlwXd+mTpMOIj3QDYg9Mc0TvZIuGf4mXilORo8J39HAKsAQMApQULDTIUYxsoHrkgIR9MG9MWARLNDsMLXAkdBfj7xvei9234LvaE6SzeINrQ2+zeQNvL2NHXEtj8123WsNW82T/ZINnI1VzaHuEA5h3oZeoE8MLyf/B98eYS9jh7VWREVSMlFjgyP1BCVCBHfTyLSK5OHUOWLf0kiiIvG/b/5ei843bxcfmC9CfjGtOXzv/QrtW72IvbxOAZ6ATuCvRv+hsF0Q+KFY4VmBMwFkYd3SPuJmIi/Rv8F0AUtQ8fCLMA/PvG9iXvjueJ5KfnUOgO4kjX4s9a0J7U1Ne01vDWDdfH2H7bt96K4MLhG+Hy4wvmsesP8Hr2h/YX9tbxO/xfKFRJVFyDQxYiGCFSOt1PdVEoQkA7vj9zPxQ0aiRIGiEP1AAS6x7cvddH3srkvOl/4IrVVc46zdTXTOCQ5Grsr/Xw/0YJmg+7GL0hFiibJY4gKh7NIMYoByqNIs0X4gvGBrQDofy/9jnvZOcD4bPaTdqc3cbe5NmL0x7RIdNw2O7c8N4A4GTfXt8L4eji++bf6C7sMOyd67zr2/GR8+X3We4iAe0tQ0v5XSo8uRqeH2Q410ccSGA6yzQ/PME54yphHiwNF/587ifcV9X20vDWEN8d6DnkNNto1GzT9tz86artePcRBBENvhoDImUmYio1KVMlsCLwILchEyTWIrgbUxLxBir/PPrz8oft6eUk4ArcJdxK4MvisN6c1v7PidFs2RvfLeL/4uLjS+Qv5yboK+v07CbxQPCy8bbuP/ID9mj5VvYs+ZcfD0IZX39OOihTHJIssz2XQ4E4DC9DNK0xhyTjGOwMd/4L8HzbptDszPPOq9WU5Vzs+ujJ4ZbbOeKw74L0xPuMByYQ4hpLIJ8kPiqaKWcjyB3vGmsYRxYpFJQRgw8tB0T8m/SS7M/m9+CJ3K3dnt9K49nlN+M13h/XktSu2CPfs+M859jpbuzi6vPqMuqz7cDxpfJi8hP2mPSN8W3uueqhEG04jF6dY4I9ySLRIeEx4UJ8P50wKy0kLPkngSBzFr8Gpfhl5JnS8cgJxOrHtdln6YPvt+qh4aPipO5s9wn8vwWKDS8YfyInJdgpfStxJeEfCRpLFG4Q3AxvDDUL7wfp/wb2MO8G573gNdwB2RHbldxT38DgHNtg1uXTmNep37Pi/OJc4srltehe6mXrAPA+8Tj0xPKk9ef2KvYi8cX1PyHBSX1nMFt2MaUg/yycPKhH2zygL7gurimGIIEXaAwvAH70JuLV0uTG9sFTyIDccOvP7pTq3uUb6x/33fxCA6MKGxL6GxghIiWHKJkouCb6IYIbYxRDDm4LggkmBwMBnvjh8fHrZ+i142DecNu716fW89bj0x7SbtCz0dLY1d7Q4FXfiN8P36fh0+Mv6UTt0PIZ9Qn6mfne9lPr/u/UJD1Q0nNYZU80Tiv3OUVEN0xQOTEo2SyyJy4fGhwWEPQA+vO83L3MCsIeuZfBtdqR61DyfO7j6UjyJgDRBOsKNxThFhMdFiK1JD0tCTFpKSgitRsiEQYNbAk7AgoAOvq98dHuUeqF55nlNuGj2qXWBtVN05vTd9Fa0CbW/dzR3fDdyN1R2zPfXOG/5ZXpPu4J8av41Pv2+7Dvk/GzJKNMmHRaai02dCzLNHY9s04MPn8rQC7SHJYShBH9AQX60e1S16XOj8SXupvB3daV5xTzTPLl7XP2OgX3DVcZAyS5ItsixSKlIVAopSu8JXQgvBmQDIMEUQCM+aD4JfTA6nbocOJb3r7g7tyE2SfUss/F0lLVPNeo2QLei+SF5PLj4+C53zjgaOYO6qbtFu978+H6aP75+LfqThELQ/VvwHnOSvAuCjWYPURI9kD4LNIs4CNNFQcQOwPz8wHqjdguywG+OrNUuP3SW+53+2f+O/2UAckJeRFLHNgnQi3mKr4ltyTZJrUlvx2bFC4K+v2f9tvxpusP6Kbjxt/W4Urgv92C4B3gaN3I1kDTqdYN3eTi7eRI6kjt0ejH5Lzjr+ad7GbuF+we7ibyb/aQ9+D3gu0r+6Aq+FoMfl9rgj0wLdAzAT8sROMzTCrEJzEaPg8HCLf8M/GK3iLJlby7s0OyRsIW4Af53QaAC2QM7RAAGf0euSjNMtkufChYJ6QnoSocJU8VmgdN/aXxiui54AzbINv/2yHe1d30253a1tZ30sTNKM2x0aba5uM26U/uEPAs8XHuSOxp6WXrbe7C8Uj0KPmm/KX8TvJj62INxDlNauh4oVbbPRY48DIQPDc2JSQ2JZUY5wrQCrz/zPVx74faw8uuv4uwqrbqzIbi0vsYCzoQlxiiHgAhQSpZMCAtGSrUJCYg/iDJIToaWw/pAVnxo+q36PbiMuEJ32vdXd012z3bktxu3HTXltJB0CfTF9fH2KveyeKe5ZjqX+yn7hTyou9Q7p7y0fiN/OT+Kvnb++kem0lVcCZ4LVbnOMUtcShAMKQt/STcJikbbw2NB6P6Ee634eLPy8XDv7O4ab8o1m3vXgZbFRwc7iEuJ8onxSyZMekt6ClZImEexiCqHFEUeQlo+N/p0OIs3C/YwNht2Mvel+j86cnoneWr3e/XGtNJ0j3ZiN5a4xLoxevp7vbstucJ5xjodOlq63LxJvqS/3n+3vjYD/s61Ga1fHRmnEQgNDIt1S3RKQ4cixnMFr4LfAJH9prnz9yGzRbCO8CRvdC/K9Iw7XQIrxxkIocktimyKlUpaSu6LeAsTCqmI10doBirDIL8dvBH5n/fyttn1oHXTt6H5FzrtO1m6Arin9nw08PR69Tb227iAOo07abuiO+f7EfoH+fL54jpRu4L95f+1QPR/zkBSSAnSGtpRGyJUDk/CzvBNuUwtB4zDyILfwQX/lP6tPHr5ejZGs2ox6nEqsDLxv3bxvZmD10fBicPL5o0MTSlMR4vsijkI0sgtRx1GwEU+Qaj+vDvXefv4rrdUNjO2MzZqd9o5XLiWN1N2UDWy9bh14LY2dvz3wPi1+M55Y7mOeaR6kPzt/ne/cX/1wKBBxQNhAinF0g93F4edENffDryLR4tdjCBL+AbXQ7oB5f5zvTA8cfpN+Ny1kvMYcrkyJrIg9Me66sFoRj9HvMi9yiFL/Aw+y1IKwUl5R4LGAUTPRJ3Cmr/UfZx7SrpH+aP317fE+Nb5UbqSejS4YLb7NXO0k3SG9GTz5TRMdYi2/XfSuP/4zPm2Ofv6ujxbPxZBKQKjgsjDxAr+0wOa4hwzVbRQcY8hDtNOSopHBP8CYf/d/TC7znrwefz4vHX79DFz+HLesyW2PTuGwkAGjMglCOTKP8twS+lK+sjnRvdEjgPNQ49CoUDk/rw8BfryOhb5nPnpOuB7rLwPe0Y5WjePdkv2FraE93I3oreAdv51rTUf9SI1V/bJeR37Hn1d/zbAjcGXAeiAjAS/zXKWl12fm6gVBdF3DuWNfkwXCEKEzQKcP2X90T2Qu5F5rbcttN30LjIjsHsxePW+PI2DyYhNCtIKuYiDx0xF7QWvxeDFE0VmxVlEqEQMgr7Aiv++vMH6uDiCN0k39rmZu0f8QTte+Ib2Y3R5c1XzUrPRtHQ06zXmduY4CflDutd8Of3yfuW/vv++gBRABoVQTx7YP9/gHVAVZ1GSjsyNRA2BiBBEUcMxfun+Cr5hvCi7PXgndNz01/L9cLxxc/PvOqTBi4UDSCjJNkjFSUWIPoZDxTrCTYHiAk5DTwQLgrjBLUALvhn8/XuDOsB7bXqoOW447HcQ9UI0T/OlM+yzxHMZcf1xfTIRs+j1prgferh8pH8SwW/C8IPDRDGDe8ijEEyYIB2qmxCXWRVo0duPpYzHB0BE88HzfpP/Y/7Y/SF7Y/fRtnj1/fNBclozBfa/PGQBF4SrxzxG+MXLhTyFIYZnhXnC7gDUwKaBkMHuAMkABX97/r7+Lj1ofPc7xfsXum05XThCt3411/VHtSPzk/JCcWtxHzJbtH62mjld+sC7gnv7fMA+8MABQKlB/klI0pxa4l0mGFqVKFRO092TdQ+cSluHdgOiQQ2Aoj7qvQ57bHi3N0d1t3IbsCywh/UhOyi/+sLPxEREx0YJBppGlcXmg6CCscIKws8DuUOnA+KDlgKxgVG/ZTzf++G68nro+sP5nTfptl/1B7THtGGzeDIWcNPwurG38552JHizekJ8Dv22vmC+6r9Y/1YDLosT0qdYhVkqFjZWB9VektxP4oqAh7/G94TuBKeD3cCcfgO6rffvtu10tzJqMnd0DzgPO/w+eUGvw+3F8IZ+RSqEC0JDQSeBCoHIwwQD8ELHAqgB7sECAS6/SX4n/YX8unvi+vt5Ebhz93Z2UHWjdKczcLM8c5h1EHaLt5p4PzhBuS25WXtUfWr/scBtgRBGugx4km3V9hNGkv+TbRCDECoNSQhJR6lEBgG8w4uC6UJAQkM/Gv4au8L3TjWs9EH1rHlHO44+9wF7AY3DMYN2g/+EWcKHAS9/7P7sf7b/vb//gbvCIkLgwwqBuAAbfri84/xK+035xDiLt6m3QrdNNrY13TV1dSQ1dPUHdWq2JncJOHm6DrwZPeh/iACGAbVFHAlJjUzQ4RFKUhyTCxJjEQ4OgYoCByCEbQLcw6QC/oHgQM6+y72pO4w473dwdu13z3qufHl+KT+ugHcBqsN2xNtFqMSDAyXBPb+8v6k/9IBQgW4BVsGXAcxBf8Bfv1d+Mf0tu5452Xhad7A3zTi7+IO4kzgS96o3NLapNpW3DbfbuIk4qHhIuNx5d/p/u8Z+iwLIR7DLZ45UkBLSMtNhE14SyFD+TfPK5sdLBTYECgOugwKCUAC1vsy86/rR+aA40jiMuGn4D3hZeS56tf0DgEoDQ8UEhcEF3cUZBCHCoEEXAB0ANUB6AXZC+4O6A7rC8EEKPuM8bTlYd1q2uLZLNyE32niguTe5kvl4ON24Xrb5NdV1t/W69oS4onq1PTL/GoBLwYkD+gbKicHMjU4xjxAQrZC60D3OosuDiJFGN0Qgw4vCccAT/wY+cz4ePhC9M/wC+6G6uPpeOnf6bXsdPCO+HwDtQoADgkPnA29DHcLSAgxBbEDLgHiAJsErAdqCvoJNwYcAuT9oPjt8+fwWu3v6ffmouWb5WHmW+de6KvoBucP5Azh+OFa5EXnXOzn77nzKvcu+PX7XgH+By8SEhuJI5MqeCmHJ2UlGSGuIYceiBfXE54NggegBlAFdgUNBx4EQgGt/mf7vfiU9bLyz/EL8vjzw/Zb+Uj8pv7yAhQIHguHDIIJKAUqBTcFgwZeCMIHTAiSCYYHCwWvAUv+1PwA+7/5r/e+9MjxW/CX7xvwYu8E7bXrOOq36pHqEunU6LDqWO0L8jD2Dfnr/bMAEQQkB2MIGwm8CkANuw9REnATrBPOES0QWQ21CrcJQwgqBxsFOQPVAiMCggAgADD/fQDnAtUBgAIDAY3+Qv+H/3UCowYFB+MG0gg7CTcMsgz6Cf8IeAYTBDQCzv4I/cP9NPw9/ST9L/xN/hP9Q/uR+hj3zvSu9O3yDvMS82TwGu8L7m7t/+357Yzuf/Fd9Wj5T/34/oIA8QBMAEYBcQJ+AxsF7gUFBxsJ4Ak2CcsHfAQ6AGz+JPxH+mv8n/6dAMwDLwbSBwcJUgfnBKgDUQPwBPwGcAkYDLYMVAvrCvIKswurDG4LmQoZChQIqwXGBAYDqgGPAcUAtQGLARH/OPxU+dP4evmt+BH3hPXb8/r0P/VM8yDy3O8G7lvtLO9p8/X4y/zH/WH+2/59AG4BZP91/6wBcwQ6COQHwQV/BucFDQTDArj9Ifoa+Q/1VfQ09Z307fZ/+dj75f+BA6kGFQr9CnQJMQeMBssI1QpxDZ4NKg7lD5MPNQ9UDioO9w3eDPYI4AS6AQP/Y/6D/9f/OAHDATsBrgC2/hX8Ifqn+ef53frj+bH3J/Q/8z/yyfNY9LH0svfT9xv5j/vL/JT8Of4R/xQEaQkkBgQEqgH9AJ0EpgMKAA3/Sv2g+rn62vib9nP1//Tv83Tzs/ad94P6rP2o/v8AJQJ3AS4Bxf8vAPADhwWXBjoHYAdlCTQLJQr6CncLQQqWCXkH7gbhBlsGEgUhBCcDNwQEBdcEBgQMA08CKQGbA/oBcP6m/Hv5bfma+575dPvt/BD6Yf0Q/fz5Q/zN+V344vxG//oAvgI/ArMAfgJaAPL9T/+k/cf8/f0q+uP3Uvh59a/1QvhB+Vn6HfrW+af5CflM+i/61Pvk/kwAzgFvA4ME9AToBcsFGwXuBTwFUgUZB4IHXgf+B04HdAbBBR8FygStBDMEWwNHBKcFCQfEBuoHEgbcBGoFfAKNAjID3QFsAbUAEAAcAYIAhf5z/d/53Pnb+hn6wPxw+4D9df+Q/18BY/9Y/dv6yfnL+S/62vkU+gD7B/vA+gj4/fVG9o74p/gb/Bf9JPuL/PD5BPpw+s36A/2AAZIBSQQbBZkDtgUsA/QDbgNiBMoDTwL7AagBTQLtAsYEqQRgBXwFeAWkBe4DLgRbBC0Grge1B4IIAwcNBoMFsASQBMEDOQMNBIEDWAOxAq8AAQF+ABsAWgCY/Mf8xvqu+gD8Tvua/Ln69/lT+ur5Kvln+iH5RfjE+mr3RfpK+5767f1V/Rv9Lv7D/p3+OwB1/nQARv9v/8z+mf5N/wH/J/9jAI8A0/+d/wz+HgCG/fgAmwHcAlYE/QDtAiwE2gThBHYF0QT1BCMFIwWXBH0GewYbBsYGCwTPBJIEQgMcAlgDpAERAq8Awf5x/mn73/w0+9D9ufxh/Yj78ve5+av2p/vx+fz6KPtF+bX80vvu/0n/FQFU/2H8ef6O/nP+fv1l/mH9twEGAuACvAIh/8MA1vyW/jf/NP/u/ycB7f9Y/8j/YPyU/eL9nfz2+6P9ugDYBDUFoAb3B+4FeAakBUAGoAUACPUHrQr0Cc0IRApIBy0JugSSAqz9Cv2y+xL58frC+vP7r/yq+0T9OPuT+lf70/Y+98z2UfSz9bj2IfeU/Gb6TABo/5n+nwJ4/xoFxQM2AR4C4P5GAl0CbAMYBH7//QGt/Tv9E/yc+jD88Plk+WP2m/jC+nv8UQBXANr/0QS/BpgGGQfeBKQF4wOeBbQEDwXpCZIJYQvIDX4Nvw5fDXQJmAl7CKMGdQTOAzcCNgDp/yX9wPp4+T759/m0+fP7rfhU95L3LvUM9VX0NPN78Z301fRL9Tj0TPkR/eD9kwQKBDwGggeyBxUJggcxBy4E9AMjBfQCef5G/Y/8Of0K/tb4//T28t/xe/H99AL3Tvs9/Yn8wf15/gMAIAEaBE4HJQqCC4MMmQs8DsgOgw3IDU8LlgmACbMKRAqsCUQJ3wUWBQcGPgRJBL4Brf3t/Xz9APxj/8L7d/0M/F35WfsN+Gz27/GQ9DjzhfVA+O74X/SQ9oj5BPlrALf77f2x/u8A7gUfBK8DGQApA+3+DADp/pP3hPon9+v3Sfgw9vD1Fvfn9U74dfeV+Nb78/uYALEA3gFCBbQGmAdfC7YLog1vD10O6g6GDjkN5AvHC7oKuglcCp8LOwv9ClwJhQbfB44GcQYzBSADDQM7APv+nPxe+nz4xvmg9yL1afOi8FXw2PDz8gP1mfmI+pL/3v1OAFgEXgFZBkQCXwEABJgBkv9J/w/+K/zq+6D3I/au9JbzYvKR8BDxb/Cc8vT0gPUa9yr3r/Wn+Kf6pP5bAz4GbAs7EYUWPRyFH/Id7xzoFy4U1hBADngOiQ0xDcEMcgodCFsFpQBu/2n9F/zm+4/59fi992z3l/gU+fH65fog/KT9O/yv/dv8JPq5+1X5xvdF+fz5Af4O/n0A+/5P/aH+Y//B//T8gPUO9Ebz3/DZ9NPvIfFp9JL19PeT+GH0IvKn8v7wOPQF9KHyMfJw8hr1+feU/IYArAbvC+EQnheaGngeiCB0ISYiCSN2IRQfBhxOGOUUoxDaDXIKkQaFAtT9GfqF95b1MPQA85PyhvBd8LvwyfLR9kf5Avt5/S0ALwBwAksCugDKA78D+QIGA0YDlQTqBYYGcwIu/kj6CPiL9JXy0fB98A33yvbc9zf4IPNs82nwauzy6/Xq3+mf7K3uFPDN87Dw2vFO8cjvNPMH9OX3NAAFCpwP4RnyHxAkWSv1K98r1inXJYYhMB7DG7kYxhYpE9gPxA2SCWIEVv7c+Gf1afPU8Ljvtu6B7l3wU/In9Uf2ivfM+AP77fzF/oL/l/9LAksBTQOVB20HGQq7CMECcAI5/+r6Cv2V+jr4ufjf8zjxNvK0767wC/Hu7Sfs6ugs6KPoO+tM6vvn4ehw6Knoiunv6/bsm+5A7hbySvsQBhkTzRnQIxMu6DVRPIQ7LDhiNIEvhCrKJ9siRh76GGwSjA+kC9MFJf+49+PwK+0t6ETjd+Em4LXigeX05n/pt+sw7wX10vp3/38E9wfMCSEMewpTCXsIVwYqB+4HPQgcCnMKdwhBCDUGQgOo/+H5i/R67uTpR+WU4Sjgyd+q4XrkVOaZ5sHkvuJl4gPiJOL64onkjub16N/qauw489f/vAyAHo8sDTNoPwBEy0PJRi5BTjvgODcxYyzEK40lJh/jFmQNpwbI/s721exC5HPe0Nm913DXK9f31uTXhth43CnhbeWF7Lfz1PvIAyYJWA1eEwcYfBwHIUUh4yFvIRgeFRulFi8QDAu1BrgBP/zF9a/ttOU64P/amtdg1pPVYtXl1YPW5tcB2/Lcb98n4rTkBOhe6n7sMu6R8NLxYPKI+PcE/RIGJQw0rj14S9BSDVXfVQdO1ERtO0Iv3CauIPUY9BLDDJwHmwSF/sH0G+kd3irV2868ygnHW8VXxuvI4c7Y1yDg5edO8Mj3MAD2CEkP9BaQHggkkCh0Kt0qiiv5KXgn6iPrHDoWQA7fBUEAafk88vrrDOWO3vjYHNO3zs/MkcxpzsfRgdX92Yze4eHk5Drn6ugV6hfqY+uE7DHvpvS9+PYBhBDuHl0wYj1eRJFMFVBwT3BNOEZWPj83Qi+7KaokRx44F7kODQc0AAv4BO614jTY1M+OyW3F8MKxwhvF1cla0ZLaO+NV6ynzLfo9Ag8LPxLhGakguiV7KuItRy9+L1Eukyu/J30hARqxEdIIBQGl+Mzvbefd31jZrdSs0ZrPA8+Pz8LQUdIW1C/VYNaY2KHbYN8348HnkesW75HzlPby+CT7Dvz0AnIQLiB/MtM/jEnDUv5UX1PzTeNC4jhPL3cl7iANHTMY6xOHDb0HpAGe+Qfws+Qp2s7QbsiOw4vBIMG7xGXKc9Ke3fHnjfEt+hkByQcxDckRthaAGjkfsSSMKPMsui4XLu8tnio0JUcePRR3Cp8Bz/fY7sjmD9/22X3WytK80PjOHc1yzVnOCdC/0vPV4Nnn3YThw+QL6MfrUu9D8yf3ZPop/hX/EwOnDeYYsCjONQg+GElwT8NQDFCqR8s9MjW1KhElXCFaHLIXIBGQCv0DDPub72jji9kc0hTMSMnSx4/HkMqZzWXSi9rO4bfpQ/OE+7YEeA2EE38aZCA9JNEntCluK2MtvixGKyQpIyUYILkYfQ8PBVX6f+/K5dre1th41C7Sd9AO0N3PW85rzjDQ+NEJ1TrY+du+4b/m6+qU7tPwV/KJ9BP3mfkM/BP8GP6TB1QUMiQkNKo9E0jSUP1Q0k9lSEM8iDROK+QjYiGsHHEXtRINDd0I8gLB+N/rXd5v0wTKBMP2v7O/pMP0yrbTld526X/xBPia/E8ACwX6CGgO1xUVHUolqiy9MGIzVDJWLXYouSHEGfMRWAk5AlH8mPVQ7oHmdN8Q2n3VAdK8z+/Oa8+S0RLV0thk3B/fWeGz42bl4uWZ5l7oNOsT7lzx2fRs93j5Q/lg/HIH4hVGJlk0mD3BSAFRN1GoTqhFYjvQNJosTSg3J+IjDyAeGskSUgzvAar0iucB3OzUEs8syk3Ipshoy+bPKNWf2zzhKuXZ6RrvZvad/p4FcQ4mGA0hJClTLpUwsjH0L58swiiyIoUcgBW/DvwIQAI6+yL0Te2R56PhZduj1inSbc9SzXrLeMzuzZ/Q3tRE2ZreSuO45S/nZuiu6cTqCOxQ7lvwqvNA9qX6jQdbFwcp9zmTQwBNYlXEVHlR0UlaPk03rS+GKeMoDyh4JjsjSx1SF/0Nh//i7rbdO9AkxoK+PrvGu2G/LMWty9nSG9lo3Uriv+fy7uP34v+3COYSCByPJL4r6y/EMwM2wjX4NMgxzCyOJvIeoBa9DTkEnvqG8ZjpbOKH2wnW6NCkzNDJK8g5yHnJjsvwzWzR1dXF2cPdU+FE5Gvmf+iC6lvt9/FY9ij6QP72ASAKaRiwJwo4dENqSa9Q51L0TwtLekDkNzozGy2WK/orUClzJowg6hjNENkD4/KA4XrSRMfXvuu4K7eZuCK90cMyy2bTWtq13w/lvOqp8NH2gP2OBlkRDhxAJ5kwbzhsPj5ABEDWPS45hTKKKiIifxnlD98FK/ul8S3qO+L029bVFc/Oyf7E9MF8wXfBV8P8x6XNbdTv2SPd99/b4VbjJea16Uvt4/Lq+IL/2AY9CigPlhmvJZ80b0AnRjFO+1IMUi1QTUgTQNo6ozPaLyMujykHJMEbEBK+CO37Bu3w3j7TesunxfLB5sC4wcLDk8Xxx2jL+s3x0JzV09vB5TPxTvxKCaAVeiADK0EyNTfzOhA8HT36PWU8tDntNDIu6yZqHa8SLQit/azzeepw4T3ZrdEnyvPDcL/jvIq8xr3ewHLFrcqU0H3WlNvj39viZuVQ6FPrC+5Z8jr4+/3MBIYJCQ87Gx8pfjeVQytIykw9UDZNzEjrPxM2MzIYLmEsXS5OLMgoriOLGhwSqQaf9jHnftn+z53JacSCwQXAcMCdwhbE4cZmytTNdtSW21zjyuws9f3+zgm2E/kezyk+M2U8VkLWRaFHNEWtQNw5ZDH5KFkgPhfjDb8EBftw8SHoW95x1SvOvsfVwyDBHL+fv0nBfcWry/zQC9bf2YncXd+d4T3jlOXc6FjtMPT9/OMEowreDKYNvBPvHGInYDHHN9c/+kdGSjlJPkPIOoU23zEYL00vEiwSKFciGRrVEr4IXPs+7inijdkY02TMgMdixJPEf8d6ykjO+tC80l3VK9g53fbk+Oz39mYCeA5aHFIoQjFwNwA6dDshO8E4FzV8L3IquiYiIlIdcRUQCjX/G/Nb6P7fNNeh0bLOvcwSzrXONc6lzrnNL84T0OTRBta22tbfgeUx6u7uqPMy9tr22vcS+Zb6ffz2+1v/HAxzG/8s8zo+QHdGgEmKRWRBmzdlLn8rhyfYJw4qjigCJ0oiORy/F5MPlwQR+BXsFeT03CTW9tAEzQLNpc9o0knW1Nih2QLcoN915Bvrl/C99j7/yQc4EFIXbhxbIb4lmil3LFwtziyiKQglJCDvGOER8QqgA/3+xPn+82jv/OhL44jeStjO1E3Rq83RzRDOxdAb1rfZnt4T4w3lYucA6FLn8+db6VrssPFi+SsB3weoCzULaA64FQQetiYWKossQzOvNos3ZzU+Lykudy53LQgvei49LJEoLSH4GQUSGQfs+gTvpehb5zHmUuVh4zjiO+PN4ZneSNso12rV8db/2gXjJetc8Uf4Qv9JBqYMvw8QEjsVyBcBGq4atxmeGMMWKhUTFD8Sow+/CxcIGAXdAFX7rPSb7pbq7ObD4ureOdvN2I/Yrtmm3K7gzuNv5gLpf+ok60PrNOtj7Njuy/DU8vT1tvhQ+6H8Nvy8AOsJcxSDH00mOiwwNZo6YjtxOPMxQi+8LkotUS0/LD4qESfCIQ8d1Be3EE8II/9V+SP1FO8x6YbitN0n3PzZsdjJ2JPYZdkF29rcTuDQ40vnO+zb8Tz4Iv6OAr0GGAvUDvMR1ROUFPsUvBQpFGcToRKdEawPCg3dCTMGGALx/Vv5BfVc8VTtL+r351LmuOU75YnkieRa5PjjZ+NV4h7ikuJB48Pkhefr6gbvefSw+Qr/PgPTA4oG6g16FgcgIyZXKUUwljWdNjQ1FDAcLWwseymiJ4Um7SRcJNohah6+GnkTCApDADP42/KQ7YrojOV35PTkoOSu4krhq98J3m/det1i3+/hN+T95inqvO3A8cf1dPqM/84D+AcKDM8P2RLHFPkVpxb0FrIVChPsDxUMhgi2BQYD9gCA/h/7BPhW9Cbw5usJ5/ziyd/N3dfdNt+s4QrkUuaw6UTt8u+T8Sny3/Kk9B737vmH/UYAEQKeBr0OIBkxIlYlaiYUKSgrRitUJn8fkB0VHgYgOiIzIiQjbiO/IFAeJxq4E/AMfAXUAC7/7fyT+eb1U/MQ8tjvwuti5o3iY+Er4T/hiOC739Tg/OLD5Tzpc+yD8AH1fPiw+6394v6IACMC+wNKBjYIEwp+DKcOnhCWEQ4RmA9iDeYK/AeBBKMA+Pwv+q343vf29jf2jvU59bX0bvOD8YrvAu7m7Hnsw+yO7QjvxPAf8oDzXPRT9BH0DvOw8xj45f6YBtELPA46EWYV6hhVGiYZuxglGxQf+CJWJS4nyChrKdYo9CUkIWAbMxWzENcNOQvQCMgEwwDH/a75hPXz73vpGOWU4c3eoN093JLcSd4Q32fgPeHx4SXkS+Zg6Z3tyPFN98z9bAQRC/cOWRDEEOMPMw8ADj0MugviCxgMXQyoC18KigiwBSkD+ABw/vr74fgh9lb0WfKi8NPvFu/l7lfvu+8E8fHx2vFe8pLz1/Q99tz26/fL+bP7uv4UBB4LMhHrE+kTxxOHFEsUZxLSEMURUBUUGVYbKxwMHNkaQRjkFAMSaQ/5DGgLbgrACbsI0wVAAmb/bvyl+dH2sfOy8QLwpO1762fpJug+6Kvo7Okj7InuhvFe9L32KPnz+rP8zP6hALoCzASTBiIIwgixCDIIEAeBBXcDDgEp/4v97/vu+uH5TPmT+db5Mfo8+rD5Pvme+J333vYn9u31s/a79735bvzO/tAARAINA6kDnwOQAkoB+/8K/7b+nf7y/v3/LQGHAiUESQUZBl4GAAbaBfMF2gXzBQcGGwaiBpUGLAaBBW0E+QMCBI4EigVXBmAHtwhwCYAJaQiOBlQFEQRPA7YDpgReBu8HXggrCKcHEgZSBHUCAQFlAJ3/tv4V/uD9Bf68/dL8nvs++tj4c/ch9in1i/QQ9NTzy/Pd81j08fTv9U/3XfjV+Or4KPnd+RX7Gfz6/Dn+Wv8OABAAfv83/1r/Yf8y/9P+ef5u/lr+//3J/en9Uf7M/gP/8v6X/gj+fP0b/Wr9Uf5R/+n/AwAAAIYAUwHpARwCYQJYA9gE8gU1Bg8GHQa0Bj8HXAeeB08IOwk/Cv8KXAubC0YLrAqjCoAKPQriCSQJ5AiuCJYHMQa6BHoD/QL9AVgAs/6s/Nb6Qflx91H2Y/b29jn4jPmM+lf7KftQ+vv4zvdS95D3qfiG+lP8j/3i/Xn96/wX/Nr6v/lk+Qn6ffvr/DT+Y/8nAJYAowBRAND/yP5z/c78Cv26/WH+0v5s/3UA/QBlAND+zfwr+w36EPkz+Hz3H/eK93P49/nm+9f91/+QAagCaAP0AxwEaATRBHYFoAbvB2wJUgs3DdYO/g90EHkQdBDqD+UOhw3QC24Kewl3CEEHvQX2AzsCYwBn/rX8Kfs2+rv5cfmn+Rn6TPp/+rL66voz+zz7L/sz+1n7NvvU+qH6t/of+6H7Ffy+/Jj9RP58/k3+//2j/Z39fP1R/SD97fy5/G78/vuG+1P7Mfs/+3b72Pt1/Bn9j/2k/Wr90vzf+9v6L/pe+jr7nPzv/RH///95AKUAbgBEAPn/9P9XACsBSAJxA28EPgXuBTwGTAYEBmQF6QSmBJMEsgTsBDoFqwXWBYMF9wRzBEQEIwQEBFYE6QRZBS8FaARzA6oCzAEKAbkAnwCJAAwARv/H/pL+P/6j/fr83fya/Wf+/f41/0//fv9x/w3/l/5+/sz+r/+lAJYBYwLOAr4CEwJTAagA6//2/u39rPyq+wL7Z/oS+gv6KvqD+sf66PoV+2v78/uI/Mn8pvxV/C38hvwB/XL9uv0u/hz/KQDJANsA0ACzALMAPQBf/8j+h/6b/uv+R//0//MA6AHeApIDxQOgAw8DTwKqAfYAYABeAMcAmAFIAmwCRAI9AkYCNgLkAWoBSAGZASICzAJCA5QDvAOiA18D4gI0AjABGQBC/+f+Vv9BAI8BKgO2BNYFIQZtBTkEAwMFAjIBpgBwALkAOQF3AUQBpgDB/5T+XP1n/Pj7Wvzi/Ev9t/05/vv+jv+//2r/7f51/vr9vP2A/ZT9pP1+/Z39rP2H/Wn9Pf0u/Ur9WP18/Yn9OP2h/ND7H/vb+tr6B/tu+/77n/z8/DL9T/2s/UD+lv66/of+A/5n/er8Af3e/SD/XACJAagCNwM7A8ECFwLpARwCygLjAxsFFAauBssGmgY6BrkFLAXIBLsE6wQPBfUEvwRoBNUDCgMpAnwBKQFKAXcBmAFpAcwANADj/wwAcgD2AIkBJQLZAkcDKQOQAvgBlgGvAQMCTQJ+AmECwQGmAFL///0D/UT8wPuL+3L7U/vm+lD6jvm5+Pn3LPet9pL2vPY398/3gfhy+Y36vPvm/O39+/77/wwBvgEGAgYCJwJoAq8CwwKZAn4CegKZAp0CagLOAeIAvP+Q/m79jfxl/Nb80v35/uf/WABhABMAuv+b/8z/aQAkAb4BVALQAloDtgPIA6kDrQMCBMMEgwUJBowG4QYhBxkH4waiBlUG8AV/BQsFegQABEsDiwLQAT8BgACO/7r+D/6v/UT9kfzN+zj7xPpQ+rv5QPkL+fn4C/kt+YP59/ly+sT6EPt/+w78pfwb/Xv9zv09/rb+E/9s/8z/SADiADABDAG6ABcAfP/r/k/++v3K/bf97f1s/iD/8v+LAKoAXgDF/zv/vv5q/kj+gv4K/+v/wwBpAeIBEwIuAjsCJwLtAZYBfgHUAVwC8gJ4AwsErQQLBSEF2ASHBGoEiQT0BJUFSQbuBjEHBQeGBpEFLgSNAgcBIgCt/z3/4P6E/iP+1/3b/ej9D/5I/lH+jf6r/sf+q/5T/uv9rf2U/cr9O/6i/ir/rf/9//v/lf/V/hX+T/2l/D/8F/wt/GH8r/wK/Vj9Wv02/f/88/wI/Sn9if0T/rr+QP9k/zn/+/61/on+qv7p/nr/EgCqAE0BpAGjARwBcADG/yn/7f75/n7/QQAlAccBJwI/AvgBcgHQAHkAmgBGATkCKQMCBLAEIQUzBf0EmQT3AxwDJwIuAYAAKwAtADgAUwCjAAUBWgE/AZoAw//c/in+t/1w/XX96P13/vn+ZP+D/2P/Lv/Z/rr+qv7V/kT/+f/QAFwBmAFWAbwA+f9J/+D+zv4M/zD/I/+m/tX93fzW+yT71vrz+mL7+PvO/ND9vP5u/9X/7f8BAPL/sv9b/xr/MP+L/ykAzgBEAZIBwwEDAiMCIAIwAjACXAKdAqsCvgKLAl0CDALMAagBZQFKAUIBRgFPAS4BCAH/ACUBXwGGAY0BcAErAd0AiwCAAKYA8QBEAXsBjwFqAQcBjQAZAK3/b/89/xb/5f6b/j3++v3p/fT9NP6E/vD+T/9z/zf/0P56/pn+Kf/n/9IAnwEwAj8CvAHtABsAjv8g/xP/df/w/3UAqgB3ABcAUv+Z/uL9T/0t/S39K/1N/ZD9vP3K/YT9NP0Q/ST9j/36/Sz+Kf70/dX92f0s/pf+Gv/R/34AdwFcAvkCUQN3A5sDtgOoA4EDgAOxA8wD0AO8A50DXQPXAvQB5AC9/8j+Bv55/Ur9X/3F/RH+U/6Z/sf+5P77/v3+BP8c/4L/RAAeAe8BegLpAhMD8AKWAiwC7QG8AaQBqgGCATAB6wB9ACQA3v+C/13/S/+O/73/8v/7/9n/sv91/zL/v/5C/qj9Lf2q/FH8Q/x//BP9s/1R/u/+cf+v/3X/4P49/of9CP3i/EH9yf1E/oL+s/7//kv/w/9GANYAqAFJAocCogJsAugBRAGuAEgALQBPAGEAhACjAOgAIAEXAfEAoQBaAB4A5//u/z0AmgATAXcBiwHKAfIBAwL9Af0BLAJoAoUCdwI9AskBSgH8AL4AlACPAIYApgCuAHAA6/8K/0D+lv0c/fH85Pz4/Fz9vP0G/k3+X/5L/hz+D/4T/gH+NP5h/v3+yP9sAAEBMgEZAb4ALQCp/yD/tv6k/tn+Y/8MAMIAXwHQAfsB5AGZAUEB1AAeAG7/yP6i/hz/vf/2/0MApgAkAbwBOAEZAN7+rP39/MD8CP3t/Sr/PQBKARcCXQIIAhcB+f8s/+3+Jf/T/8sAzAHBAl8DlQNUA/sCnwIyAscBYQFEASQB1AClAF4AJABTAI0A+AB7AcwB7wGmAf8ATwCi/xb/zP5u/mP+gP6H/tX+Jf9N/2H/aP8T/5v+Mv7D/dX9DP6X/m//JgDHAFEBdQFuAUoB0ABcAPT/ev/9/pv+Y/6H/sX+9P4I/+T+Yf7k/ar9hP2Y/cX9Nv6x/iP/df+b/63/jv+A/27/bP9z/2z/fv9a/3X/RP///vL+0v7r/hz/Y/+H/8b/BQBjAMUAUQH4AY0C5QIeA0YDIQP5Ar8CqwJxAl8CbgJ1Ao4CogJsAkgCGgKhAVEB/wC+AH0AMADg/5D/RP/9/rj+m/6J/oX+if5n/lj+O/5Y/o3+0P4+/5X/9/9cAFoAOgDp/27/Kv8M/y7/eP/w/3IA0AAXARMBmgDr/zn/nf5w/rX+Sf8eAOgAZwFqAdQAGQBm/97+pv7Q/ir/l//i//f/AwDR/5D/Lv/X/pv+Wv56/o7+8v6f/zoApgDiAOoAswArAMr/Uv8h/5//JwDMAFYBlgGmAWMBtwD2/yn/pv7M/hj/gv/M/wEAQwC+AJwAKwCt/2r/4/8TAND/vP+S/27/eP85/2b/7f+hANcAXgGDAyQGxAcSB44EBQKL/7r82vlA90n25PYq+Tj8Df8kAVYCaAIeATv//fw8+0X6nPr6+yP+vgDbAngEhwWiBdcEVgOSAZ8AEAAZAMkAOwHVAfACkgOyA1EDRAJ+Aa4AuP96/yP/Sf+t/8H/TwBOAND/DADg/3f/Yf8E/wT//f62/kD/aP+U/2kARABTALUAhADFAOIADAAnAPD/Ef9R/xH/c/+GAEEA7wDBATsBkAG+AJn/uv+W/r/+LP9I/pf/HgBo/yAARv9c/nn+Wv3U/Rj+1P2X/+f/4/+uAB0AjP9z//n+O/9L/5v/vABPATQCegKqASIBpQCv/6b/If/X/q//AwDHAGMBQgHmACABTACt/x7/Af4T/0//0//9AG4AMgA7AJL/0f+X/yH/SgB3/7r/0P/X/sj/kP8bAMAAQQCxAJ0BCAF8ASsBEwBx/7/+if5P/pT/Of+L/1MA+gA5AQEBBwCH/p3+N/7U/Vr/AQDI/3kBIgHvAF8BJAETAaoAuv+f/9v+2f4p/yf/+P4DAuEE4gEBAbz/rwD5AuoASv3d/XIA3gGYAFj+I/+p/xUBZf2K+9T8gP3SALMAqABLA1cF9QSvBDADagN8BN4DAQHv/dP+ZAPkC14KpgP3BDEE9QQZASf1IvJ59V31bPMi8m/2WAGPBq4F0gA3AxQIIwWmAFb4m/jk/sD96vnL+ez6sv/K/2D8z/uS/Yf/qP1I/cH9Rv9YAr0DlgJHBI4ElQQGBnEEKARWBeMFKgdJBW4CIQTaBcMEvgEX/mH+jP+l/Lv5AvdB+WX7Zvny91L2l/fW+eP41/Yu+HT5rPv2/a39lf/SAUsDYgX6BlUGewdjCnsJlgrbCUUI5AlTCaUIPweVBhIFLgSmAlMBsf/t/UT9K/va+U74UvcD9hb3ePaF9WL5P/t0/Bf+wPs6/Gb/U/7F/Q//PQF0BhAIJAY8BzIIxQj1CHMF0QMsBXMEMwW6BIcDIQSMBOsBN/9/+2b4yvcD9gT2MPbn9335a/od+zj7Gfu5+gD7Kvrh+kP8yf3/AOkCmwQHBm8GOgYABpMEvwO0A0YCygIIAxYDagP2AmwCkgF9ACX/mP3h++/78fuT++r7kfxG/bj90PwI/T3+zv7g/q3+lP/qAJQB1QEwAkYCkgNZBDwEaASKBG0EPAUdBXYE/wOgA7gCCgLiANf/tv/O/pv+vv5P/qH+2f8K///+rf7F/U//7f5e/A78+vs5/vT/df2k/av/ZP8R/4D86PkC++b6ufk8+gn6/Ppu+6r6hPp0+j76/PoU+776XPuG+zv9cP4p/g/+if6i/lv/bP/n/2AA4gBpAQMBxwD//6L/GgSACUIMAg2kC94MiRHgEmARqRBKEEoTMhQ+EBgOHQ/qEPUR0w4VCWAGOwQXAXP9rvgI9u3zMfJo8PDuFO/78ILys/MM9bX0bPWY9cH29fiV+ub7zvyD/1gDpQWaBb8FNQbqBuwFSAImAMf+9v1R/Wv7BfpM+Xr4m/ch99z1/fT88y3ysvB+7qjs8es37UvvNvHs8UTzY/V29yH4pvfn9tf3yflI+xP8wPx6/0QDmAfDCZEJdQ25F74haCm0Kc4lzSlxMOUvZSw7I9Ac3h33GQ4RbAvCB08IzgjWADr53vRm8JDtNukY5Prgv99b30PhMOVb6Bnsz/Aq9sH49/rh+qH85AElBfoG1AgeC1wQyhYHGkIclx2oHN0bUhioE0MP4AmdBDv/ffop9u3yC+9x7C/q3udq5Tnj6OGj4eviSOSL5bfnlumv62ruBPDA8AXySvJ98+f1MPeK+IH5cflI+pj7dPue+zP60/nc+Nj3ivhU+RT7CP0D+x4BHBMZI+4xODLuKXwwcTmZOaE2Cym/Hxkk6xzZEnEOkQnBDNEO8gUR/3j5LvBx7KPpHOaH46Lem9sJ3/Dl6unb7JzxdveJ/A//df3X/fkCWwb6CHALnwvGDpATCxY7GhwcshjcFdYRdQ01C6kF4v69+iH2EPI871jrYuhz5zzmeOXn5X7l5eUf6YTsSe/s8Qnzw/Xl+Sf8OP1C/eb7Z/vx+tP5B/of+uz6EPxy/Bv7M/kn9zL14fJy8NftCuus69XtOPBi8zjzpveGCZ4fpDETOFkxsjIkPv5DE0K6NXgoSSaIInIYJBF1C/gKnQwpCPgBlfoL8M3oM+a25friCNwS177Z3eFR6d3s9/CM93/89P4I/jv9pP/UASwCsQMlBY0HwQq8DLsP3RO/FpkXZhXdEDcNTwpTBzcDOP0+9xLz8O8s7XLrHerN6ZPqdOqP6cfpCOvw7UXygPWv97/55PvO/k0CVgRWBIcCgv8V/af6Mfh19on1IPV79FzyPPBQ75fvLPA38ODvC+4a7fnuxvHt9DT1GfPE+7QPXSXkNI01NzE7Ny4/6UFePScwlCaGIWUZ9hHHCyMGhQRAAwoBY/3O9Onr6Off6OLq7OcT4vXfhOIM6aXvpvPj95b65vtf/r//LwBwAIn+qv6jAMwBCAV0CKgLmhDBE9cVaBdfFRUSeA62CjoI4wTgAFX9/vn596r1vvKg8Czuxew77Bvr4er16lPsdPDU9I74xPuL/r4CGQaVBlsFmwKZ/xL8Vvde83LxufDT8KnwtO9o7o7tIe0r7WzsYOtR6pXpwOu47hjxIPM48Ur0mgZmHhc07TwDN1s4D0PHSQtKcD6QLhcmTRu7DiYG1/7t+6r7tvlO+AH0QOxt55Pnjuxv7hfql+WC5EzpKvEc9lX6r/3F/rEAOQE7Af8B2wChAKwB7QDXAYkCvQN/CNML1w36D28PVQ92D8oNMwyxCOcDXf/s+tr3XPTW8KnuPewF7EvtUe1Y7s/u8O+f9Zb7IgBoA9cD5QTGBioHvQZoBIAA1vyX+Gn0YvCm7Grrt+sr7Krs7ese6+bqTevp7GzuWe6R61fp1evG8A/1yvVK84j8kBSFLvBC+kbyQUhHRE9YUXxMBDu9KfkeVRHJBsj+VvUE8Z3ui+0f7ibpMOI43wnhw+Z66MrlneU16Abvp/ej/X4D7AZ/B4YJ1glBCPUFzAAM/g7+Gf22/kQBUAQXCo4O+hGgFIITEBE8DsUJKAUV/4z5/fa69Qr1OvN98Bbv3u5/8KPyU/LP8QvytfML+FH7IP1q/5gBZgQ0B14IhgcABeIB4P6c++f3Y/MC7w7suenY6JXp8+nL6STp7+jh6YLqc+s97PHr2e2/78DwmvKZ76XyxAePIyY+GEt9RnNJAlSKV6VV2EUAMGkhOg6u/LHzj+mD5OfjguOG6XXssOgY6LDqiPD99LnyG/Cr7+bx2Pex/akDDgg4CNAIUQl2CC0HtgIr/vX7dvlU+Uf6p/oV/pkClgevDH4NMQ0mDkIOIw4GCzMFAwHz/KD5wfeW9OHxFPBq7+HwnvE48fHwgvKg9278QP+qARUDhwU8CLAHjAUwAmz98fls9sbxlO256YHoOOoI7HXtLO607o7w3fBv7mrrTOj351PpcOhp6WjsV+8p84jyd/V3CLsifzyvS0ZJIEkuUGJTZFPMRwAzciKCEGr/UfZW7S/nfOUs5OjnEOsL6Srpv+wH9Kf6OvqT93f1gvWX+Vr9ZwEEBQIFrgVgBowFsgXRAxkBgP/Z+4H5S/lA+U/8lgBkBTcLpA1CDrYO/g1mDV8KBgWp/+P5fvbH9O/y9fEz8BDwBfM59f32dviZ+TL9cAAGAlEDIQOVA28E9wP0Asr/u/tS+WH3gvV/8uTtZ+qh6GDoEukf6bTog+hw6Urre+zb60/qB+tq7QLvR/G88yX2p/g09gn4SgqUJD0+XUu5RsZFikycTz1PQEIBLOsaQQjl95nwoOj941jkMOUO7Bjx4O5d7tPwZPd+/QD7PfYJ88TyifeL+47/oAPgAmoCGAN+AlgDZwGb/WH9YPyj+4n8A/xo/hED2gbRC8QNzAvrCjsKNgo3ClUGkAFU/kr7yPkJ+e73l/eg9574K/qs+nL6mPoD/UgA2QB4/6b9x/wK/rj+d/2I+3H4+fXK9d70u/Fu7R/po+cf6UPq3+r067XsWO6O8B/yQ/OV8gny6vL+8uTzDPSK8m7yjO8+8UADjB1kOGxIL0fOSI5R91X+VCZGjS42HHQIfPav7DfjaN7L3mLgZOi078jwn/Lc9i7+uAQMAzb9ivjw9tP53fyt/jgAdAC3AREEHwUGBecCtP/B/Sb8pfpo+WT4Pvph/4UF4go8DWEN9gz7CxEKogYuAc36efWC8qrxqfFM8sXzBvfW+pH8d/xR+4363fvy/V3/+f+k/6v/+gApAkYCZQCf/HH4LfRb8E/sZOdy453hpeJL5sLpA+zV7czvG/Nf9gL4SfcX9ZLz8fEL8mf0P/Vn9TPyAPG+AVcfnjz+TpNM10efT4NVpVQISAEu5RdDBcjxN+cZ4NfZqtrN3rTn6vF+9CL1Uvq6A+8LxQryAhL7vPY3+Ir6DPy8/Vr8YfzO/wYCLgSfA+L/If9N/vP7vvr79133/vvgADMGtQk/CMYHYAniCqsMagonBLb+MfoE+PD3qfYI9bPzlPNU9Vj3Qfnq+vH8IgD2AUkCSwLiAIgApQCN/iL8Jvgy8/nwAvCK7uDr/udL5uXn3+rJ7JDt4O7A8FjzdfXm9Vz1NvXa9un3sffK99H2rfY09fPwW/r/E4UvrkWgSfdCd0jHTk5NxEYCMgob3wkD9W3o2eSr32vgM+Ww6hP00feW9mD6uQAtBhQHTwF7+1f4yPd5+i39xf5l/pH7y/oX/Pz89P3X/An7BftX+gX7G/1w/n4C5gfwC4wPfw+kDYwOzw4GDbEITQHR+vb2BvVc9C30A/QK9KL1FPmy+6z8DP0F/hMBqANuA+8BUQDX/47/Jf6U+7T37fOe8fvvKu5563LofedK6bbsmfAv81jzrPJD83X11/eA95D0SfE97fjq+uxW7z7xOe9j6/n3wxOOLwJE5EZkQ51K6k/vTbdGADT9H14Pe/wf8V7sb+Vl4hHk6Ojf8I30X/T59z3/OQUABo0BWvzN+ZP6hvzt/YL+hvyM+pr70P3j/6L/Ovzo+c/5Pvp5+/H7s/zkACEGYQuMD6sPGA9VDyUOiwzQCF8CKf1U+BD09fEC8CHvEvCV8Wn0W/cW+Ur76/0IARwDrQLzAJf+IP1B/D76u/fD9MDxyPBk8HPvxu7k7ZnuVfH089D1c/a69XD1mPW89L7yX++i7bHu4+438GbxLfEJ8y/xJvL5A6Qc3zQWRUJC+0AcSW1L2EvjQqYsuhrsCNX21vA37IHmVubn5ZjpW/Hh81L24fv4AA8FLAQ+/8f70fn1+XL7IPx3/BL77vjP+HL5U/ty/Yn9+P1c/s7+XAE1A7oEAAh3C5UO/g8sDo0LPwrNCHEG4AJf/an3hPOV8P3vFvD/7mHv8/B387T24/cG+dv7Zf7oAMoBlACF/7X+CP/p/0b/4Py5+cb3Gvcq9jn0l/H37yjwe/HU8971AfYX9UL0vvMp8y3xju557Yfttu/k8nTzwvKx7mjukv9aGlU0L0XnQ9NBtkjRS8RLfkI7LKcXkARD8+fsFOmi5PLkcefc7Tv10PYC9/z55P5oAjAAM/qv9Gvy8fSw+Lv7+P3Z/C/8zv2E/gwAIgAc/cL8Vf0D/ksB9AIhBQ4KdQ1tEKwRyw5QDAYLLwnEB+kDef3K+ID1rvPh853zL/NO87PzBfUh90z5F/sn/dH/NAGdAaoBvADLAAgBr/8j/lD7r/c99uv0WPPo8fnuMO468ITyAfU99nH1E/Xk9IDzQfFJ7TbqF+kJ6P7pjuzX7Znv7+z17/sFpSHlOYtG/UC6QA9K+UtYSYQ8nSRREp8BR/Ky7t/rf+dH6ZnsKfPU+V34kPYJ+er7S/16+Tvz/e887+jxdfYo+vT8Uf2z/aMAAQNkBPADxwDk/hr+9v2i/2kApgEfBX0JlQ0xD8QOMw6cDXgMOAkCBNf+tvmO9hf2GPYn9kv19vQB98n5XPwI/vT+iACPAQ8CdQJnAQUA2f5z/d38Mfug9z/1T/Qr9FX0PfIs7zXuge8X8/L2C/g+9j/zZ/EN8UnwS+577Mzr/Ot+7kryhvTZ9V7yZfIEBREfaja5QzA+1jvaQwVGj0WhO0glIxNUAhfz1+6x6kTkauMn5mjt4PTv9KXzHvdw/V0CdwGG/aX6qflG/K3/RAK6A64As/16/nr/8QA/AIL8Nvwc/Sn+qgHnAvADzQYHCPMJtAuLCrUJ9giYBhgECAGm/cX7Uvru96T1IPTt82r1PviK+tT7Bf2z/Zn/ygLjA7EDtgIpAHD+Jvxg+BH2LfNZ8M/vd+6Q7U/tKew+7jHyUfUI+LH3MPUb89LxDvJZ8trwce+H7jPuvvG69LP1n/VX8Cn0BQrvIqY4fECtOcQ8HUVyRthDrjQhIF4QNf/z85zxR+7d6orp6+o/8n73CPZC9an3K/xY/zL9bfo4+hf7Jf45AUQDGgT7ARkA2v+y/+L+4vv5+IH4hvnb/JYAMAPCBloKBQ91E+cT2RGwDfEIQAWcAET8FPmA9c7zBfM/8pzzpPRb9p75gfoU+9j7gvvB/V3/x/5v//39U/yU/Nj62PmK+KH0AfP+8STw9++v7p3uOvHN8rj00vUa9V/0NvP88jHzV/IO8pHy5vHv8e3zGvWp9kb0me5i+jkViS+MQ5lBhTgRP5NDEkMoPfQmkhKHA+bytu4W8ATtfu3i7pHyPPq9+v/2dve3+Vj84fvV9iL1w/aO+SP//wLuBPUETwHQ//3/3v4p/ob7q/lV+y79zgAsBcAHzArlDTMQqhHwD84LXAjoBbIDzACj/OP43vbF9cH1qvU29CLzu/Ku87X1gPZL99j4Lftd/u7/OAAMAMz+SP6A/TP79/d182/wQO+e7knulO317oHy9PXl+Jn5avhC9w/2D/V/87vwKu9h7wDw2/KL9Qr26fUL8RfzTAl+JTE9PUY4PEA5x0A8Q4xC4DWSHh8Nbv2z87b1QPVw8nbxjvCG9CH3rPP18VfzFves+ZL2zfMg9Cf37f2BA6sGfQdAAwkAhgChANkAwP1o+Gj3KPju+j8ARQTvByALPg06D8kPGw55Cy0JFAZ5AQP99/h291j3K/Wu89byo/Iu9Qn4lfly+vn5xvmw++b9Yf4u/fH7Qfsb/Fb9//yA/Jr6b/iv92j1IPPR8ALuY+7n7+PwRfL58aPxEvOs9Pj1LPXQ81/0KfS39DX4aPgd+Cf1I+yC9T8R9SlnP1JAijNDOv1BS0LuQpAwmhl1DHD8+fd1/VL6dfcn9ojz+/W89Mrt3eud7RTw1PFO7+3sa+9U9nH/xgbYCPIENAAa/wwAwwFIAcP8JvnG9/f4ev7lA2cHkArRC6YMeg2hC6oJdAjlBdUDFwJP//39Gf13+yb6X/d989bwOPDW8EnxmPGT8Zby5/U6+HL6gP36/Ub/VQHAAJIBugAX/VH8wvm+9bPym+0r7E/uYe8U8d/w9+6w7wXyifRL9a7yFvDw7oPuyPG49E/1S/Zk8B3y3QqpJnM/9EqjPhY8e0TLQ2lEqzk/IvQTwwSr+O372fx7+vH67vdt9w334++P66TsCu6g7v/r2+lj7fbzMvyvA04H3wb7Avf/9P+x/77+ffz5+aD5e/rp/XYEKQs/ECsT8BOJElIP/wtqCZMHTQMb/KL2cvTp9dP5ffv3+ln4uvOj8TXxp/AU8JntyuzK783ym/bC+u/8EAC4AggDnQOHAZL9d/xB+3351/Zb8Uful+5W793wjfEd8WfxA/Ip8+bz4/IM8i/xsO/R8ITx7vBy8WjsUO+lB2AjYjtuRS87UzvURfRGM0XrN4MhthQLCK3+cwGEAbb+jf3d+fD4Jfen7xXsRO1o7uTtduqB6SjumPSp+mr+IP/v/f76a/kO+gD6u/l/+SL6kvyD/+IDagmyDRYQ1BAtERQRxg6qC7kINwZ4A7T/ef39/In89vtp+jX5ivhP9t70bvQx80Hyt/De7yDyFfRl9fX3Z/oI/Vj/v//Z/1r/gv1w/ML6Uvhu9nP0ofS49o73//cs+On2r/UT9KXxS++W7K/rF+y+6wruPvBM8X/zze+58l8KUSXlOm9C+zYwNjdCKkVFQzU38yJdGG8O8ATyBRsGMAMeAQX8TfjZ80rrW+fq6HPrc+s659rmxe1H9lH9Y//d/eb7KPir9SX1bPQ99Xf2lfhz/cwBkwYwDN0PnxLvEjYSBROJEXEPFA2GCCoGdQTXAcMBMP/o+QP20fEf8LLwzO/17/fwZvHm8sPzmPQu9uT2Ifhg+TH6KPuG+6/8d/79/pn+ifxt+Nv0UfLG8X703vZj9wH3P/W68/rz+vTV9c70SPKy713t5+1Z8KfxRfII77TtNv4eGyA1HUJpO3kzpTqSQudBITgNJo0YIBH1CFkG5AeGB0oGagHA+xH3aO4G5wLl9uW/513l6OKT6KXymvvg/4f+G/0e/H35uPeL9nz2GPhd+Sb8cgDuBGoKnA5REZQT0xOkE/8T9BJnEXoOyQkSBtwCiwB8/vH6c/fv9GXyAPEJ8H/v5fBB8hDzP/TF9VD4SPse/aP9Ef3f+/r67Prf+gX7RfuV+l/4CPUb8ZTudO+X8YTyk/Jr8RbxcvPH9Qb3PvYr9BLytO+97xnycPO886vwp++S/zgbiDOoPw85zC/dNJ47ZDs2M7IiGhcGE80NagzwDdMMHAs6BfT8QvY77fnld+TX5YzoceeZ5MToZvEz+Vb95vsU+nH5m/eM9r/2svgt/Kr9zv5RAXoDtQZhCREKwwtLDcENXQ/tEH4SQRPzEMMNwQo8CLIF5gAm+7321PJS8FnvaO/L8XX02fXD9kD3+fcY+Xb5xPk/+nj55/eZ9tP17/VU9vj1bPQJ8izvn+x57JTuo/BT8gHzGfPd9DP33PhA+b33LPbo9Hf0I/Yf+P34u/dj9DH6wg5mJzw5wTrgMCsusjMaN6U0ZCqdHvkX5BJTEFgSvhNREo4MlwN/++7x6Of/4UrhUuSO5fjjw+V17DL1PftV+w36evk19yX14vSp92z91AB3ADsAewFZBDQHfwc8B1sH6Ac0ChgNKhDMEi4TEhJkEFgNBQlPAxX8W/aT8jjwh+8j7+DvK/Ik9Kb15fax9jL2N/Ur833y6vIt8/rzDPWF9gn4Ovhx9lPzjPBE76fvlfGl85v0m/Q09Az1bvZU95f3NfZK9W714vWB+Hn8i/6W/vP6lvtUC6MhXjJ3NEsoWiPtLEY2mzeSLYogoB11HV4ZKRWAERQRvQ9lB3n8ivJp69rnIeWd5M7lz+XT5gvpDO2z8/T2VPYc9WfzI/XG+Pf6of61AnMF2gepB9EGsgc8B2cGCQYoBhUJsgwLD58RChPLEh4RSQ3zCLsEN/+l+e/0KfLu8QnyJPI28jPyFPK18S/x8fCD8JDvp+6K7q3wO/SB9x/6Dvty+k75Mvfx85fwQO6Z7ZXu8O8i8R/yNPQh9zX5wvoZ+5b6UfuR/G79Hv/c/9f/2v9f/9UDSBDYH3crRixRJhEkXSiFLtMuvyeVIEQd7xsiGkcWMhTKFNkSpAsJAJT1ZvHI8DXvB+sf5u7kzef+6oLsuOxP7U3vcfAN8Ljvl/Fl9kr7n/34/d7+UwFkBOAEqAIFAQUC3gXvCYsMqQ4bEY0T2xTZE/wQrQ3MCX0FqAAn/Gj5Nfhm+BH4WPbU9BX0wPOs8v7vd+2E7C7sGuzK7P/u4fIR9sT3DfkC+hL6q/n3+Mb4cfkG+aD4pfnU+63+FwFoAvICWAJMAAX+wPw9/Nn7+PoC+ib5g/iK+cX8wwLECOALDwzXC+MMpw87El4TnRTiFY4XMRmLGbUZMRqAGvUZNRfSEkkOWgppB/UEiwET/in74fjw9zX3Gvb09CT0NPMv8s/wge+p71Px7fLh8qXxEvHx8iz2Gvip+LD5j/wKAR0FPgd5CKUJ0grvCycMiQuECjgJPQieB8AGsAXyBCgE3AKxAK39SPv++Qb5r/em9Y/zmvIp82f0NPWv9Jjzy/JX8hbyevHd8DrxYPKJ8xP1MvfA+YL8Mv5w/tv9Bf3h++r6TPqV+ob7NPzJ/MX9JwCxAy0GMQfJBqIGTwhzCsoM6g4AEesT+RZtGcwb/R3IH14gah7tGs8W6BJREKANagpkBxgEkgEHAFr+Wv1a/Q79s/t2+KT09vJO8yT05PM68vfwLfEX8jjz+PMQ9G70I/Wi9g35cvu4/T8A0gLYBJEFBgWnBKYECARfAgMAcP6b/rL/LQBf/8P9sPsi+gL5sfdd9uT0vPNi86XzF/RW9C30vvM989byB/JM8Qfxf/HE8lH0fPZB+R38Rv6g/9AACAINA/QCgAK+An4DAAREA9ICMwXUCcgNxg52Db0M3w63EeYSJRMpEwoUOxW4Fb0W1hijGssashesEgQPsQwYC3QJYAblAkMAwP0v/N36Hfn39zX3avaq9az0K/T09PL16fUt9M/xwvA/8jT1qfcj+JD32PdZ+cL7uP09/1UB0QMmBtoHCwg/BzwGLgWFBJkD7wFuAGr/tv5o/sP9s/wK/Pr6VPlt93z1+vMA8y3yNvF98EDwfPC78KnwLvCF72jv7O/G8Bfy2fPy9b34p/tq/tkAAwJ5ApADaAVQB+8HXQZHBS8HZgtQEPYSfhL1EC0QihCdEXISixLdEh4T0hLrEggUThY2GK4XohTQEIcNagt0CcAGxgO+ABz+6vtt+V33wfbX9oX27/Ra8uPwlfFu8zb1x/WS9cz1vfaT9yH4Gvg++NT5+vvr/ev+O/8gAPYBIANCA/0C3gKgA1sE3gNUApoAZv9R/0f/v/4V/uT8eftX+u74mffu9o31A/TE8r7xGPGB8FDwBfFI8qzyZPKs8U7x9/F38gzzrPQ+9/76Cv/2AdMDlQRoBVkHNArgDLYNIQ1+DPAMwQ6qEWoUuxVGFcASURByD+MPThE4EokRYhBKDwQPbhA/EgMTGRLfD/AM+AlIB68EggJBAGH9FvrR9sP08fNs86fyUvFJ8BLwaPDA8ALxd/II9YH3avjK9wv3xveD+eX6/vvo/Ej+BwCtAZcCRwPRA6sEnAXRBYgFrQSvA60CFQJ8ATIAjv4K/WX7R/oY+TL3MvVD86zxlfCV713uY+1w7Ivsju2g7m/v0+8m8HDxbPMi9Tz3OPnP+2//1QKnBWkHigikCmYP1xXrGusbexkLGMAZ2xxEHUoaoBcEF9MX2BcWFl0UHBSAE1wQrQpqBPYAXACaACQAlv7m/LX8//2Z/iv+P/xt+S73FfUb817xsvBH8XnyP/NG867z//Qc9974Wfm7+R37JP00/jn+9v1d/lH/A//D/S79Ef7y/0oBKQGcAAMByQHOAqQCcgEvAEn/LwC5AKj/mPze+L/2xvaH9vzzMfBu7JHq0umV6Jfo1+pl7fXu9e4s8Jr0JPrz/FX8GPrJ+WX9UgRNDRcUrxbwFSUVqRZHGXcaoxp3GzYbTBiXFMMTtBc0HWgeRholFOwOkgsrCLEDYAD6/dD7Cfm+9fby2fJI9EH0rPIH8O7ugfH09W35dPoY+j378P5+AiEEiQNaAgMDPAQSBeMEbwRoBRYH5gcSB2oFjgM3AkgAyv3L+3L61Pl6+Lz2g/Yj+Lv6Ffyn+k74ePfl9yr4Jfca9Zb0E/bP97/3E/WI8bHuRO1l7ObruupR6XPndeWe5QDpbe9h9Y74pPhZ+bz++gnsFdQbhhnKFD4XPyJoLq0xDiv/JK0lhSnAKVMjZR30G/gbfxgFEKAHdQOkAvD/x/rr8x3vW+3p7Hvqf+eQ5JnjT+Ra4x7ht9/J4SHnn+2g8Uz0cfeY/P8BWQboCGEMrBG4FvwYKBgPGB4a8RvmGQEUnA7BDdgOhw0kCN4B1f5z/tv8JvgA8hbukO1s7jLtP+oN6FfoEurm6hXqFOnf6QrsVO3Z7FbsNe207izwqfCR8S3yNvPv8mnzSvMv8p7ynvpICWYUIBBw/SjwJfZkDM4dth+3GJMZYyMMLIIrkCZoJWgo6SfnH30ZvhqYI5MoQSMaFmwKlQPV/9T7CPfC8vfuwOl35H3iHuRO5qLl4uH33ibeR98J4UDkuepO8YT1uvaO+Fb99QXEDRsSQhOxFOoXRB2pIe8hByBIHT4drByLGbwSygsCB8wEswHv/Ov3qvQQ9PryCfGS7V7qGOgq5wLmmeMF4o3hjeOi5ujo9ehK6HrnIed8513nz+gF6mjuVfHH8gPy3/JB9Pz0nPJj9JwFVB4hLyclJg4KAvUR+ShwNNYs0iUtKrYxCDC1JS8gfCCFIMATTAVV/a8CZQruDXYIav/69N/ruedr6ArsfuzH6bPkWuNW5NHn2Onv69fsquwM7I7t3fPg/a4HnQxODpMOFBAQErMUNRhRHG8eXR28G0UaOhknFSMOngfPBfsFTAYnBGUAgfsY9lXwzOvF6kLstO4b8J7wV+9z7hftTezj6WLmFeKp37nhkOex7bnwz+/4693orea75UXngupY7ZzvsPHL8xf2t/Td9DsCuRq2Lp4rSBR4BCsSRi9CQnk9BDD4LKMzuzRuLcElOiLuHjAUEAdN/yz/lf8X/ir5WfEG5svZaNUK2z/kkOWO343Zedv14TboRuva7cbxs/QB9sb3m/4XCBcRMhVEFg0WLBe3GW8eMiRbJ5sk0xxfF3gWhxb4EWAIOf9y++H6evmz9rP0sPOX8XntZel/6FrrE+8O8tLyUfKO8GjujuwV7O3rzuus617rauuq6ubq1+rJ69/qo+hU5+LqyPBm9235RPbj8BLqEuqU+6Ma7zPJNe0chgdADlcoBTxKPOIvlCynMm40pC/uKeImFyU3HEAOugTD/9T9bP68/Ob17+gS2WjSp9jb4WPk0d6Y2K7Y0dwq4PjiEee97Tn1PPr9/WoCCQiKDZQSXRbvGAEa1xu4H2glJSjQIz0bvxbuGCAbpBU6CCD83vjo+6/8Ifg18HLqG+hV6CLp/ukv65TtS/D88Sbwiexs6iXrb+3Q7VTsfut57cbuFO8R7WfrfepD6y/r0+yX7yjwTPHJ8j/1LPY989XudfxyGOYyUzYCHgQEzwZXH5I1Ej0gNXYxnjPwMG0nZyKFH9gfrhrxDysIFARpAPL9xPsV9S/q+9oE1QHcmedN7LfnWd6m2RnZQtqi3g/mFu6s9IX4+PutAbcHxA1qE28XXhgvF3EWEhtjI4UpEigWIVoZxhUVFPMP4ghaA3ECtgPpAbn5nvD867zsAu7b7FnpjOcg6SDsH+6t7Rfr9eaQ5PbkQOhu7LHu0+6d7a/suOsX7RHv5vE99NP16/OI8u3yHvRj97z2vvJV+WcQtCZhL7McCAKqAK4ZXjLmPMQ0pyvQLjcuQCV3HXMbNx+7Isca7xCbCfIDYACU/Uf3APAL5w7jzOab60HqHONY2UzVp9bD2U7fM+WE6dDsb+5r7yf0LPk3/1sGog3uFF8dYCG0IbYfGhyuGqYcPB+VItIjsx2lEq4H3QFdAocE5gEd/Br1UO4C6VLmFue56uftyu3X69LoxubZ5DXkaOTI5d/nDOqs7FTvM/Az74Dum+187izv6PHc9aX5gP0l/yX9k/o79XLy0ALXHLYvWC7XE2f8twZFIK4z4jeILIopkjBrLKohvhuwGoEhKyJ6F/sOzArwBkAF7wCI+YHxdum25nnqw+2U6vrhJ9sK2vjaeNwf3o/hJuf+6fnnyOa86cvxbP3wBU0KlAtzDKUPFhbiHFcgsh/iHn8gcCPSJE0ePhT5DEMJdwgOCE0E7QBR/pz4vvJa7dTp8emm66/rUesZ6X7lMOIq4FPhWOQo5/vnnOZA5czmIOk06xHswOsu7F3u2vEe9cX2b/lt+xn9T/5R+8L7Cg1tIgQveCezCiL8HQ2eKAs85TtKLGonjiklJpohAiDvIoUpQihvHswTCgsABrIDeQEt/RP1H+7K7f3vJvGH6yvg5NoK3NreF+Oq5DLk3uZg57jmWeg764Hx/vl8/oIApgH/A+cKchK3F+MZ+RjTF8kYXhouHfYb3xfoEp4NswpRCSYGjgNyAOr7+fh89bnyEvFo72jtBuxT6ZznCOZx5enlPObG5fbkr+TI5Yro2ela64Xs++1U7sPule7u8Lj2kvxj/qj+ePoD9nUBNRR/IlsmRBS8AZgKKR0QLYoyyCi+I44oqCVtH9kdzSDNKAAqgR+xEpgKBQhaCvYKIAkaA1776/Xo8k7xQu5Q6W3mb+ZU5V3lieTe45XlLueO5SfmdOe36ujwCPae+XX8c/7WANADvwVrCPsKzw8rFCoWlxRkEGENxQzMDMYMhQuACVMI/QTHAF79rPxq/nP/pfxC9zjyl+9U74HuIe2466rqM+nf58rlCOZH6C3s9e5/8BrwQu+I7z7xnPPQ9M/3yfls/eX/yv2q/MIGGROZHR4c9AqJAw8Ogx5wKxsrWSG2H+wgYx5MGmAapSBxKTgpGB+ZE0AN0Qz+Dc8NmAq/BV4BK/3j9/Hz5e8I7vfuse336J3kOOGd4Tzl++a55zXoEukt6xjuHfCC8ov1YPmm/RIA8QA9AeICAgX+B2gKtAvDDCgNgw0RDdULtQfBBIsDogSTBkkGagOAAFP9Wfpk+I727fbI9lb1/vLA8LDvue8U70LvJvBl8hf0JfQ9893x+vFu8wH14Pac+L35n/zD/mf+hvye+CH4YQJHDf0T0hEWBZf+IwaaD9gX8RkwFQkXhBnyFXkS3xIgGRcjoyR8HHITew+wEEETmRPAEfAPtA6bCpIDSP2R+T75d/tF+lr1Z/Ji7yju4O1g6lDpNuuS6/LsBO3C64XuH/G18g70rvPN8/32ivpB/Uv/Xf9rAOQBfgJmAvICqQPwBH8E6wLkAScBHgG1Ad0BTwHZ/3L9zftG+9v7MftG+6j7DPyS/Ej8EPsC+5T7IvtM+837Svwp/AH8g/o6+n/7Hfyc/Ev9Evzu+n36XvkZ+kz6cPre/WoESgiRB5gB3fuX/6cIGxBBE1wSmBB3EWUQyA5RED4UIhhpGXoWBxI6ENYQ0hFaEmMSwg8vDhYMFAhbBFQCFwEuAvYBpP1i+bP1xfNM85XyxPAz8NzvZO+V7r/tkO3V7uPwd/JD84nzyfN19O31jPat9xL59fmY+4L9qP7j/xIAzP7I/rz+cf+LAK8ALgG8ASsB4gDXAIIBzALKApABdACCAM4A2wBuADAAoP8pAKEA9ABIAbz/tf11/FX8DPxe+0D5Mfir+Cz50fkq+nv69frP+qf6kfub/cAArQJEA0QDnwKkAjUEagVwCOkKCgw3DSMNegz3DAsOsg9DEqMSuREZD2wM9grdChMLkgsgCp4H2gQVAqoAnwA0AAEASgDT/kj9Wftr+Uz5EvrI+f75vfl9+YH5k/ii9qr1E/Zk90n4JfhC96D2vfb99jP4AvnA+TP5fPhi+Yr7lv1q/qz9Lf2+/ar+gP9sADACbgOSA3wC/wAeAG4AxwCJASMClAKWAj0BD/99/Bf72Por+wL7x/o8+h36hvld+ND2N/bZ9gL4aPkL+/H7Nvy3/MD8SP0l/r/+E/+mAGUCQAT7BSwGyAVQBmkGwAfJCQwLYQxmDX4NlQ2ODRwNXQ3EDa8NHwwnCqgIJgi3CMsIKQjvB1wHeAZABakDpgIaAzID1QJRAjgBiwDQ/0n+Ff0V/FX7cvsJ+/r56fh+94v2g/Z39gH3T/dx9yr4+fiD+S36p/qE+x79Tf61/g//kv+5ABcCAQI0AagAiQApAfgBLgI5AoIB7f8Y/uj8pvzZ/Hv8Qft/+WD48Pcq+KT4G/kq+Q/58vhO+Cb4//c5+FD50vrd+3/8bPxu/Gf9Z/5s/w4Awf8rAP0A4AFbA1IEnQTrBK4FZgaFBmoFQgRzBDMFEgZJBsQFjAVdBdgELgXaBd8G8wfJBzoHCweBBhQGIwYkBgMHqgczBygGRQWrBEcE0wM3A6oCoQKQAuIBvAD//mr96/yN/R7+hf5q/hP+Iv43/m7+0v7H/oT+df5E/rH+Tf9m/x7/fP6f/Wr9+/09/iz+U/0H/FH7jfsO/Gz8lPzz+6f6R/nO9yj3oveI+F75xvmi+Sr5EPkz+an5dPpD+9D7nPxz/Qj+yv6o/3cAtwGbAo0ChwK8AnUDbQQ5BCADQgLVAdIBnQEKATsAwf+C/03/6f6N/if+GP6+/m7/EwDLACsBswFwAhEDlwPrA2EEYAVmBkwHHwiTCB4JwwnrCaUJMAl/CGsIbQhlCAEIngb1BPkD2QNOBFQEVgNAAhwBhgBOAPn/xf/0/6v/Lv8p/sD8Ffz6+zv8wvyI/Lz7Ovsk+iH5tvgz+Dr4svjw+Dz5Sfn1+Hz4Zvhv+JD4yPg8+W/67/sB/ST9rPw2/GP8E/0G/vb+LQBpAUQCfgLZAVwBYQGSAd4B/QHvAWwCpAIpAqoBHgH0AAEBbAB4/wb/w/6f/mH+xf1R/WH9xf0l/kb+Pf4G/gX+I/5P/rj+uP8iAWYC/QLQAqQCAQPlA5UErwRSBB8ElwSIBT4GdgYkBrYFeAWFBUcG7AbdBqUFLAQgA+UCFgNWA5cD1wPQAxMDzAEyAH7/QP94/xcANACF/3X+7/wO/G78xfzv/I/8z/tt+3b7hPtl+yL77/oU+1H7ivsi/NT8s/2C/nf+6P13/XP9CP6h/u3+/f7F/mr+i/7//m//w/8DAGkAoQBEADX/NP7U/Vr+MP+Q/yr/1P2G/Nn70vtl/OD8T/0O/pn+8v49/yP/MP+m/9D/7f8iAKoAJwFhAUEB+gAcAXIB2QEeAkACSAIMAsMBtQEwAtMCWANfA0IDTwNJA0ADCAPIAtwCDAMsAywDPQOMA7YDWgOvAlwCeQLtAksDkgMABAIEsQP4AhMCtQE2ArEC7wLIAgYCYwETAdAAcgD//1b/J/8n/wj/1f7B/uD+2/6v/gz+jf1w/bX98f00/lj+D/57/aX8Bfwi/LP8Lv1K/SX9y/wJ/Dz7vfrl+mL71vuq+yv7ivom+i/6Nvpr+l76RfqP+i/79fuo/E39+P3B/lv/r//w/1oAGQHeAWECmwLOAjcD+wNEBDAE7QNvAxgD3AKZAr8C4gLMAr4CXALBAUYBwgCxABMBVgFEAc4AQwD0/wEAAwAZAD8ATwBwAGUAUQBcAIAAcgBrALwAcwFIAr4CfgIjAgUCIAJ5AucCXwPeA0UEGgS9A6ADRwM3AxoDBgM9AyED5wKiAncCqAKrAiMCQgGoAE4AMAB+AE8AqP+m/on9zvxl/BP8svvj+sD54/g6+PD3Efgq+E34ZviR+E75Ivrx+lD7d/vS+2D8Qv0Y/gr/DACxAPwAFQHqAP8AiQE/AtwCFQMEA8gCiQL6AXABOAFKAZgBswFGAXsAv/9+/9X/XgDZABUB4gCuALMAAwE5AYYBrwGoAY8BMAG6AK8A/AAQARcBFwEgAV4BmQGvAcEB3gG4AXUB7QCYAMwAdQETAiIC1AFYAT8BvAFLApQCbALDARsB7wAVAZkBPQK+AvQCwwJAAtcBtQGLAV4BAQGYAEEALwAgAOD/gP/B/gb+Kf30/Ob84vz2/Pj8//zv/M78RPzU+6f7HvzO/KP9Dv40/lH+F/6v/SL9Vf1U/qv/8QBKAd8AOwCd/zv/I/9a//b/YwCWALoATwCr/8P+HP6+/br9w/0X/pv+8v5U/zT/D//2/vT+I/9Y/2P/9P+fAOsAYQFRAYQB3QGCAuUCkAJCArEBfgHBAfQB/QEIAsMBnwFYAcwAaQD7/4AA6gCoABMAKf/Q/mr/MgDxAJsBuAFqAQoBFwFqAagCWgOXAhwCCgGjAJEApgADAagB+AFeAWsA2f4T/kv+zP7I/uL+WP5P/Qn8Nvs//hwCwQL9/0r8B/yh/hsB6AAD/+T9w/3K/j3/Pf+//mr+Fv+g/wkAcgADAT8BDgFaALj/Yf9u/9r/RgBXAAwAlf/n/m7+T/5I/sz+Pf+v/hP/If8Y/5n/zP/7/1//Uv/g/zAAbAADAXkBrABjALb/MgAsAkYDgAPVApQBZQHvASIBcwH2ADYAwgDxAKgAbgA9ADX/sf+m/97+s/5P/iP/5gBEAe3/HP9d/6wASwH8APb/Vv/p/+v/RgBBAOf/uP9z/1L/uP/u/9P/ZQAwAAwABQAmAIAAWgFyAZ8ASAAVAOoAHgFGAWUBRAFLAeQARgD3/2cAOwCy/zf//f4l/37/0f+M/+/+xf0e/aT99P0i/kn+Dv6X/uv+6/4N/x7/tf4Y/nD+Pf8KAB4ADAAXAEEAJgDO/9H/nAC3AVEBrwDHAMcAHgH6ALUARgGbAe0BqgGlAN0APQGxAJwAtwDDAAgBOwCi/2j/7f4h/z3/9P+o/27/ev8i/tL9Of4c/4P/D//b/XT8HvzJ/AX+//6H/8r9y/yN/QH/owB0AB0AGQCCAMcAWAAq/z3/BwF1AjkCIgGEABIA1QHbAVMBPQESAJ0BOwIiAWAAEwG3AeIBcgEyAF3/OgA7AdX/tv/e/uf/MAH7/+7/OAADASUB6wGHAQwAKQHMAUgCdQK+Abb/rQGp/4IABwDAALUKKgSf/Mz2QfqTCMAGrQFt+Ij4UwEMAukDpgDg/O/7ifwXANAC1QG4/8P9e/yx/J/9owAQABP+pvwc/bL/n/+sAJv+2/68/27+0P/D/0f/7f20/zX/Ef54/0L/OwGl/Kb8JAAl/uAAfgAP/xD94/8/Am4CSP7o/NME/wKjAaH9+vzdAHYFAgWN/TIA//6mATICt/2uAEQA+gH9AM7+Fv+U/7UAzgFBAaD/YwHB/ykAewCd/2kBYwFzAY0AVQEcAUkCFgMKASAAmf/3/9QBoQGzAP0A9v85AT8ANACfACH/zAAMAp0AnADyAfb+qP1j/DcC8QoYA175pPWYAOEHMQTW+1X6QP63/eX/tfycANX+Tvuy+xT6Pf3K/078wPrS/dv+U/2J/Bf9Nf9PAO/+sf2d/24A6AGzAED/6AGjAckBgABvAy4FegNjAk8AiQB4AzAEBANLAsf+dwBdAi0AHAHK/1r+Pf5j/9L+qv2cAD8A6/+Q/sr+bP9j/wr//fyfADQB1f60/wcBTf8u/6QBGP9LAagAWgA5Aqj/DAEXAcr/aQBYAkgCmwMFAa39QwA5AlAEfgEzBLYC3v13/Y/7jBD/C0H9EP0T9t4E2wetAfT/2Poe/T38cf78AFH/O/0Y+XD66vpV/f39CP86/Br5Yfy+/cD97/w2/GH8pv51/xf+5f9A/6r+hgCm/ef/qgBCAn4DhwEeAbYCigS9A/QCTQGrAucCXwH9ALoBWgHgAV4BDP80ALUAUQAHAN7+hv2h/WwBUQFu/nr+IP/e/Vj/dABj/8cAlf+X/8wBpAFk/3QASQIIAzQCJgCGAEgBUgPkAL/+UQFWAWAARgBJ/8b/NAEw/2MBN/9G/Sf/9AEcA+b8Cv3m/IQB3gLO/IT9Xv1h/7b/h/9G/t37Y/7g/Rb/PQEHAGn9Ef5E/xP/Ff9l/UT8nQLTA3v9SP4y/BsALAOv/rH/pP+X/xj/D/98/mH96ABLBLr+VfsB/2X+iwCPAaoA5P4t/U/+Gv8nAPD/yQDr/4QA+/+p/84BbgC8Af//lP9yASkDVgI5/xMCIgKfAswCJQFYAC4BvAJzAhkAyv+oAZsBAwF9AEgBxwAlAX0ALwDUAUsBVP/XAOcDDAFb/8sAlgGXBC8A1P1BABz/vAFWAo8BlgEDAbb+2/7r/u0AygJDAAP+Ff6r/rL/2wAs/wr/3fyz/dz/YwCr/8D8Vf3r/wEAtf6Q/Sz/jv9n/pL8jP8FAvT+Kv/b+6P9bv8r/on+Tf0m+xv7w/wM/gb+cvlf+GD8I/6k/dT7hflQ+wH+lf9R/t39fv07/swB/QDWAAECZwEkARgC2QMuBNMDFARJBCMFkwSvBNUFUAZrBkAFXQW/BKcFmgXGBPIFUgWFBLoDbwXXBBQEXwQBA1IDlANfAmoCdQNYAnIAvf8pACABXAD3//f/fP7N/CX+1/9I/c38NPtY/c79NvxF+1L5n/sH/Or7mvnX9y35l/nC+Or4M/g1+Nb4MPZF97j4b/i7+OT2qfer9hj6E/zr9jr74/m091j8QfwJ+7r9cf/6/Mr9kP1U/94DlAGLAM7/OwDwBNMGzwTxACcBxQPeDNEPpwguBCwCywdrETwVkxA9DN8J1QxuEUERzxByEEoQ+Q+lDuEOpA0YC34KXgp9CYgH8QZ1BOkBIgCq/vL9bP3N++H4I/fp9Cz1OfQb9Iv0RPPf8sbwy/Ad8WvxPfMK9ET0zfJs8xP2jPdO+SH5cvn++gL7ifwl/Sz+8P9N/wAAVQDp//EACAFuAdcBdwAs/4f+mf6N/Rn9df3W/BD9z/tb+f/3uvab9yH4E/eU9r/1N/ZE9u32jvd891D5FvfeBLQMFwHxAHH35/+FFBYZPRSpD28NABHWGAUYYBdPGj4fvB1AHRMbaBYuFVAYUxj1Fx8V9Q69DVgLAAemAy0BY/8FAH38zvUN8bbu/+5475/ty+qf6YPoiOe/59XmD+dp6unsCu4R7l/sAe0C8Zb15fnN+sb60vrk/J0AZAMaBYUFrAYxByIIewi1B4sIhAk7CQAIlQWtA78CegIyAHz+T/1X++74tPfM9F7zAPPu8d/wGO/I7QLube9h7vXuju2i7RPsufCq8m8DIglY/Wn9tfHCAGsW3h+UGvQUWBQvGskiliMrI8UkMiuLK90rryWOH9cedSPxIS4grhvXFEQSgQ4cCS4BI/5B/S7+uvfI7hDqdOe55wDnFeSg32beTN8H33bgVN6X3ubgvuNX6Lnq2+v97OjwyfKM9x36x/2fAdACLAY/BwkJoguaDqsPCQ/KDrAOLQ9rEWkQXQ5dC/YIlgcCBvUEYQFPAAb+UPof96HzwPDy797ume2j6zHpl+cq5w/ot+dv6CbnTug26GLqtuzyAWIE8fty+bHrif6JFVchzx5SGN4TlRgXImUmzie5K4AvoDBCL9EmIiIMJPQmGykaJqgbQBasEQwSDAy0BnP+t/qT+1T2xPD+6KjjwOE54qPfBNzt3Nrclto13C/Y2dlO3q7ia+ZO6FLoaef07UTz+flU/rUACv8OAiIHrAh4DrUQcBDoEt0SKRK6FJcURhPAE8QQdg0wDRMLpwhTB44Dfv2Y+hL4KvaL9WDzve3H6ffmKeUq5gTmT+WZ5MHkKeMR5oDlPOcA5gXqk+odACMMzgHHAjXvDvv2FeAnwycgItwcEx10KHsqNCukLsU1YzaBM1ArhiO+Idkm6yfbJQEdwRMQEPIO2Ql1ARr51PNm9ljzVuvi45PeGNwu3Gra9dSQ0+bW6Nfb2jHY8NT11xTeQOWL6RftSuzL8YD3yfsFASUEwgY1DA4SqhLRFMoVnhUhGAIZehgAGi8ZqReDFcYQoA7eDTsM4QjwBSABDP2c+nz3x/Ph8cjvm+1q68PmUeS84rHituOk44rh0uKu4U/keuZt5xrlWei86Qb5gQ+zCN0IofWP9AINrCQyLJcoNSbMH0knOioJKc0rczhzOnA3JTCHJJEgryQcJk8l+R2zEhEOGgvACE/+EfeH7hjtUewa5uzggtuR2SHWl9Kl0KfObtGk1ZrXL9mn1vfXP9vA4lfpVu768tP1dPy0/yMEbQgSDpgR6RaLGtkaFR3OHJsdOh83HkIc7xvdGtwXthQbEF8MRAppCIAD+//d/JP3GfT+77XsLerl52jlVuXQ4svgp98o3ibeeeC34e3j7eTp5OLlH+fW6fHqtu4/8TMPARUXEvgJqfHgAVcfVzPqNAIxYSa/JoQs5ioNKh80RzvcOYY1GCekHHsbkh73Hg8ewBKACDUDuALv/SD1fuvR5WnokOV04LXaR9cA1rDVhdJ9zmzR+NcZ2jHdatxB2r/ftOZu7UXy//f7+Of/vQU6CAgNVxDgE6EYfh3GHkAgfyBCHtEdzBy5Ghkc5BpyGUQWBA9CCuYGugJTAZD+Kvkg9oXwJ+yQ55PnbOWA493isN+X3Ubcn9qe3KTd7N5c4f/ifOPp4/PniOlA7pTtPPDB7AUJiBpbFuMWkfrb/VsYYTDvNGw1Jy9VKQ8wEy3IKDUvRzmcOf83vy7cHnQZ2xz+GkYc1RRVB0YBTQHk/t70E+0y5ArkoePc3+LagdXj1CzV8tOu0ITPodIx10neO+Kp3xzib+am7hn0BfrH/g0D0w3tEEITTRPwFMAZkSADJQMixiAjIFcfMR+mHAAX7hV8FhkTng1tBsz/4PyT+2n5fvRO75TqC+Yq5bLge9/s3XjdUt773XHbY9q/223fneHg4pnjr+WC6Svt9fAQ8e3yOvE99WX1TxOpIRMe4hr0/j0D0hzvM2E22TgZMsIsLzQ0LoclvCynNHI0uDfbLZQdjRinF/IT8BZEDWgCWP7S/VX7W/Gt597ee+CR3tXbzdhr1VnXEthd08LQgNAj03Xa0uJC5SPkCedc6iTz7PkK/2oB+QbnDroSFhh0GP8bpB7GIEUiHyFrIF0g2iC2HrAaNxXDEn0O1Qw7CaYCDP+R+Xn0wvAc7XTpC+j55BHkj+Cn3mPcRtvc3bne1N/k4GvhvOPH5Mrmrukl7anw8/KS9UL2+vpq+Db6N/YGDAchOCQTJn0JcwIMEkcpkTEBNqMzNi1tMj8tmCKWI3Qryi+oNN0tOR5KE98PSQ9hE6sM6wFg+zj5yfmu8lfq39813fTcVtu+2K7VG9eV14PWutO10E3RVdko4Z7n0OlX6u/sp/HV92z97gOBB40RDRVkFyYZiBemGpEgTSUeI3shph61HHEeZxsEFtATQxDwDKYKsQOF/lr7xfYx81Dx8uuI573mhePr4gvhz92B3frffeD14C3hleCS4mHkE+bo5yvrQu0f8dbwGfRa9K34YPlT/Bj6xAURH1IgrydFEUYDdhFrKJUzTzeLOCsuiTXwMQojUyFpKicvAjjPM9EhBhQEDzAMMRGGD4UCrvxL+Gz3SfEo6MjcUds+3eTZDdfp0uTSp9Y62HfTY9DC0BLW1uCL6dnpROuI7031f/xnAe0BHQV2EWcYoh/hIXEdIR2FILMigCN5JKkhDiIUIk0coBVKEAsNcQwDC/AEuv2694/yB/Ae7iTqeOaZ49Tg397N3Unc59v73STfQt4J3hrewODs5fXpvOz/7Kjtbe+383P0tvhp+lr96f56/4b9NQP0HMglBSxNHVgJTg6GIHUvezSSOAE0RDg4NZslQh/JIxQq/jFzL98huxVrDvEI4ApjCYX+Pvjm8Qfx2u3s5jDcWtoT3MfZG9cn0YLR+tZf3I/Zhdbe1PPX4eFi6i7tOe4Z8nT4JQFyBkcH5AhZEGQY4B1xH+ccqx4ZI9MlgCU2Iq0eOx6pHg4caBahDz8KKwl4B7gCY/wR9Xrw3O6O7LvoYubd4dzdzNyf2rzamduV3ZXe+t8F3yzdL99Y40HoA+1m7pfvyPFj9DD2VPnX/dAAegRwAtcBHP/xEEgkQC4wLj8YNw3JE0olSi1qNfQ11DaxOMkskB9IG54f+CWxLDEoTR5uEmcHagORBREE4PyL9lnyhvEh7q3mad6g3L3cGtra107V9dZf25HeJd7B3XXbVt0e5H3rTvEM9hL5ffxlAhkGHAoUDZYSaxaaGWYd9h39HhAiSCM4IpwfCRpQFlcWRxUeFH0RHgyDBiIAnvk39Wfyf+9U7XfqfuWf4NHcqttr3Tre1d0e3ODbpNwf36XgMOOt5qPp9uw+74jyhPS4+C37ZP+U/7wCKgOrBrUIgAl7B4QP1CIjKf8umx6gD68TrR89JJgqLSzWLHQ1Py6MIZga/BdrGWAg4h5/Gs4T4grqBTQImQUr/Qb2jvC78Gfx/OtY5DDjG+Ka373d6NgJ2OPcbd+94H3ipeAy4Z3lrOnD7t/zRPbd+kwAqAPBBfMISwyEEN4VfhYcFiMX5RfuGK4ZihhXFqIUcBFHDaoK0AheBzEFVAKh/Qn5DPUC8Kbs1urJ6gfq+eiQ5kvl4OX35TzmAOY854vptu2I8OPx6PJV8/T0UvfN+uv8wf6EAboEqwawBuUEQATIBCMFRgNFBzYSJx3fI2wc4xBSDOoOdRSwGTscXR9uJNAjnR6PGR0WXxXsFs0WVhXQEb4LxgYZB3UJTQmHBHL7s/RT8ojwiu7M7ULt3O4V7hDqjOUX4/TigOWO6M/prOpV6grsD/BM9MX1jPZs94r6r/8lA6cFUwjBC0IOEg48DRMM4gxTDwwRtRHGDyMNywn4B3YHpwbnA7r/2fyq+6j7H/ow9yn0XvKV8Szwqe5Y7W/u1vB68X/xxe5Q7o7vTPJ19bP21viw+Sb7IPwI/SX9d/2A/ikA6QGbAjACewHiACQBov4QACQJzw9oFqQVuAwgC54NEg78EaYTRxXSGlIdqhmRGCEXcRY6GEkW9BIOEJkN2wn2CokKvAi9BlYCMP4k/Oz5MPW78oXwve3X7uDsA+v469frqOum6wfqDegJ6p/rhe+s8o/zSPUo+PX6IP+zAMr/EwHoAScE3gU/BwAI1ApxDL4L+AnaBp4FwgViBsIGOAdgBfkCZwCA/qT+F/1a+8j5OfjB97z1i/Ts8snzSPWN9R72gvWr9Tn1+fWi9ff2Hfk2+3L8YPyT+7D6Bf6vAL4CdwOfAnMCPASPBmoEZAMVAT0CIQf7Cm8MvwuLDNMLnA5EDT8L+Av3DLkPYBEHEUAPtw/3D4MPnBDfD/4NjQuGCKcFuQUNBooFHQZNBE0ClP4Q+7j4D/gu9vPz7vFQ8tbzrvMH8tXvOvBJ8GnwevDh8QP0l/YC9wj3zPc5+L76MP1U//YAXwHHATEE+QZnBqAG2gY2B4sJTwgvCMYH+AeGB7AFigRqA6oAbv9h/nn7nPwF+g/5JPng9wb2RvWS9Fb0GfWx9MD0tfS49X72+fdm+SH6U/rw+Wv6SvuI/Kv+gv+tAdAC4gMMA7oC3ALgA/cFhQaTBSoGogYxBvEGVAXJB2oLSw0YC7cHYgazB3sJlgl3Ce0JaAvTC/MJKwkgCfEJaQlICdIJTgiwBqIDqANOBMgEbwPUAGH/uP1l/P76nPpp+nj6nPnV97b3UPiO+Hr4N/mX+L33T/cu9kf3Lfkb+hn7pfs6/Ij7f/op+wf76/zg/lL//f+O/ub8WP00AJEAMAAr/m78df9zAWkBTgAc/xL8GfwH/X/6Uf1q/xsBQgIp/jX6ZvlR/VL/eP8T/Oj68fx3/Wr9CfyJ/Yn/BQF5APT9Tf2a/Qz+SABcApQCcQITApQBWAKbAYkA5AC1AQQDvwMVAvQBwQLHAo4FRQQ3BBgFTAUDB8kG/AZBB8cI0AmQCpILPQrbCM0HMwcHCIQJKQmUCEUInAYHBiUE5QJLAq0ClgIOAYP/+Pxs/Hv82Ps/++b6Q/uY+x37Cfos+c/4+fh8+BL48/gt+nv7HftI+7T6M/tt+3f7OPy8/K/9J/77/u/+Hv+s/Z39fv1E/Xf9c/5A/6b+mv2f++/6z/sS/Hf81PvN+m78gvx/+8T6Kvqy+Rn7B/0//sz+DP4e/p3/FwCJAMr/RAAVA0wFawUjBCEE+QITBJMFBgUNBcMEcwRhBAsFlQTDA2oDhAK/AuQCHgMFAokC6QIuApkCEQI2AUgBgAGxAOQBkAHiAZkCrwJ4A+ICLAK1AVMCUQOZAyoDWgJfArwCAwP2Am4B/wGHAksC5gFsAfEAiACS/+v97/0X/qH+fP5J/xkAuP/M/p39Qv3F/Zr9Kf3b/br9gv5G/t796f2C/eb9Wv3X/Nj7Mfsz+yT8Mv3q/Ir7ePru+gL7yfqu+jr64/p0+6/8gPxX/K/8EP1P/tD9kv6L/uD/nwBuAD0A8wDkAUYCgAGCAEYA+gBYAu0C2QMhA1sDfgLDAtsBiwCfANIA6wEEA9kBhgDO/5v+IP+x/7wA2QAwAEf/qP47//T/pv/T/84A3QEiAW4Aw/+k/wUBQAKkAoICGgMeAkIDRwPRA10EDQR6BEwFBQeFBhIHQwZqBYcFNQVdBdUFkQYkBksFZAT3A3UE2gPQA9IB0AHzAIgAN//b/en+Pf4s/wP9x/u7+Zr5L/km+cv5X/fk9qL3Fven94P30faQ9/n4uvf1+KT4yPjo+gD7qvwH++T8k/ux/mb/R/+0/wj+Bv+k/gP/cf8pAEYBugPKAscBNAA3/4v/nf8YAgMDxQMEBCsBVQGy/18BlgEHAc4BOgCCAdYAkQB+AOsAEAEyAU3/if8pAF4A5ABd/5T/HP9rAGUA+P7AAQ4BWAEcA4cBiwI0AoUCaAMTBIkDFgQSBSgFOAY8BYEFCwZxBoUG2gXsBc0FaAUNBbgDZgP4Ap8D+wKNAgMCxf8E/1z+Qf1z/d/88fv2/P77zfqt+OH4pflS+Yr69/jq+BL64fnG+R/5ZvrJ+vr79vwy/BH9Qf2h/ED/d/9EAMkAcf8cAckAvAGPAYYBmwLXATAB+ACC/0YAYQB5ANr/JAD5/z7//f3o/CD9j/1W/4/95v2k/aj+Ff/e/az92f4wADIBewEyASsB/wDHALMANwLHApcEFARuAkkCAwI7AnMCRAMgA9cCCgM2ArMCdwJdAsoCwwK4AoIC1QKLAlYCkgLMAu0BGAMcAtIBpgP5AhYDPwKbAQ4BPQFNAXUBbgEpAVYBm/81/9n/lP/I/9D+9v5n/pT+4P0e/XX+wP2U/Rf9wvuY+9/8o/wj/t39rf0k/LP8WP0D/k/+OPym/Gz9l/4+/xz/vP3O/hX+l/7C/GD8xfsT/dX++f4M/5b9Vf3W/LL7RvtI/Y/9c//Q/7//Tf9+/wX+gv8tADIA/wH5/z0CEQJCA3EDtgMwA94B1QTAAdcDqQOAApAD+AK9BBUCGANxAgoCDAOPAOL/IADQABoCKwFaAPb/l/8kADQA/QAQAaYAjP/g/5f/cf/j/+v/lAFlAagAAwD7/04ApQCJARUBwAHFAe0AggCd/0gA4v/4AV4BOQGLAcX/0/+O/mEAn/4gABABY//CAEMAn//j/wj/aP7gAEn/+f+Z/tv9RP/m/E//uP7o/F/+yfvQ+0b98/vq/Dj95PuE/NH6vPt3+xT78f3L/Mv8Xv0p/N/7E/6z/az9QP4P/0gApv+o/5T/tv9PASIAxQClAAwBcgHmAdsCWgInBHAB4ADUAIcB9gJ+A60DGATVAYICSgFGAMEBtQGOA58B5AK8ALH/FwEN/wkAwwBGAXAAJABs//D+tQCv/gwAEAATAKsCfAFYATYBtQF3AvEBZQJAAyMDlAOdA60EQwWrBAYEMgNaA5cC5AHAAUsC7QLVAk8BRADe/6v/YwAl/vr9U/3L+7H9ofzE+x78OvsD/BX7JPs/+6P6DvrN+jH7WfoQ+/H5mPxc/AP90Pv+++b83/w3/w7+pP/M/x0AYwDSAen/QgK1AkQBqAPmAIYBNwJ5AS4DRgLGA9QB8QCcAID/DgEyAeICCgAIAS7/if6CAJoAVQAiAJIASgCUAGwBUwDe//v/5gBjAboA7QDZABUCLQEeAUMAWAGH/4AB1ADF/9cCKwAXAQMBl/9eAW4Asf/vAND+XgG1APb+qgAg/74AHgCt/2MADAC4/8cAewA9AAwDTf85AX0AKf6D/27/NAG2/7oAiQAg/3H/2f1c/ZL+ev5c/tf9c/7y/YX/0v24/cr9OP3t/mf+if4K/zoAcf4vAFb+bP/V/xcAugGi//0BLv/6ALoClgDUAMkAewD/AK0BFwC6/8P/TgCi/1gAUQA9/5v+Uv/Q/Uf/eP/t/tr/Rv79AGH/Uf/G/xb/dwHvAI8AuAGp/+sBlAKCAfEBpgDKAXwCFQJnAW7/GQE2AcABYwEyAYz/Df8KAR0ArADl/isBOwBuASQBn/4M/r4ATAABApcCq//4AEr9BP8wAdcCzv9pAEgAjP91/5n+5v2+AIgAqP6C/2f8CgAj/+f/8v4K/+X+XP6J/Yb9Of7U/FEC9v8Y/oQAbv9d/4X/1f6A/aj+TwAG/+4D8QF7AAP/fv3dANf+vP/e/vYBEQJmAgb/0v13/0b+HgCJ/yQBpgATApn+Zf0Y/47/c/8gAJn+3v5RAev+Uf4KAHH/mf97AJ3/bP5aACQApv+qAgb+QQAs/xwBUQHM/hsAW/+o/3P/OgDS/gkAq/9EAAUAR/8V/8b/bABU/w4ChwFjAdkCAwCvAp0C+AFzA9kCkAN2BGwDpgRoA5ACiQKxAbwCQgMhBaQCRgFnAJL/kP9nAOIB1wDX/df9tfyz/pQA3fyL/RX+bP32+zL9bP3H/fv/4v2x/t7/ev9U/uT96//8AHIA0v5TAJv//ACCAaUAqAJ3/1YBPwHw/yQBxf4IAe0AxwCg/8z/EgBA/0//3v4y//39GP40/Sz/fv4l/fb8x/51/cL85/6u+yX+MP9a/fz8HP6k/lP+s/04/cr+Pv8Y/4gAQv8R/0//Af/LAFMBwgCaAPv/YADJAaoCZgIeAGMChAGHAqYCnACQApsB8AKiApACwAFTAggEmQK4/37/+wFGAgMDugB6/x4BpAJ9AMr+iwCUAO7/DAC4/2MANAHl/i7/bACSAEQBBQDy/0MABwCWAIv/2wBsAYYBwAEpATsA4/9PAEn/OAHKARMBwf/O/7UB+gBpAPn/zP/G/6n/fv4G/+7/uQADAXr/Yf9G/fH8yv1d/vH9cP3S/aT9N/43/sP8Pftu+9f8pP11/qv+yv2l+3f7df2j/NL81P2AAc7/Qv72/Z/8WP+L/2b/WABPAGH+sv+IAAoB2wGUAbMAowC1AUYCjAMpAnMB/wLlBEQEqgJoApYCoANYA0sEJwRwAhwCrwGzAngD+AKRABX/bgA7AZwATAB5AOD/Xf+2/hH+fv8kAI7/sf/d/ev/XgGm//j+sf/4AIYBpP/D/8cA0f/JAbUBZQC1APn/qADgAen/cgDV/y0AFwHg/3f/NAB+//T+oP8yAJn+yv1c/kL+GwBv/5T96f30/8z9kv6a/I/9Rv6A/xAAnPtj/YD9vv1R/sj+3v0R/dv8yv0R/nL8Hv/7/on9kv/Z/KH8bv87/7//CgL2/gz+qf+dAXUCQv+D/ykBxQK1ApD/TQKDBDQBtwETAZQBmwLTAoYBbgEVAs4AJwFcAUEBAQGk/24A+ADO/vD/+AC3/dD+8v+0/wwB0PxB/U8AkQAuAbL/F/5I/iYAqAG9/+AA7wJ1AfIBvAF3ALoB4gK4AiED/wFnAQUCRANlAscBHgLtAR4CpAHX/+3/r/9KAVgDkAHi/1H8lP9BAVwAbP/l/mn9xwFeAW/64v5OAPL/lgCq/Hb7gv+1/tf/tP/o/ZH8a/y//lMC8P9a/Ff7E/wI/7H/of5/+qj/PwE7/cf9nf7Q/Jr8mf4TAGEAqP4n/97/+/5YAHf+f/x1ALUCrQGlAGsAZ/6y/wT/wABqBNICYwCo/73/HgDeAzgBR/8iAvsB3v/w/1UAvf8yArMBAf+U/2UBswFlAI3+6f0uAQoDtwB5AEQBKwIwAccAnwCkAZ0C+ALGA3UCPQI5AV8C6QMwAxoCiwJ3A00DxQKvAS4BDgJhAqYCqgFlAd0AAwF+AdsAiAABAFoAS/98/pv/RP8D/kwA+v2A/Jr9nf2E/AX8vv23/Lf8wvzN+sL5OPqj+y79DPzW+8D6efoK/B/68/lf/uX+Jf7A/Pj6Yfz//sr/kP/t/sz+BAM4AIb7iQGeBLoBsQI1/5QAlwMgAdICBASiAmUA5f89AOICoQJ1ASsC7wEuAv3/N/47/xUAyQGbAk4AOgAuAXX+HP8XARkAlgDa/+gAdQIQAdD/iQBeAVQCEwE7AD8CUQOQBLwCfgCtAXcCdQK8A10DVgNHA0kCGQHAAdwC0gHFAV0C1QKCATL/Pf/9ACACPwEh/4L+2/4p/zX/VP+M//v+9P1M/Ej9bv83/yn+zfyj+8P8if79/Uv9t/vS+939Pf3t+3f9yv34/fH8hvtX/LP94//F/5b9V/vO/S0AW/++/pD+Qv+X/9L+ef5k/2kA9AB3/5n+kgBRAOoAbP/D/ocB6ABBAKD/xf8wAXECyP+h/ZIAswHMATICVQAV/37/QQGAAloCYACLAIsAMgDgACIBDQQ7ApX/BwC+AR4DhgHw/woAIwLGA0QCnAA9AbUACgE7A/cDdwNJAnIAswGVAzEEIAPBAQgD1wTRBRYEaQHkAAwCGgMqBMgC4gElAnMBewA1/+n+5f+L/1H+pP42/vT9i/xb+mn8Vv/8/OH6u/qw+pz83/zs+7T6MfpB/D39FfwM+577YvrJ+xf+wvvL+lr+yv+N/K76oviN+kEBOwEi/YL86Ppg/Gf9GP5uAHP+Gf2v/a39+gDG/1j8qf/Q/osA3wDv/P8A5gH9/r3/Lv7l/24DiQJhARsBNADa/woBgAK/Au0CjgMjAqIChwNsAhABBQJSBNcESgb1BIQC7QEDA1IFkwYqBrkFPAakBewE6AV9B7kGJga1Bq4GUAdMB3sGVQe7BnoFgwTcA8YEbQTBA18EwwHM//b/Uv9E/43+Nv3E+/H8L/xz+Pb2xPj++DH58Pj/97/3H/e49Ev1DPZb+Fr7cfmJ9//1tvdR+437YvkX+5382/zd/KP9PPqC/vQByv0k/VUBRAI2/moBXf/9/SwFegIy/Z0BXgGx/4ADrwC6/aID3v8M/wMArvvD/scCmQJ+AKb+SPuR+/b+jQGuAFH/4P5z/y4Bav+N/TX/mAHpA2wDwgChAIEDeAWrBQcGSQQuBaoHWQhNCa4IMQcTCWcKcwrVCk8JCgpeCvwJqAlgCN0HiwjmCBIHsAR4A3cDWAPTAs4BnQCU/1j+S/1M/M36iPqp+mf6bfrs+L/2ZvZx9lv2MPfT9yj3DPYK9qL1RfcS+cr2jfQf9x/5y/md/Dz7xPcE+ST5xPjr/sAAUf0A/LX7Pf0iAKj/DP6h/FMADwP3//3+NP6dAAYDdf9x/gEBc//OAXwCif5T/oX/VP8lAdcBD//r/nD+pvyL/8AAWP3MAZsCdf1j/Zr9kP0lA88FEwLxACcCPQIzA30GywcMCHIIxgcmCPQKyAwRDT4OEg6ODbgNCw6aDrkPsxDPD0AOGAzHC1oM2QudC7MJcgbGBZIEDAPOAhkBGP/x/L76JPmu+AL5tvdT9RX0BfNB807zn/I+8dTwMfHh8cvyHfJg8qXz/vP281H0bvRs9tH3q/cR+G/4j/m0+gz7JPy3+278NP6m/vn/GP6H/Xr/dQCmAOsBnwE4AfT/K/5lAHcBzAL6AZ/+Sf47AUgB+P5n/ZT9FQDBAaj/Qf39/On9BwA2AL7+Xf/IArsEkAN1ALr+NgAdCOAMnQzbCTMFPgYGDKkPBw/0De4NLRFfE64SZg8IDdoOoxDkESsSABBHDusMNwspCYQHSQZiBugHtwZwAif+1PsQ+437Nfol+KD2VvYE9zD0H/F677jup/BT8qDxnvAo8IPvV/Bo8BDwEvIF9DT1qPVC9eT0i/V29yj5Yvq1+g770vs9/Cb8Q/yf/ef+xv+Z/zT/VP9jAIz/kP6U/0YArgATAD3/vP93AJT/0P1Y/YT+m/5d/jn9mv0Y/tv9kv0X/QD82fu0+kT9NQVfA0QBHv3V91oA0AmZCgoJuwWdBOwIQgy6DEQMhg8vEvgSeRPZEbkQ1RLyFHoVthQlFBMUURNRE1kRLA5JDHUMeAwwC7wIVwU2AjIBnQCH/j/8t/n59xH4rfdw9Njxt/At8bXxk/D07jfuf++c8I7wv+/s7ijw2PEB84D0VfTL87P0OfdB+Y75zfjw+db7K/yv/Jz8jf1+/j3/nf/I/i7/WABm/0gAiAAV/8P+Af93/4v/lv5V/Lr8Z/0M/n/8Y/tn+7v7RvzN+iD7tPq9+Uz7wvi++5IEFwHw/8f7uPWz/gwJSwsOCgsGzwQACPQLWQ1aC0wRqBNzFREWCRE2ENASGBXWFh8XwRWQFPQSyRMAEdENYwyHDFANHwxeCSYFfAH5/yn/XP3q+9P5wfi795/1APNJ8EDvUvAm8T/xtO8u7x3vNe567+7uDfCg8VPzA/XU9NT0zvTw9hb5TPvN+0z8dfxY/dz+Pf9L/xIAFQEIATkBlf9N//D/TAA7APv+fv2J/V79i/xa/BX7V/pV+Yj5VPn5+FT5zfjK+Or4Dvrw9wv3S/cM9kP7RAMgArz+ufuo9JL+qAk7CukKDggJB1wJtA1QDLANShO9FeMWkBVeEhUThxXDFtMWphTZFFwUpBTrE3QRDQ3eCzALDwv7ClkHdQQpAT8AbP4F/Yb6nvnw+Wj48vSe8o/xZ/EU893yQfHR8KrxB/HA8TrxrfDW8TL0bvU09h/3Ifcw95n3+fj1+u/8bv09/3H+df6W/gj+qAD/ATMD7QHO/8j/0AAcAY0A6f8s/97+LP7z/Lv7Hfvm+o/6t/nK+Lb3Qvfr9vn29/ZA9h72q/Vs9UL1zvTA+Q4A8v9I/bb4ifTA/OQHPwspDFcIjgZTCTwN0Q7UD8ETmRasGSsZcRU/E7MUgxehGcsYVxchFkQUChQxEToNZwoOCvYL9AoNB+IBXv0H/DH7jPqg+Lj2DfbA9PHyfu/T7UvtIe5r8HLx/e7e7rDva+8v8XLwxvDJ8+L2xPhB+bj36fY5+Gn7K/7w/7cA7v8cAdIA5f+3AJsBQgNdBcYDrwGGAYsBWgElAVoAlv5w/sH+VP5l/H36wviI+Ij5efom+c72GfX/9Kv20/Zl9RH06vN+9EL/HQCE/KX7JPOn9+0C6AkDCrUKdwnIBvIK+AvnC9kR7BcbGYoYRxUeEt8SrRUAGdsZoBgoF6oTZRNMEoYOKgyZC/ILEQz2Cs8EeP/W/LP73/vA+kP4q/Zx9ujzV/HM7lbsDO0P76nwXfAd73fuX+2/7unvhvBB8RnzR/aA9674qfYg9mD5o/tw/UL/6f4c/84AbAB3/3IANAL9AsYEnQOGAVoBmADXADQCnwGRAP//xf5R/Y/81Pua+/r7V/sr+iT5GPlU+Jz4H/fn9TT0LvdsAroB7v9g+tbwJfdzAy4LmwsiC7MHMQZnCq8JcwtWEmQXCRqVGRMVHhFREVQU/BgBGtQZCRh5E68SKRFxDbgKyQr7CqoLlgnKAub9Cfx9+ib6XvnM9Yv0d/RD8hTwne3b6sTqlO3s8PfwOPCU7Y/r2u0Y74rxi/Pm9ED2LvcW92P1RPYS+YH7Cv6A/x7+Xv13/tv+0P4OAKoAAQF+An4Bhf81/8X+of75/1j/6f42/rX8xfuG+9H68Pme+tL7nfxD/Lz7kfnn+Uv4aviT9yD+FQoJB4gGzvwR9cf9WAluEUYSrhKkDZAMiA4BC4ENzhVlGgAfrR3FFAkRBA/LEIgWaRf5F0QV+hBmD0gLbQcuBDwELAYhB7YEqv2w+NP19PPQ9MvzP/EU8iTxqe+B7s3qtOjd6LfqnexX76Dv++697/nuc++B72TxwfRA+EH7Tvz6+nH5ZftP/AX+CgFPAV0CRgNsAWsAFQDbAEACIwJTAQ//4P36/WX9Zf2H/c/7Rful+nH5fvjC+Hv5o/na+lf7Yvs4+/H6evm2+KD4XwWWCkgLTwv0/XP+igWeDiEUEhhbGKYUxBY7Eh8PsRNHGLQdpyHKHT4X6BHVDbQPfBPpFMcToA5YC5oHqwPtAKP9jf2+/jL+ofrT9T3yGPAu8Njv6+2g7W/tX+6l713u3uxK64nqfu168AnxF/M79NvzXfb99V31k/db+Vj8b/++/u/9XP5E/j8AmwLpAoAC7wIMAxECowG5ANf+DgETAYL/HP/X/Jj7jfs8+mT55/jG+Dr4xPfB9+n2R/eK9xj50foZ/E75Ofej9IX+YAjxCEUPIQOm/YED/gjmDyoVcBkhGIIZeBipEHIQ/xNiGJghpSL0HL0Wyw8sDVsP7g/JEYMPbwzvCh0F7v8t+3T4kfhe+jj6RPbm8YHubuyi7QPt3+pD6rrqJ+2z7Wbtiex567Xsme9y8YL08Pa09+P5JPnP+Ib6APyq/vICHwWvA6gCcQLSASADYgQeBD4FCwXuAyADYwJVAP//0//p/Y/9EPwU+oT6iPrf+Ir3c/VL9mr1LPZP9tr2jPhi+oH7TvlL+ab2lfp9+z8H4Q9uCtoNZgPxADIJAA/9FH8ZUh21GhsZRBXNDzYRKhU0Gp0eAh7LGLwRPA3pCqgL9gykCw4KkwZuA7MAUPvP+fn4zPUR9c7z2u8R7yrvA+2v7fDs0uoM69Lq8+pa7ffuOPDo8YTyOPJ78vjz2/VQ+XD8Nv5T/mr/bgBlASoD1QKqAtMDogW5BeUF2gSUA2YD6wJhAdv+E/7b/Xf+6/0Q/A760/Yj9fL2DPZ2+B37mPW58zbza/Gt9kj+pfzb/m//4foV+6f7if/0BLYOURKTEeMPOQsBCtoNSBRgGP8d9x1aG3gYkhSFE/gSwRVOGYMX/RQDEUYKHQeyBssGjAZMBckAWvsd+Cr29PPk8lzzM/F28Gzu8+rx6T3qj+tK7ATtDuxj6xXtKO7z733yvPN+9Bf2Wff09xL65vuL/jQBcwJjA8cC0gKvA6cExAVVBkEGbQa/BlcGpgSCAsIATAAtAMX+EP3C+r34ePfX9rH1kfh9/Pf3t/Rf8JDssfP5+er7RP6d//r9Zf5b/8H9GAKLCE0N5BF3E9sQSQ/GEFQTIBmZHC4cURsMGUgZPRoUGaUXthaQFT4UjxJkDaEJjwhlBw4H9wOS/m/5avYT9BfzUfIQ8Cbvxu4W7nXst+l25xHnSegd6jTsyO1i72nxvfGl8SbxYPHU8/X3XPxs//gATgBaAIYAdwD2AXMDsATCBskH8QYvBrsEswKdAjcDGgJCAYf/x/1l/Ur8svok+Zv3dfWr9QfzF/Nm+cL43PZ19S7wj/AA+ZP7sPuRAJf/2f8wBNwD5QPqCHYNOhCgFa0WfhN8EzcU0xd8HSgg6R26GugYYBhBGGYWiRUuFKwTCBM3DqgI+QTeAq0BHAHk/cL4O/Xu8QvvM+4Y7cXri+sH677pf+ie5sblduee6VrstO737s3v9fEV85b0gva091z64v17AGMDeAVoBSwFDwbABooHZQjvCMAJiQoeCjoIMwZmBI4DtQJuAW//N/63/F77JvoP96z0x/LI8WTw2O9U7F3uw/S+9b34rfZv8RnyYfcm+PX7GgP/A60KEg8EDUINtA9iELETOxpyG3Ac1xyNGyMdBCDoIQIgrxxcGqAYkBbDExUR+w6lDrIMKwh6A+j9M/lt96H1MfMi8fLt2eml6HLo5ebP5uzleuQO5DfkIOS25Rbpn+vD7e7v/vC08Yjzn/Vm+KP8ggDOAkkFcAdyCP8JJwroCQwLkgwLDpcOdg7vCwEKaQhvBp4F1wQYBGMCaQAB/av5aPYH9Bnzz/ID8ojxEPA87tDtp+nh6CvtivCb9OP3l/Z49/390P/xABQFlQTUB1kOKBBeE1kZQhs5HRYhRSDEHr8duhu+G5QeUiD7H0sdlhpOGGwV7REzDckHRAQRAjL+7fvp+NX0MfMD8vPv1+2T6dfj+OCj4ErhwOMW5ePl/OfP6Ojo7ugF6a7qh+5M8mz1/ffY+T38yP8cA7kFywZVCKUJ+gr9C1sM/wz9DaUP9Q9bD8YNpguUCawHSwUMA3AAc/7//E/8Q/v5+FT2pvPC8Q/wW+457kTtLu2q7PXqHer77vzy4PZO+yT6bfuo/+ICFgNGCIIJcwwOE3UUQBZpGqYc1R3jIdohKiB2IGYdcBv/G0Yc5BqeGJIVPRLbEGINEQpLBTACA/7G+MLzHe9K7B7rYuqe6CjoMeet5dvk/eOi4wrkGuTQ5CTnZek96w3u5fD79Sj6Nv16/pn/fgDFAcgDMQWnCCwLaA3lDdQODw/zDuEONg/cDnMNyAuGCL8FDwQsA4QBTwBn/sf7LPkG9y71wPOL8mnwge627Vzspuu67PvtPO4+8PvuOe1D8RH0N/iH/TL/pv8FB24KagwvETIRxRFSF8QYCxi6HGccoB4tIy0juyGlIeId4hr6GhkYIRaCE/sOyAvQCdgGcwQDAXz9vfph99nyVu7U6bDnBub/5Ablh+Rl5DDlSeWd5VDot+h26lTs/+3j7zPyAPOJ9af5Nv26AVgENwYOCPYJZwrgCxMMbwybDewN1w0sDiUNYQygDE8MRguACXQGdQOmAVH/Bf3Y+hT4kvXO84/xX/B+7+7uDe/g7onu++xh65Hr4OsP7bjtSO3Q7C/yBvcm/EQBZgMGBmMMlhDZESUVWBOAFSEYEBrhGekclBweHuEgyyD3IKcfIx3ZGbkY9BSdEYUM6gd6BMcCowCP/ar6Kvj59frzLPFW7TTqcuiw5kDlN+TO4injjeRt5jro4epP7Rrw5vLo9IL2WfcC+f76I/7QAekEZwZrCMMKTwzuDQQOlQ7ND08RyxDmDyUOYwyCC2cKwAgDBwAGIwSXAgEBGP/O/HL6jPcw9bPzmvEU72/tquzK7E3tY+057Z3tZu4x747vqe8x8HPvUvEM9Kv4DP3u/0ICeAY7DFcQSBRqFLIVMRdOGZMZdBpOGnkawBuJG+Qbext3GskYkxiyFtgV9BLPDjsKJgfrA9n/EvwA+I313/PW8Xju2+sX6tbpnOlX6XjoB+j55wTohOhw6T/rOe3z78bye/XG94P6hP2tAVYFpwd9CDgIlgj4Cb4LDQ3YDuwP8xBZEdAQiA8ADggNYwzQC24KdAhxBXECuP/F/VP8vfqy+Mb2qvUH9Kfy8/CO7yHv/+6Q7l/uDe4C7rruIe/h717xTvI788LzxfPg9HX3afrz/LH/ZQDuAyIIZgu5DZAOBw78Ds8QFxBHEF4PBA94DyQRaRE4ElMTCBOEE60TDhPLEW4QaQ73DJILNAmBBQ4C4v7x/Dz7tvh+9iP1XvNc8pPx8+948DjxXPHu8UryjPEz8rLyzfIX9Xj38vic+1z9hP6fAXUDsASjBtoHbgjzCZEJOgm5CQMK3QqtC7gLdQpeCZUH/AWVBFYDtwHSAM7/x/6f/ej7P/oj+Y74zveF99f2ifam9rb2S/ZC9sn1kvX79RH2tfWC9Vj16fRU9TT1YfUz9zf5efu1/br+X/+EAfEBIwLiAqsCOQO0A00C5ABVAQUBkgHbArYDEgXqBh0HPweoCEsKIwzEDfINzA0ADqsN7AwPDGoLmAoFCncIKgfNBbAEvAOoAukBrwEwAV3/s/2n+/r6pfvj+uX5B/lZ+KT4rvnN+eP5yfoZ+9T7iPyv/OT8Vv3B/aH+fv/O/mr+rf7T/wMBswJhAyEDoAMRA1oCeQIuAlMBOAFuAC7/K/66/FX7+PvZ/LP9RP42/hX+LP6+/QP9CP3//JL9rf0I/X/8vPuG+q75jvjG9wL4u/gE+fH5p/o2+1X8E/3J/TX/XgCWAP0AVwCp/6D/6f4G/uj87Pvf+lP7Q/yq/Vj/kgAgArQDrgUiB4IIagmHCn4LWAymDKYMZgwTDKELEwtcCtYIpQdtBr0FzAQqBD0DIgJsAagAw/9A/8z+K/4//lH+hf6//pT+7/3O/en9F/6F/jb+IP5z/qr+n/6E/ub9m/3H/fb9Mv5u/gz+8v1W/mH+4P5a/5f/lf+b/zf/1f6L/rP9F/2h/E/8Pfz++3b7C/v4+vX65frq+mv75PtO/Gv8mvxT/Vr+eP8SAJwA/ADBAVQCcwJYAhUCJwKmAqQCjgInAoYBewGHAagBQgGaAPb/kP8a/+v+bP55/d/8NvwZ/Pz7Cvwk/KX8P/0X/uf+pP+jAGMBAwJYAvkCRAO/A8EDNwOfAkACfgE2AdkAiwB1AE4AVwByAMMAFQFPAiADTgT3BKUFCQaaBuEGNgd4B1wHPgesBu4F8gQCBMwCGgJpAf8AfQAVAMP/Y/8p//D+qv6k/qT+T/7//TL9afxg+2v6QPlL+GT3qPaC9nH2i/a89i73xPfz+Fn6t/v4/FH+jv8DAVQCIQOgAyEEugRdBQ8GXgZQBi8GTAYhBucFcwUSBWEEgANPAhkBQwB4/+3+hP7Z/fT8DPzG+mL5q/gu+FL4BPml+Uz68/od+wL79fru+lr74vtM/N38hv0s/sr+9v7r/iD/VP+p/wUA7v+S/0b/Fv9k/x0AEQETAikDjAQbBlcHkQi5CZQK5AviDEANUA0NDZIMEwxmC3MKcAkQCPUGuQXGBAIE+QLkARcBJgB3/9D+yf36/Dr8TPtt+i35l/dS9l/1m/QQ9Gfzx/Ks8tvydfMH9MD0nfXF9oH4V/oQ/LH9Zv++ACICYQN1BL8FzwawB1EIdAhDCNoHOAfRBqAGMQaMBeEE9gP/At4BWgBk/6T+Af5+/Z38tfsZ+4b6PvoJ+q75g/lt+X/5/vl2+tL6Y/sK/JT86Pzo/MX8+Pxp/b79GP4y/jn+cP6C/lz+fv4E//T/OQGXAt4DTAW9BjEI1wlhC/0Mig6TDxkQQxBTEC8Q0g/1Du4NmQw0C84JKQiRBs8EBgNNAcH/q/6Y/cD89vvs+ij6ePmD+J73w/bX9QP1B/QD8/7xBPFV8EHwXfDs8Obx9fLA9LP2ufis+qr8mf7HAPQCzASYBvwH4Qi3CUQKrQoBC8oKVgrJCVMJcggtB7YFNwQTA8cBYQAV/8X9zvxD/I/7zfob+oH5Ifn3+H/4Dfj99xb4m/g1+Wb5UvlJ+Sj5EPl6+cb5QfrU+lr7ufvP+8T7gvuR+w780vyk/YX+bv+IAMkBIQPcBMQGwAi6CosM5w1KD7kQ8RH2EpQTsROUE0YTWBIeEd0PQg6dDMMKrAiRBocEegLQAFr/Bf7D/Gv7L/rl+Mj34PbQ9cD0lvNp8m3xv/A38Nzvpe/G70fwGPEo8nnzUfWM9yb6qvzp/h4BLANdBXIHSgnFCvgL1wxfDYkNGA0qDOQKlglBCJwG7gRhAyAC+ACk/xP+ffw8+zH6Qfmb+E74LPgA+En3cfYy9gj2Rvba9hz3Pver94f3rfcs+LT4hvkU+oz67/r3+q76dPov+nL6Hfuz+2f8T/2C/gMAugE9A0MFswc0Cq8M5Q7UEIISDxQcFc4VahaTFnwW+xX2FI8T8RHlD8YNfgv4CGcGHATSAZv/s/27+yL6u/g+9wr2//QK9DLzdvK58RDxVPDP74zvTe8o7xrvW+8H8EHx0PKf9Kj2FPmh+0L++ACZA1AG0AjdCpIMDw4WD7UPpw88D4EOkA0+DJIKlgh2BocE0gJEAdz/tf5B/fj7Evtb+rf5Fvk5+H73M/e/9l32x/Vd9XD1ofW89bj1bPVo9aj16fU99n72rfYe98P3Q/jM+Ff5/vnJ+o37afxz/dn+aQCbAg8FewcICmoMvQ7hEAoTCBW9Fi8YDhmqGQUaEhqzGdQYVBdsFVgT3xBvDtkLvAipBXECY/+R/BD6jvd19cXzSPIf8eDv9e5G7sPtVO3e7IfsZeyO7KjsCu2r7WjunO/u8H/ylPQf9wX6/PwMAO8CBAYeCQoMpw6wEDISFxNoEzITiRJ/EQkQTA5UDD0K4Qd/BR4D4AD7/mn97PuI+kP5yveS9nz1Z/Rg81HyVfGT8A3wkO9L7xzvGO9h79HvVPAA8ebxG/Nn9On1bff9+IT6DPyE/df+JgA7AXMC9wOaBTYHzQhuCnUMwg4HET0TQBUWF/4Y6houHA8ddR1jHVEdixwFGygZhRaQE2UQ5ww7CYEFswH4/XD6Hvf+8yrxtO7i7Inri+qp6froxuja6D3pp+n46WXqDOsR7EDtbe7V71LxRPPK9W34IPv9/QgBPASgB8wKtA0+EI0SlhRAFn0XNRhvGCYYXxczFmUUChJdD00MWgmBBm8DVQA5/UH6fvcM9dnyAPFb7+Xt5uwi7HfrCuum6nLqnOro6n7rROwh7TXule/88G3yBfSN9VL3LfkH+838df7p/4ABDwM5BDkFLwY/B/oI8QqODEwO7g8IEp8UsBY4GJEZMBv2HF8e5x5zHqYdmBzrGr4Y1xWAEt8OBgvIBn4CLv4L+mP2HfNU8AvuBuw76uroHejB57nn2Ocf6Hvo+eiy6VjqHusr7K3tZO9i8YvzqvU1+O764v0BATkEXgevCvANGRHpE2oWbRjhGcAa6BqfGr4ZZxiVFmMUwhHKDp8LOAjhBI0BK/7Y+pv3ZfRc8cPupOwF69vp9ehm6C/oEuhS6ALp0OnU6unr5+wP7nbvEvHk8t704va4+Hn6Mvzx/Yv/CAFCAnMDqwStBYUG5gY0B5YHhAi+CZgKcwtsDBsOrhCSE9EVeBffGIgaShyDHd4dgB3ZHNAbKRqXF0kU8xCHDf0JQwYuAgb++fk79hXzR/Dw7brrj+ne583mMOb05RHmVOYz51nocOmw6gXsv+0G8I3yDvW090P63fyd/z8CGAX6B5gKNw2ED2cRGhONFMYV7BbAFyQYyxfTFkkVYRNREcQO6wvZCHQF+gFN/o/69Pbb8z/x5+7i7C/r3en56KXoqehQ6VfqT+uS7OXta+9D8eTyHPQ29Tv2RPdX+Af5q/lv+i37/vuP/AX9WP3m/Xr+Lv/g/3cAQQERAloDTgWpB/wJCAxCDiIR1RSXGK4b/x0qIFEiFyTZJIQkTiN5IT4f/Bu9FysTGA7sCOsDs/6i+en0TvCF7Kfpfefl5a3kouNP48PjlOSo5bvm8Od96RDrc+y67QDvq/Dd8jT1gPfn+UT8/f49AtEFdQkjDc8QDhT0Fh0ZmhpwG7UbnxsDG7wZjhe4FLARYA45C90HTQTHAGn9Ivrk9tfz6PCK7rPsOesS6gzpPuju5xnoveie6XLqbOvF7GjuOvA/8in0JfZX+Gb6a/x3/kEAlAG/ApID7QMNBMMDgQMhA7wCCAJyARUB3QCqAK4AaQEqA+EFfQiQCrIMxg++EwQY5hqZHEYeCyBmIY0h8B9WHfQa3BdPFOMP3goPBmMBufyD+LP0EPHw7Vrrvuk66QnpqehS6CzooOhr6bPpx+kF6nvqaut37HztIe+B8ZD0X/gM/O7/OwRRCNEMHRHpFB0Y5hrgHAseiR6vHS0cFxptF3cUOBFqDYkJ9wWtAh4ArP08+xr5//ZG9cvz6PEA8DvulOw/6/zpiuhS55fmbeYU5zjoyen0663uofHL9Dn4iPuq/moBiQM1BZEGLQcUB5EGpwW4BKkD0gHl//j9JPx/+jP5TfhW+ML4M/my+qH9LgKCB8gLSQ+4E4gZECDbJD4njCi2KakqKio1Jw4jqR7mGdAU4Q5TCNUBwvsu9v7xjO6f6/noJ+Zm5ArkJ+T744vjAeNK45DkieVf5n/n9ehq67LuwvEu9f34+Py4AQAH5wueELEU8RcXG4Ad6x4PH/0d7RteGSwWTxILDn4JRwV5ARr+AvtS+Cn23fRT9B708fPW89DzrPOa80PzdPJ68VDwR++K7hjuJ+6t7orv6PAO85n1nPj8+zX/egK2BT8I3wlyCswJwAhZByoFFwJh/lL67fYp9KHxr+8e7jftkO1b7uDvcvIj9cr3Cfuv/3oGUg4YFHgXtRqVH6QmyyyBL78vgC+SL/8uNCwuJ4MhvBsEFtoPrgjmAPf4j/EM7D7oFeXt4S7eYdvi2hXcbd1z3hvfcuBj40XmsOjx6k3t9fCE9ST6h/7HAvcGqAupEGEVPxnVGzkd0R3lHU0dzhsmGc8VEhKTDjsLdgemA1gAlv3N+xn6+fcg9rX07/PL85/zxvLI8Z7wv+9o7xjvwe5+7l/uAu998IHy2fR191X6j/3HAG4DNQUoBnYGYAbLBVgEGAIc/+T74/hx9j/0OvIb8OPul+4o7+fvu/Cw8Tbz4PQ99vT3j/l7+yf9nf9EBEIMSRS3Gr8ewiJyKYoxTzc6OWE4MDYxNPsvKinhICwYYA/YBjn+BPay7qLnDuIU35PeSt8x3+HdVN0C36zhD+TR5LjkyOWp5/XplOye79LzOPnK/sgE7wqKEAAWuhqAHr4hpSNpI48hZB51GpkWKxIADdsH0gIu/qH6h/f09HfzivIm8vzxwvG58QLybvLv8pLzT/QM9br1b/Z89w35+vrQ/CX+MP8OABcBVAIVA2QDRwONApQBVwDO/k39nvvL+VL4xfYl9ZrzPPJ/8bLxP/Kh8jLz6PPJ9NP1rfZz94H4p/mE+uH7c/07/x4AmgD2AmkJ/RK4G6UgpyKzJagrVTI6NSQ0TjAgLKYnBSFOGGsPSAf3//H5YfSK7xPriObO40bkgeYz6Ffn6+TS48jka+Z/53Hn9efZ6Xfs1e+L8+H3RP0DA8AIWw76EjwWSRifGfEaxxv8GuUXZxPsDlQLPQivBLUApvwf+fT1SvNb8WnwW/Cr8BbxvfHJ8ubzGfVu9hr4APqz+5H87fyd/dX+hgAIAtwCGgM7A1IDRAPbAvgBBQHQ/5/+Uf3b+4z6OvkP+Ab3HvYK9aPzIvJB8S/xk/EX8lryEPO19Iz2Lvh7+aD6LfyE/fj+cABRAmwD8gPcBWwM2haEIcYntyllLFIyXTnbPC07rjUUMC0p8h8fFccJVv8h9ontmebf4SHdsdgk1lXXLtzo4DDie+Hm4Xzkcujt6hDsee257+Hybvae+tr/5QURDD0SKhiCHc8gByL8IWYhQyAeHTMXuw+cCFwCwPyD93byl+4T7LXqP+qu6ivsPO6T8NLyuPQg9mz3ZPij+dv7Uf6+AMoCJwStBXIHyQivCWMJOAi9BtgErQJPAP/94vtp+gD5tvef9nX1rvQ09PPz2fOx8/Hy8/H+8Kvw7PBV8ZPxrvGu8ob0T/bc90n5+Pqs/ef/+gHlBK4GdAfmBywLzBR2Ih0sPS+SLsgwRDhKPtk9kjfML9UoDSGAFdgImv1K9ILsCeZs4RTeX9rK1WbUa9gU3zTjZ+Iq4CDhxeWY6jXt8u578rv3RP0DAuEGvAy8EsgXjRvYHlcgkB9sHLUY4xXrEhgOlQd7Abf8f/l39nfz/PCH72TuYe217IDsKe1A7vvv3/El9IL2H/lR/GkA/QQpCWYMGg5VD3AQMRHtEFAPhwysCb0GiQM/AO38wvlU94n17fPt8qXxEPD97r/uuO6n7qvtO+xg64DrPeyq7Y7vofEg9Nn2Nfoc/SP/8P+AAOIB1wIwA2wDrQPDAxYDwwIMCssY6SiBMyQ1nzWuOyxDaUZqQn44Uy6IIlQUegYY+lvvXeVk3OzXTtcx1hXTWNCk00/c1eMl5lbkO+Mc5vzqUO+j8+z3gPzdAawHzQ52FlYcKCAKI6Yl/SboJEsfXhijEgkOhAgeAST5hPKy7sXshOvd6jjqsOmI6bXpdOoX7Mrt7u/L8iz2k/ms/PD/xQONCIcNWRE0E8wTKxMcEuMQQg6dCjUGYwHX/NX4cPX18n3x+/Dq8BbxEvEk8FDvp+537rrup+4G7sHt3O3s7mbxB/Tk9kX57vo//bb/FwGCAeYAGQFjAgEDFgOrArECjgJxAskGQROCJAczSTcXNSQ2OjzlQk5DNTscMIckMRdICtL+D/WQ7NPjsN1k3PjbA9l21CzTudgo4KbjoeKq4AripubX7Ej0i/vvASoH5wuzEscZWR6IIMIgfyBdH+IaxxOrDLkGQAID/ir5ofTE8DPuEe3k7Artauwr687qY+t+7Kbtv+698fv20vwjAm8GWArNDjQT2hYZGSgZMxf7E5EQdg23CeUEwf88++X3bvUH8xvxz+/g7sPuVu/97yTwXe9+7qbuku8b8CHwHfDP8FHyavSo9t/42Pqs/F3/rQIoBQ8FOwNPAgoDGAStAzkCGwHWAKv/ZQBiCPMXZCmeM0U0FzM2NuU72T50OtwwNyUvF7kIjfw48xHsauSM3YXbPtz72xzZF9cc20TjxOni6wPrWutb7tnyIfkHAN8F+gmpDKMQehYlG+YcGRwXGg0YcxRfDnAH6wCE+2r3o/M68DftZerR6H3pwOs37ofvh+/3783x0PRN+I/72f6FAmAGewr1DUUQGxKSEw8VshXpE+UPLgv8BgoETQET/qP6Ifc29LnyzfKc81H0LfSd8zTzmPIv8e7uI+0/7Ebs4Oxf7Qjub++E8bz0N/lc/S0AtwF6AokDdgQUBJ8CbAGfAJX/jf4O/tn9jf2N/d4CIhIjJw84lj23OmI6+j+NRYRE3jrZLModXw0G/q7ycuqb4hfaPNTE1LfXGdcB1ALUndre413oHed15efms+ul8qf6/wKzCQYOGRJpGLYfEyTdI8ggiR0kGmUUDAwNA1P7uPVv8W/tAOod563lI+ft6jnvqfHN8XLxZfKx9Iz3UvoV/QkAAwO1BucK6g4BErgTzBQUFvkVuBMDEK8LKAgSBWwBJ/3w+CX1HfI68FDvku6o7dXsQuw97Fzs6+ud60Tsx+0S8J7yWPXy93j6m/00AbIEngbPBSUEswJhARcA0v3H+xT7Q/qG+rr8zv87AjkDfwedFX8qPDwWQus9hDvbPgBDVkK9OdksGB51DI/8t/Hd6RfiTth80eTRPtQD0ynP9c7L1lPhzeec6ffpX+xZ8V/4SQIYDBcSkhQxFtQaPiCVIYUebRkyFXIRggvZA178BPaq8aLu4uz462nqEumT6YXsj/Bg8nbxoPBB8cvz7faF+TL9GgJBB2MMvBDVE8UVYhanFqAWrRTmD2AJTwNx/+38g/oU+Kv1hvMp8tTxrvKL80zzSvJD8dTwYPDi7oPtvO2Q73Ly7/Rh9s73qfm3/NcAVgQWBksF/wJ8AYIAwf5E/LD54fhk+h38x/3c/tL+1/6FA5wR/SbaORZBXj6jPEdB5kYKRss8RC/WIH0Q//8/84jpn+Cw1//R4NI31dzSe871zlXX/OFD55fnoOew6q3wh/hCAmgLchFCFXQZ5R+fJQomlSLMHm4bGxdDD7IE1voJ847tG+qO5+7kB+LN4Jbjn+lf71HynfO89Tj57fyU/wECKgUpCDAK3Av9DeUPPRHfESASMBIJEBELcQU2AWz+6vuX+Kz0P/Fq7nHsSOzV7ZPvcfCc8J7wCfEO8bfwIfHH8tf0VvYw9134PPqj/Jv/1wIQBpEHWwZ4BPICVgLvAWcA7f57/XT79/qq+5j92f5G/48HsBl8Lig8YDsiNr83SDyuPl05dSwlH48PGv+39Efupelw48Pb+tqK3ajc29g51cnYaeHu5ULnc+f36HruXPX4/t8JCRCUEpYUdhhtHjMgrBz+FwMU3RAzDAYFaf1m98fzM/Jp8UXw4u1N7HftwPCC9Lz1zvRp9Gr1oPf1+ez7X/6EAS4FTwknDTYQsxHAEaUREhHjDsAKQwVwACX9qfq2+Av3U/Xk82Pzh/S99tj3/fbD9U31avVp9BbySfAP8EfxmvJp8zL0y/TV9f33Avs0/k3/Hv57/Q7+jP9uAD3/Af6s/Y39fP9RAoMEJQTAAUUH4RcyLE46fzogNjk4Yj3QQDQ9bTKOJvMXtQeP+zzycOon4lXaNNmP2gvYr9LoznHT59xs4ivkMuRX5tfsMPVuAK8LeRH6E+MVEhrsH+EgbB1cGb0V1BINDooH8gFf/Yb6L/lm90b0Te/16tLpRerv6TznguRH5bTom+3o8tP3n/1OBMoK1hDrFHgWtBYwFiwVsRLwDTYIHgNh/z/9mvuO+TD3wPRY84jzefTe9CL0IPNw8n3ysvKP8TjwsO928PXybPWd9qv35/gJ+4b9qf9zARUCTwJAArEBDALrAYcBMgIRAjsCRwMcA18C0ADaAysTrSc/NuI37jC7Mbc6SEChPegy7ibkG3cMK/5a9ULuiuYG3afXp9ii1r7QnM3V0sTePObN5+/p1e3882v6aQG2CnIPdg7+DeYQWxY/GBMVZRIUETUPUQuQBRMBxfxo+Kv2VPZI9fPxCu7g7iDzN/YC9zX2XfaK9/X3TPme+zT9w/0R/h4AUgPVBC8FdAauCCAK+gh/Bo4F0wWiBScEjQFq/g77X/iM9/T3bPdK9f7yEvJy8l7yA/Je8pjznfT99HD1PfZx9zz4dvgA+Sb5/fip+Vn7sf2//yUBjQLGA6AEuAQNBbUGsQhsCXsH7AVEDMkbSS7ROF82RTHwMlI5Gz1cN9oq1x1bD1MBVvcY8F7qIOL82fHYd9on2WjVLtPF2HLh1eXl5ijnxOmX75738QFLCmoNww1pD4EVRhsOHLUZ6RW3EuoPOQwTCZcFvAAQ/e/6qfm09h/xIO2N7AruI+9m7dfqwunU6uLu1vN+9335x/r//R4DggckCmYLiQxHDhYPoA2oCmAHzQQNA+8Asf16+dz1VfRR9WT3RfiD92/2g/ZU+NT5GPrc+Uv5APm2+N73PPfn9hH36/dM+er60Psg/Ob82f13/8cAWgAwAAcAlP8QAYkCYwNdA8MCwAhdF2InaDGyMEQtnS+RNFQ3FzQkK9EgyhS8CHABB/0I+BLxNOrW58/mhuKH3EbZAdx94OHhhOEr4UTjfegL8Ff6RAMUB2sIagpbD18VABicF54VgBKKD4AMCgrdB6cESAGb/lf87Pkf99n01POu8xfzb/F67//tgO277r/wsvJV9Jj1bPcO+gz9iQDnA4wGZQhpCcUJOwqfCsMKqgqNCeYG6QNPAZT/4v6z/Zr7Qfna9gr16vPQ8tvxB/Ef8HzvUO+I8LzyF/V+97b5Jvx6/+YBXQMRBegFEgYlBdcCwwHtAWUCNwOJA50C4gEPBF0NxxtJJx8qCidPJskqZC8pL4gpsCHoGIgOEAZnAbf9+fgk8sfsB+tH6IXjP+Am4PziuuTS48HjM+VT6F/uuvVY/T8CwQKkAxIHWAu2DioP5w2FDEgK8QegBg0G8wVgBUkEIwNqASf/hv1p/ar+1f6h/I74r/Sl8/L0fPYN9zX2jfUl9qv36vkk/JL9D/5R/hr/IgBeALz/ov+LAOAB4AHkAC0AEgCJAD0BkAHdANz+Vfyz+7z8+PwM/CL64fjW+Dj51vmy+u76mPp5+vP67fsd/BL8/Pxx/m7/Vv8+/+L/ywDDAbYCDANUA1wC6ADiAFMCRwbBDKwS2BV1Fi8XJxuMIMkjCiS9IWQe1BlAFOwP4AyPCRYFMv8W+qj2xfPs8TbxtvBd8LLvwe7K7m3vePBV8u3zpvRj9OTzcPRG9qT43fqj/CL+g/9sAS4EWwdlCh4MswstCrwI8QecB4oG1QTpArkAr/4T/fP7Nvsk+hr41/Xv85PytfHz8GjwkfAW8bvxmvLZ84v1I/hm+oT8wf5cAMEBQgOHBIcF4wUuBYEERATgAwMDaQEDAAT/Hv6J/QP9j/xe/FH8mvwK/WX96P1l/mr/zABhAWkBEAERASsCRwN6A+UDvwQxBmcHcAfjB6oK4Q7QEk8USxNwEp8S3hOZFDATkxAlDQUKewfhBG4CCQCH/Vf7v/nR+Hj4Jvjl9yj4wvhm+YP5+fin+HP4H/jO9wv3O/Z89Sv12/UE91n4KPrA+4f9df/tAIQCbgOvA9oDoANhAyEDpAJWAl0CDwIXAn4CsQLbAkkCuQD5/l/9kfue+br3ZvaY9b706PM/88nz8fQP9lv3ovgi+sf7Jf2q/loA1AH4AtoDXwRxBCgEDQSDBLsEIQQEAw4CkgFaAeIASgAbAO7/3v///04A1wArAaYBjQJ6A7gDiQNCA/ICGAPDAj0C1wGNASQB1gCxANIAWgHdAXUC5AIVAxgDIwNUA4MDdwP2AnACGgLxAdkBBgJTAmUCCgLSAXECWwOyA1YDpgJIAh4CowEyAboA8P8R/3X+cf6+/qT+DP6W/Zr9Of6//rz+m/6S/sr+gv8VAGMAmgC1APoAOQEyAcMAFwBJ/2f+8f3r/Z39sfy1++j6yfoU+yD73/qy+tL63fro+tv65fo0+2D7vPsJ/HD88/x7/UT+1/4h/xP/Df9P/6T/if9R/37/uP8HAAEA3v8pAN8AjQEuAtsCbgMUBKsEMwXRBRsGIwYjBuwFkwW9BJID0gLpAfwA1f9U/tn8zftr+5z7Ffxg/Nv8uv3Q/vL/vAAnAZABAQI2AiIC6wHSARMCXAKkAvICFQP7AtwCGANkA1gDdwJBAYIAGwCx/xH/XP70/Y/9Xv2E/T3+Pv/R/xUAcAD/AJ0BvgFeAdAAZwDX/yf/rf5G/kv+cP6q/j3/lf/3/2sAwgBCAVoBwwAQAGz/uv7k/fT8EvxG+6D6WfqE+t/6f/sb/JL8J/0K/gj/xf9XAF4AdABVAC8ALwASAP//zv/i/z0AxwA9AYIB1wFmArwCDAN4A8wD6QOmA2QDPQMsAwYD4gKvAncC6AE5Aa8AaQAtAKn/GP+W/jn+A/7e/en9XP6//vv+df/y/4QADAF5Aa0B3QHKAWMBGQHzAMwAawDr/3z/QP8l/xb/5f6O/iz+0P26/ZT9Y/1E/U39gP28/eD9A/53/hX/wf9aAJQApQDZAAUBFwEbAf8AyQBsACcAOgCfAN0ArgChAO8AUQGUAWMB7QBwAEMAMAAgAMz/Jf9+/jn+VP5d/j/+D/4w/nX+x/7Z/rX+Xf4X/t39wf2f/Uv9Lv0t/Wf9m/3b/UD+s/4N/5//UQAQAcoBPwKNAtcCHAOBA8MDvQO6A5kDhQN4A10DOwP0AnUCDwK3ASUBowDu/3X/R/9o/0f/6f7D/rz+Bv9A/zD/8v7Z/tD+5P7v/jL/ov/2/zoAlgAcAZYB6QHFAagBfAEtAeIAewATAKD/If/g/tD+6f4D/zL/ov/9/yYAPQBDAJQA3QDLAJ0ANAB1/7b+Jf7b/d793v3Q/ev9P/7S/mj/KQDtAHsBswGoAXcBJwHQAFcA9/+m/zD/kP7x/cH9Ff6Q/tz+5f75/jn/aP+X/6j/nf9v/z3/Hv8n/yD/Hv8a/z7/nf/2/0MATgBhAPoAxwFjAvkCPQNJA3cDhQOAA0kD1wIrAnsB/ACqAGcAVQB0AKwA5ABGAZsBwQHgAawBUQEkAd8AYwDI/w//gP49/jv+pP7g/vD+A/9Y//D/QwBRABkA3v+V/zL/tv5z/mH+N/42/k3+i/6//gP/ev8AAD0ADgDn/9P/vf+X/zL/uv5A/tv9fv1n/Zr9tf2+/cD96P0s/pf+DP91/+n/VwDJABsBmQEwArgCDwMGA9ACoQJjAiICpAEHAWcAyP9J/7r+SP79/eL9pv1n/S79Bf1B/br9K/6E/pT+jf7g/kf/0P9KAJwArwDmAEQBmAH7ATsCdQKiAucC9gK2Ak0CswFWAeoAjQA/APD/pv9v/1//df+J/6j/0/8JADgAPQBTAKEAHgFeAXUBgAFfATsBHgH0AOgAuQBeADYA//8AAO3/vP/M/7b/qf+H/2b/VP83/0v/S/8+/1H/Y/+F/8z/0f+i/3X/X/9L/yX/qP4w/h7+O/6H/r7+4P4l/27/6f91AN0ADgH0APMAAwEZAREB9ADSAK8AwAC+AJ0AbABIABcA9P/T/5v/Rv/D/nX+bP5w/nD+SP4B/ub98v0P/i7+Xf55/m7+gP6W/tX+Ef9G/5n/IADLAI0BJwKdAg0DXwOpA84DsQNhAwoDdQLMASUBawDF/yz/8v7c/tz+4P4n/53///9gAJgAtwDzAAcB8QDXAHkAIgDw//n/EAD//+L/vf+2/63/rf/D/87/q/+J/1H/Pf93/7//9P8mAFEAkQDrABUBRgFcAUYB/wCjAEgAyP9H/9f+bP4B/sH9of2N/Yf9lv3M/QP+Rv5z/pb+zP70/ir/bv/X/zIAhgCzAOAAEwFIAUoBNgEMAdAAlgB5AGwAYwBnAD8APwA7AAwAzv+S/1L/GP/e/qT+Yf4T/vj9Bf4e/kD+gv6i/tf+E/9u/9r/TgDCABUBSwF8Aa0B2QEjAl8CYQJAAjICCgLgAbcBbAFGAQoB1gCPAEYAFQAHADQATABOADYAFwD0/9P/6//p/+3/9//i/6T/pv/M/x0AXgBgAHUAeQCNALkA0ADWAKwAfQBTAEoAVQAyAO3/oP9U/yr/E//w/sj+rf6q/qv+2/4q/2j/bv9a/0f/If/i/qT+hP5N/lr+df7H/lL/5f+aAFoBFQK1AhUDMgMBA44CBQJhAbEA//9G/8P+cP43/jf+WP6z/iz/n////yYALQAiAEQALwAJAKL/Jf/i/qT+fP5w/o3+pP4I/4L/EgCzAB4BggHOAQ8CDgLbAXIB3wBTAOD/fv8I/6T+av5f/p3+v/7v/iP/aP/j/04AswDzAO0A/QATASQBTQFfATgBGQEgAUYBXAFEATIBEQH2AOAAmgBRAPn/wf94/1T/Uf9H/3P/jv/B/+3/BQAJAOn/2f+x/4v/Pf8E/+n+w/6Z/o7+if6h/sr+wf7t/iX/Xf+m/8X/CQBjAKoA4gAeAVUBUwFTAU0BTwFCAQoBwgBBAOD/WP/Z/n7+Of4V/u39wP2v/cH9Dv6A/uv+Nf9k/5D/qP/T//n/CQAAAAkAFQAdACQAMABrAJYAqACuAMMAtwCLAIAAiQCGAJYAgABjAGkAhgCaAL4A2QC3AJ8AeQBwAFMAGwDn/7T/nf+p/7//7f8XAD0AiwCoAMIAugChAKUAwwDbAM4AxQDQAOgA/wAXAR4BDAH6AOIAywCfAGcAMgDr/7T/mf+F/3H/Sf8l/xz/Kv8a/xj/DP/e/rP+lP6o/rb+vP6+/rz+0/4B/0f/m//3/1oA1wBBAY0BtwG4Aa0BjQGJAWoBAwG1ADgA/f/c/3r/D/+o/l/+J/4K/vT9+v3//Tf+jv4R/6b/NADDAEsBwwH4ASMCNAI5AhoC4gGHARcBugBOAOf/r/9s/zv/I/8W/yz/Nf8w/0T/WP9q/4v/jv91/z3/D//0/gH/If8e/xz/Jf9b/5v/4v80AIgAtQDOANIAwgCxAJwAhgBuAFUANAAmAAwADAAnAFwAkQCzAOoAFwE7ATABOwEuATYBKQHxAJ8AOgDi/47/Pf/n/pn+F/6z/YD9bv2C/cX97f1A/tv+Zv8FAG4AxwAIAU0BXgFEATsBJwEKAeoA3QD2AOgAyQDCAKoAfQBOABMA6/+g/y7/1/6L/lP+Qv4r/jb+XP6f/vn+Uf/D/xUAdADFAPYABwHxAOIA1gDJAJgAXAAeAP3/CgAFAOX/1f/i/wcATACfALcAzgC6AJQAeQBgACYAzP91/xr/2/6o/pn+sf7g/if/bP/c/0QAowDmACQBSAFEASABzACGAEYACQDi/7j/q/+//+D/FQA9AHAAiwClAJ0AhABlAEQASgApAAMAAwABAOX/5//K/73/rf+Q/3H/Wv9R/0//ev+Z/9r/PQCYAM4A5gAOARMBLQEtAQUB2wCoAGEAJADy/6b/Vv8p/xj/8v7O/sX+w/7M/tv+3v7X/sf+yP7Z/vb+Ff87/2H/h//g/w4ARACNANQAGQEtAQ4B4AC6AKUAkQBjAFMAOwAvAD8ANgA/AD8AJAD5/+n/tv93/zn/+f74/gT/CP8e/0L/d/+//xMATABnAGwAYQByAH4AiQBnAEMAJgAQABMAFQATAAoAEwA4AFwAiQC8AOAAEQE4AVEBSAE9ARAB3wC5AH0ASAD//7j/g/9S/0L/Ff8N/xP/Bv89/13/bP+H/47/zv8AAAcANABnAH4AnwDJAN0A8wDvANIAkgA9AAEAtP9H/8z+cP4u/gb+Kf5c/r/+J/9U/8P/EAByAKYAvADWAMwAwACoALoAzgCvAKgAugDJAOAA1wDFAKwAfQBMAAwA0f+d/2//Qv8P/+/++f4D/yz/cf/R/yIAHgAwAEYATgBPAFcARAAbAAwA2f+9/5L/cf8+/0b/Uf8l/zL/R/93/7j/9P8vAHAAkgCzANkA+AD0AMUAoQBpAEoAEwDl/8P/qf+y/87/FQAkADIAYwB5AHUAYAAiAOn/sf9N//j+w/6k/rH+yP7g/gT/Rv+r/wEAcAC+ANcA2wAXASUBJQETAfYAwAB5AEMADgDl/6n/fv9L/0f/NP8w/yX/Hv8Y/yH/N/8h/zX/IP8g/0//if/u/0QAaQC3APYAKQFfAXcBWgEgAd8AtQB0ADYAAwDX/9P/0//V/+D/7v/r//T/+f/9//T/9v/r/7j/4//O/7b/uv/B/+L/AwAiAB4AAQDa/8j/xf/l/wEAEwAMAEoAjQDCAPEA4gD6AOgA3wDqANkAugCaAGsAKwAKAPv/0/+f/5X/kv+Q/53/h/94/4f/nf+g/7r/gP9a/2H/VP+O/6T/zP8MACYAVQCAALMAyQDXAMIAugCaAD8AEADu/97/rf9z/13/Mv8c/xz///72/tP+w/7Z/sz+2f7k/uT+A/80/3j/zP/5/zgAWgCJANAA3wDxAN0AvAC8AKYAewBEAD8ASAA6AFcAbAB1AH4AjQCPAIAAlgC6AKoAhgCJAGMAeQCRAGcATgAiALT/h/9S//v+5/7I/tD+0/7V/g3/Tf93/6j/EABVAHAAcgBwAH0AbgBjADQAIgApACAAHgAXADYAYACEAJIAxQDfALcAuQCjAIkAYQATANn/i/9P/xH/4P7T/sr+sf6k/tP+DP9G/5v/DABXAI8A1AD2APoAEAEVAdsAowBaAAkAv/+V/2z/df+S/6T/xf/a//v/AAADANz/gv80//T+s/7B/pT+if6r/sr+Fv96/8P/8P9uAHAAqADUANcA4ADkAAEB1ADWANIAwwDAALEAugCaAJEAaQBaAFEA+//n/8P/if9s/1L/S/8w/13/lf/D////PQBgAHcAoQCGAGMAKQAMAOD/oP+i/4D/bv+F/6D/lf+m/+7/7v8MAG4AUQCfAOYA7wAgAUoBUQE9ATQB9gDCAIgAQwAHAPT/yv+v/5//Sf/Z/uL+n/9TABcAhf9b/4P/3v8BANr/wf/5/woAMAA0ACAALQAiABMAIgABAOn/9/8OADgARABrAGkAfgB1AHQAZQAyABIA8v/n/6T/pP+U/4n/n/+r/37/hf+M/3H/bP9x/03/Nf9a/zv/Mv9a/3P/bv+F/5//tv+D/5T/w/96/6T/9P/i/+D/ZwB+AHcA6AAHAQcBNAEwAScBXwEDAesA/wC+AI0AdAAVAO3/7v+J/3r/Xf9W/0v/c/9k/2j/i/98/4D/kP+C/3H/w//K//n/PwBeAHIAmgDSALoAtwDbAMMAhgA7AAUAqf9L//D+1/7K/r7+zP7F/g//Ff9C/6j/7v8eAEgASgBjAG4AVQBwAIQAbgByAIAAVQA/AGkAXABBAHQAewBnAHUAhACLAHkAdwCLAGUAOwArAOL/uv+k/3f/X/8n/+X++P4D//j+If8n/0D/RP8l/3H/lP+L/7L/4/8JADQASgByAKUAvACzAM4AIgETAfQA2wDJAJoAdQBMAN7/sf9j/0L/Wv+D/27/kv/l/9f/4v/D/8r/4v+i/2z/Sf85/yz/g//O/xAAbgCvAOYA7QAHAe0A2QDWALEAYAAKANz/wf/Q/7T/lP+Z/6b/zv/G/63/5//X/+D/HQAeADoAPwA9AF4AZwBsAGkAZQBMAEwAZwBaAGUAYwBTAGsAVwBEADoALQAmAA4A8P/n/9H/qf+Z/4v/c/9W/2j/eP+Z/73/w//r/yIAMgBhAI8AdwCaAI0AfQBnAEoAOgAeABUAyP+Q/4L/lf+O/3r/lf9k/3f/c/98/6n/m/+x/5//jP+S/5v/jP9u/2P/W/+J/5//l/+8/9X/3P/5/xAAFQAmAC8AOAAwAAwACgAAAPv/HgA9AFUAWgBVAGwAcgCLAHcAfQCIAH0AhgB1AF4ANgDw/8X/r/94/0f/Pf9J/1j/X/9j/4L/rf/D//f/IgAgAFEAZwCJAMsA+gADAdQAzACuAKMAeQA9ABMAAAABAPn/AAD7//b/HQAgAC0APQAyAB4AFQAFANn/vf+f/5D/c/9m/2j/eP+D/5f/tv+9/8r/zP/c/9f/6/8BAAAACgApADsAWABwAGcAdQCNAIYAgAB1AFcARAA0ABIA4/+//63/n/+o/6L/lP+d/63/uP/Z/+L/1//Q/+n/9v/9//T/+f/w//f/HQAQABAABwAHAAoAHQAVABkAHgAHAAUA5//c/9z/v//D/87/uP+y/6D/l/+k/7H/uv/B/8r/4P/c/+n/AwAkAD0ARABTAG4AiACRAJgAnQCfAIYAggByAEYAVwAnABUAGwADAPD/5//a/7//sf+F/2//VP9b/3P/fv+X/8X/5f/9/xsACgAgACkAPwBKAD0AMgArAC8AIgAbACcAKwA/AF4AUQBhAF4AOwA/ACAACQAHAPf/4//T/8z/xv/V/9D/sv+f/47/lf+J/5f/pv+0/7L/wf/g/97/9/8XACQAOAA4ACsANgAnAB0AEwAOAAUAAQAQAPf/7f/G/7L/sf+//9P/4//G/63/q/+t/5v/g/+V/3j/WP9m/4X/c/+Q/4z/r//y/wcAFQAQAEMAZQCNAIQAdQBjAE4AVQAyAA4ABQDi/9X/7v/l//L/KwA/AFwAdwBrAHsAZQA7AEgAMAAbAAMA+//5//v/FwAZABUACQD2/87/w/+0/5//l/93/3j/n/+p/7r/7f/y/+f/EAAKABMANABBAEMANABMAEYARgA7ADsAMAAmABcA9//a/7//tv+i/7b/1f/R/9n/7v8FAAUA9v8BABIAFwAbACYAOABOAHUAtwDgANkA+gAkARUB/ADCAJwApQBlAB4ABQDK/6T/qP+M/2j/bv9+/2b/if+x/8j/3P/j//n/9v8FAPD/7v/c/7r/zP+//8H/xv/p//D/+f8QACAAIAAVAAcA+f/5//n/6f/w/wkA///2//L/4P/c/9z/xv/R/7j/0//Z/7H/zP+0/6n/qf+2/8r/vf/O/9f/yv/i/9D/tv/I/9H/zP/V/9P/1f/j/+7/9v/7/+f/7v8VABIA+f/p/9P/4P/w//f/CgAZAB4AMgBPAFMAXABVAFwASAA/AEMARAA6ADIAOwAwADgAKQAdAAwABQADAAcADgAAAAkACgD2//D/9//R/87/3v/X/+L/4//y/+n/4v/c/9n/4P/r//D/7f/y/woADAAKAB4AKwA4ADIAMgBEAEgAPwA9ACkAGQAdAAEA/f/5/9z/2f/Q/9r/4//l//T/7f/5/+3/7f/w/97/5//g/9f/1f/V/9X/3v/p/+X/8v//////DAAdABMAFwAkADsAOAA7AEQAOgA6ADYARAA9ADYAKQAiABkAEgAHAAcADgADAAEA/f/5/+7/6//i/97/4v/t/97/2v/g/8z/1//e/9X/4v/T/9X/4P/n/+D/4P/X/9f/3v/i/+L/4P/y//T/AwAKABcAHQAnADAAOgA4ADgAMgAiACIAHQAZAAoAAQAAAPv/7f/0/+P/4P/i/9z/zv/R/9f/2f/0//3/+/8AABUAFQAbABcACgADAOv////9//v/DAAKAB0AHQAMAAcABQD2//L/5//T/9f/zv/M/8H/vf+8/8P/xv/K/9D/0P/T/9z/1f/K/8z/zv/a/+X/6f/l/+v///8MAAwAHQAgABsAIgAnACIAEgAbAB4AEgAgABAA///7/+X/3v/Q/9X/0f/G/8X/w//I/9n/2f/j//T/+/8QAB0AMgBEAD8APwBEADsAPQA/AEMASABMAEoASABOAEQATAAvACIAIAATABAA///t/9f/5//Z/8j/zP/T/9r/1f/j/+P/+////wcAFwAOABMAFwAkACYAJwApABMAEAAJAAAAAQD5/wEAAQD//wwA+//r/+f/8P8DAAkABwAFABsALwA4ADgAQQA7AC0AJAAkABUABQADAPb/4//y/+f/6f/u/+D/+f/3/woADAAQAB0AIAAVAAkACgD//+f/4v/c/8z/vf+t/8P/yP+//9H/0P/X/+f/4//p/9z/3P/n/97/4v/e/+D/4P/Z/9H/6//u//L/9P/i//L/AwD5//D/7v/2/+3/7f/t/9n/2v/R/+f/8v/0//n/+/8TABcAFwAVACQAFQAOAAkAEwAOAAoAFQAMAA4AEAAXABcAJwAgABcAGwAdABMAEwAVAAwAFQASAAMAAQABAO7/4P/g/8j/vf/F/6j/vf/I/9D/7v8MABUACQASABAAEAAAAAUA//8DAB4AHgAkAC8ARABRADsALQA4ADQALwAvAC0AJAAkABcAEgAFAPf/AAAAAOP/3P/M/7j/r/+y/7j/mf+O/5L/mf+k/6T/mf+p/7//0//g//L/AADj//3/CQADAB4AIgArAC8ALwAyACsAMgA2ADsAQQBGAD8AOgAyAC0AIAAdACQAEwASAAMAAwD9//n/7v/l//D/5//p//b/8v8HAB4AEwAyABsAGwA7ADQAMgAvAEMAMAA6AB4AEAAVAAAA7f/R/9n/0P/g/9z/7v//////CgASAB0AFwAgACYAIAApACQAGQAQAAAACQAKAPT//f/p/9n/2f/i/+v/yv+9/8X/zv/M/8r/xf/G/8X/vf+8/8P/w/+9/9D/zv/B/87/yP/Z/+D/2f/j/9P/2f/e/+n/6//3//f/6/8BAP//9P////f/8P/r/+L/+/8MAAAACgAiADAASABGAD0ALwApACcAFQAOABIAEAAQABIADgAgACQAHQArACQAJgAiABIACQD9/wAA7f/e/87/w//F/7z/xv/K/9P/4v/y////BQAFAAEABwAFAAMA9v8BAAUAAwAOABMAEAAXABsADgAOAAoABQD9/wUABwD9////BQAKAAwABwD9/wMACgAQABAACgAHABIAEgAdAC0AJgArADQANAAkACIAIAAVAAMACQAXABIAJAAiACYAJAAnADQALwAvACkAIAAdABMAFQATABMAEwASABUAEwATAAMA9//t/+D/zv/B/7z/v/+0/6L/pv+X/5D/if9+/5D/mf+d/6j/sf+2/7H/zv/X/9f/9P/u//n/FQAXAB0AHgArADAAPwA9ADIALQA0ADoAHgATAAwA/f/7//3/7f/V/8j/zP/M/87/0//R/+f/6//0//f/+f/9//f/8v/2//3/9v/7//D/AAAHAAcADgAFAAcA9v///wUACgAZACAALwAwAC8AOAA9ACYAHgAgAB0AFQAeACQAHQAVABAAEwD9/woADAAJAAwABwABAAcABQAMABIA///9/+v/8P/2/+X/4P/w//b/+//u/+3/7v/3//f/5/8BAP3/9//2/+7/7v/r/+n/7f8AAPn/9v/2/+L/9P/3//T/6//w//b/9P/u/wEAAwD7////9/8DAAAA///9//3/+f/5//L/7v/c/97/9v/y//v/9P/0//n/BwAQAAEAEAAZAAcACgATAAcADAAVABsAIgAiACkAKwAwAB0AGQADAAAA7v/K/8H/sv+i/47/l/+Z/5//pP+v/7j/uv/D/87/0P/T/+3/9/8DAAwAGwAgACYAOABDAEQAQQBPADsALwA4ADQALwA7ADoAMgA7ADgANAAvACQAEwAQAAMAAQD9/wMAAAABAB0AGQAVABUAHgAiACcAEwD//xAACQAbAA4ADAAgAB4AKQAeAB0AHQAVAAkAAAD9//b/6f/n//L/zv+8/8j/0P/Z/97/9v/y//L/+//7//T/5f/Z/9z/5f/l/9n/1//2/97/7v/2//T/+//2/wEAAQD//wAA9//t/+X/2v/e/9D/2f/c/8X/0//K/8X/zP/R/9P/1//c/+P/8P/3/w4AHQAKAA4AEAAOAB4AEwAQABAAGQAKAPv/CQAOABkAFQAbACIALQArAC0ANAAeACAAIAAXAAkAAQAAAOX/5f/i/+P/2v/F/8z/xf+8/8r/w//B/87/1//p/+n/4//n//L/+//9//3/CgAQAAoAFwAeABsAFwAbABUAAwAFAPf/7f/u/97/7f/n/+3/5//u//v//f/2/+v/9//2/+3/8v/u/+P/6//l//L////5/wAA+//7/wEABQAHAPv/AQAHAAoAGQArADAALQA2ADAAQQBIAEEATgBRAFoAYABRAEoATABKADgALQAiABUAEwAKAA4ABwAKAA4ADAD///f/9P/p/+L/1//e/9f/1//a/9f/1//n/+n/7f/3//L/9v/3//f/9P/3//b/9v/w//L/7v/r//n/9P/y//L/9P/7/wcAAwAKAAkABQAQABcAHgAdABsAJAAiABcAEgAAAPn/9v/0//D/6//c/97/4v/p//L/6//0//T/7v/u//b/9P/y//D/8P/w//b//f/7//v/AAD///n/9//3//f/7f/i/+L/2v/R/7//vP+8/7b/yv/D/7r/0f/M/9H/0//Z/97/5//5/wUAEAASABsAGwAiAB0AEwAQABcAGwAXABcAFQAXABUAGQAMAAwABwABAAkAAQABAAcAAwABAP//9/8AAP//9//7/wUADgAbAB0AFwApADYANAA7AEEAPQA2ADgAOAAvACsAJAAiAAkA9v/3/+v/4//e/9P/0P/I/7//xf/B/73/tv+2/7b/uP/D/8X/0f/X/+f/6//0//3/AwAQABIAEAAbABUAEwAmACkAOABIAEgAPwBMAEQAQQA7ADQANAAnAC0AJgArACAAFwAeACIAJAADAPT/AAD3/+3/9P/0//D/9P/t//f/7f/j/+7/5f/j/+7/8v/7//b/AQAJAAoAHQAVACYAKQA0ADQANAA2ADIANgAkAB0AEwABAPv/9v/c/9P/2f/I/73/v//B/8H/xf/T/8z/2v/Z/8r/yP/M/8z/vf+6/7z/xv/F/73/uv+y/7j/r/+6/8H/uP+8/8j/2f/a/9r/4//u//L/9/8FAAcADgAbABsAJgAdACcAOAA/AEMAPwA0ADsASAA4ACkALQA0ACQALwArACYAJAAVABUAFQAdABcAHQASAAEACQD5//D/9P/9/wAAAAAHAAcACQAQAAcA9//5//D/3v/a/9X/0f/V/9z/1//e/+3/7v/2/+f////9/+3/9P/e/9r/0P/Q/9n/2v/a/9r/3v/y/+n/2v/y//D/6f/n/9r/4P/w//b/9v/0/+X/8v8DAA4ABQADAAwAGwA0ADIAOAA2ACsANAA9ADAAJgAgACYAHQAMAAkABwD///b/9v/w//3/8P/w//D/+f8AAP3/AwAAAAoACQD3//n/AwDw/+n/9P/u//D/9P/5//T/8P/2//T/8v/3//b/8v/2/wEAAAAFAA4AEgAdABIAAAAFAAwACQAFAAkAEgAVAAkADAAOAPL/9v/0/+7/9//u//v/+f8FAAwAAwASAAwAFwASAAcABQABAAMA/////+f/6//r/+n/6f/y/+n/5//r//b/+f/0//b/8P/2/+7/AAAMABAADAAXACkAJgAkACIAKwA0ADYAOAA0ADgARgA/ADYAOAA7ADYAJgAdABMAGQAnAB4AJwAdABcAGQAFAPv/+f/y//b/8v/p/+P/3P/a/9H/zv/M/7//rf+m/5f/jv+U/5D/kP+U/6T/r/+4/9D/5//0/wkAEAAeACIALQBEAD8ASgBOAEwARgBOAEwAQQBBADIAMAAgAB4AEAADAPv/9P/u/+D/4P/F/87/zv+6/8P/vf+6/8P/yP/D/9H/0P/g//T//f8VABkAGQAgABcACgAKAAUAAwD2/+v/8v/t/+v/4v/R/8z/zv/V/8j/tv+x/5n/nf+i/5v/pP+v/7z/v//T/9r/2f/p/9z/3v/g/+D/6//y//f/9//y//b///8OABkAJAAnAC0ANAA4ADoAPQBMAEQAPwA7AEQAVwBXAFwAawBpAGwAawBaAFgAWABTAEwATAA4ACsAMAAnAB0AHgAiACAADAABAAoAEAAKAAAAAQD5//b/9v/3////9P/y//b/+f8FAAcABwASAAUACgASAAkAAAAHAP3/9v/w/+f/0f+8/7H/rf+k/5f/n/+d/6v/rf+2/7H/vf+8/7H/xf+4/8H/vf/I/87/0//T/87/1//Q/8r/w//D/9f/0//e//D/+f///wUADAAXAB4ALwA7ADAAKQA2AEEARABIAEwAXABXAFUAUwBEAEMAQQAmABsACQADAAAA6f/j/9P/0//T/8r/wf+9/9D/zP/M/+P/4v/i/+X/+//9/wwAHQAdADIAOwBPAEwAVwBnAGkAbABpAGkAXgBeAFwAUwBKAD8APQA6ACYAFwABAPb/5f/Q/8X/vf+r/5//l/9+/2z/WP9W/1//X/9b/2b/df96/6D/tv/I/9n/8v/5/wMAFQAOABkAGQAbACAAGwAgAB4AIgAeAC0AJwAVAB4AJwAiABIAIAA4ADsANgAmACcAKwA7AD0ARABaAFUAUwBaAFgAVwBsAF4AZwBaAEMAQQAdAB0ACgDw/+X/0P/K/7j/m/+Q/3f/ev9j/03/Zv98/4X/lP+y/87//f8kADAAPQA7AFgAewCSAJwAnAClALEAtwCjAIgAdQBgAEMAGwDn/8r/lP9j/0D/D//w/tD+of6J/of+bv5c/kj+NP4n/hP+IP4r/jD+P/5P/lj+cf6Q/rb+3v4M/z7/b/+m/87/DABOAI0AwgAHAU8BkgHJAQMCRgJqApICvALTAucCAwMEAwEDEQMTAwoD5wLQAq8CjgJcAjICDwLQAZQBWgEkAfQAsQBpAEwADADl/7j/kv91/1v/R/8R//j+4P7M/sH+vv6i/qL+ov6i/qb+ov6N/oD+c/5W/kv+I/4R/v394P2+/aH9if1W/SX99vzZ/LP8hvxc/DT8KfwK/PX74vvY+9L7x/vZ++j7Afwr/HL8ofzm/D39nf0F/mz+2f5P/9z/ZQDzAIABDgKfAjkDwQNZBOwEXQXYBUoGqQbxBjEHZQeKB54HsgewB6wHmgd7B1cHIgfmBqMGTAbyBZwFPAXnBIcELgS/A0sD4AJjAgoCsQFlARUBwgBgAA4AzP9x/zL/1/6H/if+0P17/RP9yfyC/ET8/PvC+3b7Q/sg+/H61PrE+qz6nPqW+oP6g/p2+mL6Xvo8+iL6Dfru+c/5rPl4+Uf5GPnq+Ln4gfhW+EL4KPgm+CX4HPg8+Hb4zfgm+Zf5Ifqy+nb7L/wD/ev96/7y//8AKwJNA4EEvQXlBgkIDgkOChELDAzwDK0NRw7EDjMPeg+VD4wPaQ8hD6cOCw5QDYMMlgt+ClMJDgjTBqIFXQQjA/YBzgC8/6j+jf2q/PH7Rvu3+lL6B/rT+bb5rPnC+dr5DfpO+pX61PoU+3T70vsr/Hv8r/zz/C39X/2L/aH9vv3B/cz9zv3H/az9jf1q/Tj9DP3Q/IL8SPwK/Lz7afsO+8T6a/oW+sL5b/kP+cL4f/g3+Av40fem95P3lfen98b3/fdU+Lb4TPnz+cb6t/u6/OT9Hv9pANIBVAPhBG0G+AeICQYLWwygDdMO8w/sELURUxK6EgUTGRP0Eq4SOxKREcAQuQ+eDn4NMAzQCkYJvgcmBpkEBANwAQcAmf5K/RX87vr++Tf5jvj093j3FPe99pv2kvaX9qT2vPba9gb3T/eg9wL4avjK+DH5hfnz+V76vfo6+6P7APxP/K/8Ef1w/cX9Cv5C/nf+n/6t/rb+pP6S/nf+Uf4P/sP9Yf3o/I/8Gfyj+y37ufpD+sb5Yvn9+LL4avgj+PD3u/ep97b37vc6+KX4Kvm5+Vz6Gfv++xH9Sf6f/x4BqwI8BNoFfwcpCbUKKQynDfwONhBuEVYSMhPXEyMUTxRGFBoUvhMTE0YSVRE0EAcPpg03DLEKOgmjB98FVAS+AlUB9v+f/mH9QfxV+2/6rvkH+Wr49/eS9zn3//b39vL26fbl9vf2MPdf95L3uPfs9zP4f/i9+P34Q/mG+dj5GfpO+oT6tPrz+jP7Ufty+4/7u/vN+9D7y/vJ+9376Pvi+9n72PvN+8f7tfuz+5P7gft9+1P7PPst+zH7Mfsv+x37JPsr+z37YPuC+7D77fsm/In8DP2G/Tv+DP/y/+IA/QEwA4EE8gVDB58I8QlLC7IM5Q38DhAQ6BClETsShxLdEuYSuBJeEsARFBEfEAsPzQ1+DDILpgkBCGkGzARYA/gBnQAs/979pvyW+6r6yPkW+Xb49/eA9x/35/bX9uf2/fYR9zf3b/fG9yX4cfjE+Cz5evna+T/6rPob+177svvs+xn8O/yL/Kj8wvzm/OD89vz//AX9//z6/Mf8iPxK/AD8z/ue+3n7RvsM+8T6hvpZ+jj6G/r8+eP52vnT+er5DvpQ+pj62Pof+2P7p/v6+4L8Hv3g/Yf+Nf8AAMUArAGUAp8D0QQbBjwHVQhyCZQKygvsDOkNsg56DwcQhBDxEBQRKxELEZ4Q9w8vD1kORQ0nDPQKiwk0CNEGYAUCBKgCUQEdAP3+8f30/B38bfvb+l766Pma+VX5KvkL+Q35H/k4+XT5j/mw+dH57vkW+jz6Vfpk+oH6oPq3+s362Prv+gz7Evsb+yT7SPty+3n7j/uT+4/7j/uW+4H7bftO+zT7IvsC+9j6rvqK+nL6Z/pO+jr6NfpF+mf6k/q3+u76Jvtw+8/7Hvx//PT8gP3m/UT+s/4j/7H/QQDAAFgB6wGhAl8DGATjBMgF1AauB6MIfQleCnALOwwEDaQNRw7aDjUPmA+9D98P2g9xD/wOQw6mDQANCAwVC/YJrAh2By8G5QSbA1QCHgH5/9D+x/3k/Pb7KPtt+sb5RfnY+Jv4b/hm+FT4V/iF+Jf4zPjs+BL5XfmI+cn5Fvp4+r769fo9+3L7qvvS++z7CvwS/BP8EvwF/O/73/u1+237Kfvl+pr6Svr1+Zn5TvkJ+cr4jvhS+Bz4APj099H39fcW+FT4uPgS+XT52PlT+rv6Q/vt+3/8Bf2H/QX+jf4Y/6//awAbAeQBmQJdAzEEBAUmBi8HUwhqCUsKWAtPDEANMw4FD9IPSBDGEB4RJhFMERQRzxB2ELUP9w4PDhwNDQzDCo0JLQjaBpMFRQQEA9kBvgCp/5b+rP3F/O37Q/uN+hL6qflm+ST55fjV+Nb49fgH+R35Pvl0+Zn5xPkA+jH6Xvpy+oT6ufq7+s364/rW+uP62vq5+qn6gfpb+hn60/ms+WD5OPkE+db4p/hv+Cj4+/f998b37PcW+Dn4Xfin+Of4Kvl7+cj5Ivp9+uz6VfvP+0T8yfwT/Vj9uP3v/VP+xf5d/0QA6gDQAZ8ClAOrBL0FMQdFCLoJEwtmDLINyw4OEAURDBLVEicTxRP9EycUPRSdE1QTmhKwEY8QIw/VDUQMzAoTCUoHjAW9AywCiQDb/qH9NPwX+yL6Dflv+MP3UPcG99D25fbc9gT3Uvdq97v3EviD+An5PPmu+fX5Ivpe+qX6+Pop+3L7qvvF+9b7wPuz+4L7afsx++j62/qG+lX6M/rz+Zz5S/kA+ZH4Nfju99731/fI99P3tveD9573cfeb9/33Jfh6+KD49fhv+bT5DvpX+tH6G/tu+wn8Qfw//WH+kP+xAFoBvAIqBPUFqgfSCK0KMwzKDUkPDRDHERATURQ8FWMV4BUnFs0WzBZ2FhEW7hQeFMISFRHED+kNhwyxCnkIkwZzBOAC8wA5/0/9n/uT+kf5Sfhs9wb3lPYh9vn1gPV89dv1I/Z49pT2yPYs95X3CPgz+Hz4v/gH+S35QPmj+e75ZPpH+ij6L/oU+nT6tfq5+pH6ffpV+ib6Bfrq+ef5z/m3+YX5KPkS+SP5APmu+IX4ovic+LD4CflB+Wn53Pkf+lv6o/q3+mX70PsT/H38XPzr/Bz97/03/xAAlAHJAfYCLAROBVMHrgj7CmMMIQ6TD/kP/xEXE5YUohWZFQgWGBbaFuAWzBaHFjkVhRSqEtgQQQ9FDT0MzAlwBx8FhwIHAd7+Of1D+335Xfjg9vn1vPRI9Gf0UfRe9D/0cvSx9In1//UG9mr2xfZZ98z3R/hk+L34XfmO+fn5PPp4+rf6pfrJ+hf7SPt0+4H7UftG+3n7Y/v1+uj6t/qD+nL6BPqK+SP5GPnz+KL4HPjI99r3sveJ95D36/eX+OH4l/hF+KD4mfi7+Fn5v/nC+V75Pvrj+lH8WP+SAJABWgJPAzMGNAglCusLwQ6hEbwSJRRcFHEW7BhTGj0aXRipGGsZ+hr/GpUYpBYLFQoU3RE6DwINmAowCRYHRgNhAA//Rv7H/P76Kvhv9m72D/b79Zn1uPXD9XP1jvaj+Qz7nvgC95v3MPg4+fL4MPiY+qH7dPoS+S/55PuR/Nr6PPg3+Gn6SPtM+/H6Lfu+/CD9DP5q/z39L/qQ9/b1v/Xv9cnzGfJB9Hv01PEd8MTvu+/W72Hv6e0+7hvxHfNK8+TyZfKY8tL0pPY19vv1U/S/9iX+IQbODEAM5gg5Ck8RXRc1GN4XoRvUI0MpmScYJvMo8ywmK9AifB37HTEi0CPQHToWPhShEwcQHQiX/4370/kW967wsOlB6Nfr+uzW57rh997a33Dj5eSd5C/nmOyN8kT2nPhG+/n+ogJWBK0E5gfhDiwVGhe8FFoTSxPUEoEQfA02CvgIkwcABN7/9fuj+nz38fGq6/7nb+fL57jlXuEm383eAt8j3MXb2tzS33DixeI24i7kj+kj7V3uAe1m78nyiPl1/u8AiAAMAG7+FgVcIQY5okALM0ga+hrtNC5D3EFSOKg3GUeCSfs52S3PKpwpGCEgCtr6sQE/CkEGJPqu6BnfaNxD1YTRY9BR0a7VG9Ys0nDSv9bj3hzk4OKn3qLjmPGx/WQFVQeKCMEOOxSwF14YIByhIzMoQCchIZ4e+CJjJtogqBPFCWoK/wsaC1MCN/mo9fPxVOwj597kHuQa5DTjAuCO3m/g9eBX4XPezNvT3G/faOTR5VvlH+d36tfrzuos6JPq0+7+83X1tfOM95z6yP43/6L+3/tP/dz4Rv7YFl03GUjJP98gsBBGJYM4vUGqPKQ5UEQoTlxA4C6UI80hKiABEff/x/uzAt0H8gSs86ffV9ZV0C3Rqdbq1rHYX9wF243a39kE3Pjj/Onk7dHu+PT7/94MdxN+EvUQ+Q8rEhIZMB6+I4MmhiJxHQIYmRYsF8MTrwyBA9X+Rv5T/iT83PWK8OrqFOZu4zTiJ+Vr6KPpSulf5Z3iX+PB5Dfn0eRV3/XdSOKf6sHttO346mfoUOh46T3qpu5J8SL1TviR+Ej69fmR+vr6APnH9DoPKjOKSmNKbyeFDgUhXjxhS3pMd0D4RQtNlEGQLnQjiR2oHGcQwPyG8zL0uPbz+PDuItiSyZnDTcgE1NjV4tI42JDbD9133Evd3OXR8c/3aPlL/XEFSBGFHSQgvx5jGigYtyD+KBMsRSqRIwodhhiGEhYP6wtaCIP/WvaP8Irutu4X7Ffmu+C73YndFt9E4wfnYukg68nopubP5xDrAu/77lXrxOeX6NnsjPCT8gvxCu2K6cvo9eoG7oHwpfLx8ZjxBfIc9Ab3lfqM9kQLhy6kSJ1RCTMzFWgdkjeyTCJWy0zWTG5SREjWNQEnJhoyFTwOkP429bTxaO167i/pKtb6xti82b4ozKDT3tQt2Yncft0j3+bgNunj95f/PgPoCHMO6BjvIk0mnyVSIVsdux42JConryVDIEAXpQ92CEQEDwOE/bz1Iuwf5RblY+Wt5W/kK+Fy36ndh94Z433pjPEW94r4MPeO9cb2hfch93n0t/IB9ij4cfg19vfxA+2n6SHlrONG44Dl+ed17GLwnPCC7XfrR+k8768TqjQQUElNFStCHgYunkLxVTFW7EwuUUBM/jyiML4laRvOExUDKfPd6q3j6uA55gnhc9IbxLu6qsBOzcDRnNXI3VHhceUW6LzrD/geA2cIgQ1GEgsWrR1RJiYsPS7uJ9AdMBzHHaEhkyHPFsUMygGG+7X6NPXO7QPkndxj2/LcZeCG4tDiB+I04N3g0+Ny6mXzu/toAvkDzAHxAL7+9vxc+t737vhX+j37jvny9R/yVO3e5XDgjNyl4Mrka+mq6m7qred26SHl6PL/HeY7G1Z5RbwidCLENJZIA1i1TstHfEw2Rls81y4pHU0N0gCK8i/peeFs3NreI+fr4eDRm8GruZ7CWNAb1sXcjuiv7z74Ovua+8MAUwfIDPsUphuxHqkmPy7wMBEvOyOrFLIQyw/0EnwXyA/LBar74/Cv7ZHn1t/M3M7ahd3w367gmeOH5WvoWur/6pDuPfNX+78EyQnUCq4IeQJs/ZH4+fYQ+wz/yP5F+UXxc+wo6vDnouQ+4G/fO93a3kLjhuoV7IPtOOL48k0f1UH1XAVGnSM9JNYz6kMGUphICkfPTUJDTzdDKY4UsgYa+T/qJ+JR2ILR89fo4VnfzNNLxEi+O8gK027YHuTn7jn29v5yAakF9gyBEOkTYBoNHmof2SKgJrkorijhILsXXBITDagKKwibAoD87/Vm8bTuPugA4XPcFdyw4EblYuij6oLrzutw7GzuxvG49Xf8lQXlC/AMxAjkAPP4RvWJ9En3V/vx+fr0t/Az7jbpkORp3mjcqtq+2+zdV+bB7FTtLOXG5vwQSjzdYNFcZzS8JKAx2EI/V+9WeUk8TJ5D8TMMLXUakwc0/DrppN4X153JF8pR2IrdtdmDyyu9T8ENzhfXwOM/8dz5lgLaBwIMOxM4F7kZEx5nIuQiVyPpJZUpVyvmJCYZSQ90B6IDoQJd/2L6ivLf6sjmxeRM4jjec92332XjcuiR6wruNfGn8hz1g/jX/CUCjgaxCsoLGwcHAJn3t/Oz9dP3GvcW8h/pAeR/4YrhZt8A3ebaZdop237b+93U36/k2eTM/58sT1qocidbVTbmKlI340onWt5UtlF1UgNH3DgSKDEP4fpn6OrYd9AyyKy/zcWt0jvZDdYByQXAZMQzzubXTeWK8mz92AiGEaIXqB1pIBsh+CMDJmckBialKLIpLSqYJJIbTRJ7B+v+xPoc9yLyZev55DTi/t/X3CnckN3H4cXl7OVi5yDrsO+F9oD9UQKTBmkJNwqECvAGjv+X+Hz1o/Tr8wXyq+5Y6zbokeHp2njUM9Sk1dvZc9yk3n/eetxB2nbfmwn9Pllvt3l1WKc5RTkiSGdZOl5lUu5SW1J0RaQ4xyPfCGr1u98Zzk/Cy7N1rq67rcrZ04vQeMRqwXfGKM1P2kjrCfplBx4RLxluI6IptCr+KqAqYieUJXYodyyJL3IshCG/FkgLtv+M+Lvy7+sI5Indx9s+3RrdENqf2BXbFt+G4kLmBeoj78f11/35BeUL+Q4FD/IO/QvBBKr9M/kx+NX4nPhe8vHodt6G15PYhtnv2KLTw9DM0+nb5uBw42ri6+0SGrtLM3HjbpFNWzuRRJVTrl7CXadWfFpJVA9Aly7TFoT+vO1W3BTPisLMsBCrK7iyxHzKOMUDwJXFns4b1+Pgve5M/IYJzhWIIJMpVi2NLXEwOjMmMdAsQyluJRIjphuoEXwN3wduAHj2mue42k3U+NC+0aLU1dPl1aTbpeCk5cTnkenu7vD2T/+pBzYPphMcFEwRFgylBWcA4fuK+sL6nPjU8tDrXOMc3SvYYNXG1v7X0daj1iLaId7p48zjJ/ajI8lVFXPhaHtG7DhBRYhOQVebUs1NDVOvSwU7kSxmFB36uee21BfKWL4srw+zHcO1zpXN58IHvsDHYdEg2eDkSvMEBYASGh4uJyctcC53LrowbTC7K4smQCc+J74luhq6DOsCvfcq7sHl5dwm1cXSONFW1LbVLtNg1SDcluMq5yLp9urP8qP9EghaEt8X7BbCEPsLEgh/BfgBJf2G+2b4qPUh8bPso+cM4f3ZGddp2WvZf9435OzoKewP51jr4BK9SqNyt3gNVLk6nz/8RARLoEpOQyNLbkj7MfIlrBBN+OzooNTWx229wah1p7m7JM+F3LvWMNGY1z3ag9705ub0eQiQFXweUSs+MEcxqTFtMNMy3SlVGqQTMBMxFy0ZZxCrBv74cecR3lXXStEazRHL+M/D2orf1uAV43vo+uxk7zTyVvSu+54EVg2SFSwXNw1vBOn/CP6sAKL+5/m694/xcOo+5Yfeudg+1avWy95L5XzmEOjt6fntmOwC8METJUkCd2h/CV5UQbxAT0enTfdJ7TzZPRE4oyv0JaAXdQL065TSgsEFtAChSaDjsz7O9eFI4VjcZN0m387iG+q799kJNRjcJaw0bTzpPq055jNtMY4mYhrmEwER9BIkD9gFzv9h9XznCtuLz63KCMq1yYLQ/thT32zjUuZL7CbxQ/N58wj16PkeApkKARR4GI8T/Alz/pf3T/Q08/b0g/ik+LDyEOii3MHV29Bs09bXd9ys4DbgfeJ953nrRv/oLeVdbH68cqBKdj2LSExXxlx6TA08BzxZMC4mCSEgEvQERu0S0Da+katlnPGizLfD1OPmGeHc3Lbbvd+h6Mrv9fuSCvQVQCZ+OElDJUkfQmQ6DjSSJLIVBAxECUUNRA12Bcz+5vIr5FzX68ujx9/ExMW9zJ/YO+L+5urnievz8p73yfuH/bH/nQOhCeMOYhF7D7MLzAqqCMUBsfaf7bzqAOov6MHlweRS5N3jEuDS2lXYDttw4d/pZOhv5PD4lSYQXvB+NHKQUwNFED/uQ55F4j2+P7A8OjJILrompBZtBBfqVdbHxlyvtJ8Wn2axmcw631DpPeyT5/bkq+RO6oX3/f4NDLodrCzsOCA8DTlHOdwy6ScqILoSfAq9BVYEIgjXBMz20ea+2AnO7MbVwKvEac501yvgQuRv6BTqXuq27+73Af73/98A8wXuDtYPWA3dCUMHVwcRBMP+C/uv9SPve+w/6q3l+d7K2izfTugN7urqmeb24lDffeteEflDlW02cAhUcUNfQnNIVEyMRJk/4j+INRssjyTyFrcH/vEL4KTUusF5rC2k3q4yyJTckuT+6IrmSON74bvl0/ULBLIOvBpYJgIwpDYxMzoxWCwzH+cVgwz0Cb0MDw1rDUEJevhA53nYfc8F0DLKOMfwytDRtt2T5oTrVfAK82r0BPfQ9dH2gfoaAh8QBBZSFPkMGASi/tL7xveY9eHzme7D62LplehZ5g/kA+P25Uzre+h15B3g998Y92MkzlCpbdtj1EMJOu450D3kQA84UDkLQSw4fDDDJo0SlAEk6WDWGc5pvGesKa3PvfnbffBu9A/1gO1k5ljj4uUi9PsCVxEuJdszFDpsN8YqESTXG6kOKgbM//3/MwS8AqMBzvwY77/kHNzt2FPZhdPPz1LTvtqB5o7vOfRk+Ur7jf6AASYAv/7k/TMDLw5hFIsTtw7lBroBAPsA8dnqRObp5Izm3Ogv6gfq4uVk4F3fvuM46UbsSutW6/L+aiQwS6tl0WbdWXVRv0jdPs42YSyZKKUqKiroK60nIRaU/z3p+tflyou5VqnepRKyGsod4ebxmvsP/qj9Ufvu+PL46PtgBUkXUirKOVM/7juLNc0pWBpeCbH3hOuV6Lzqa/F59cLxhOp74Y3Y9s+xyGvGv8wH2cbnJ/SY/QYEJgejCjMNzgzxCX0GUgbQCuwNUA3MCgwIdAXB/532ceyZ4wjeMNrs17LXNNgH2grds+HI6GLvA/OL8vfxaP/eHS9DCWGCaGJgmFg3U0NPBkl7PEky5CtfJhkimhe9Bd/yqOLf2OLRj8VItyStBa1ouYfLm93S6lPz/vqEAXwEtgNCAYoGChRGIlouhDTUNqg3xTR3LnklExYgAzPy6eYI4zrhKeG05Nboqej84K/UWcvkyJPLp9Sj4f3u7vnxAfYJmhHnFfQU2BGYEMkQbw7XCskI5AjHCqgJgwS+/DPxT+S+2evTRNIh07bV2dlS3w/meetV8Kz0S/Ue/vIU2DJcTwNbXlaxUphQtU1dS5lCfznaMX4mBB8oGTcNaP537priqdz60V/CRrapscm2xcB4zSfcsOhO8d72bPx6A/UGtwdaCx0RyRmlIVQmTCs0LnAsHylRIt4W0AiO+MXsa+cn5MziieNA5afmm+Wz4SrectoX2NnYYt4Y6ALy/vvnBTwNXhA6EDcORw7VDYsKTAjtCIcMvw9vD1AMaQevAPL3ge435/jiluAM4pnkb+fk6c/oRecj5wjrg/isDzwpxz23RUNF2kPtQFw9TTd6L4gqziZTIj4fhBsuFcMLmf4Q8uflItn+zLTDvMECxrTNt9d/4aPoAu6p8Wr2TvvH/G79vf/EBcgN/RNDGMEcxiCzI7Miexy1ErkGDv0396HzQ/GT737uC+9t7wvubuvI5yflg+Qd5knobOpo7tL1Gv+7Bm4JxAisCHYI9wfcBgIGNAd0CVoKPwqSCQMHQgPx/TD4H/Jm7bPqy+kQ6qrpsOm17Gjwf+/n7EfvP/wxERMk+y1/Mmw3JDv3O4c4CzHaKR4knB+mHi4f1xuKFVQNJgVG/iz12ujR3B7UK9Ac0W/UPNir3EPiM+jm7C/wWfHG8gT2g/ms/dsBJQXHCfgQ9xdfHaocThY+D00JAgU4Af/87Pk++bL5Xvoz+Wr2DPTf8e7whfBo75DttuxP7cvwOfcX/TYBZgM7BCcEkwTpA28DkgSeBS8HqAgVCPIF2gPLAGX+ffv19xj3Pvd19973Yff29uT2Z/Uu9YD2nfdq9zH4h/6JCasWHyAxIuwhbSHpHcUbihnaFfkUDBJFDqAOvQ3yC7oKAAcnBKwB/PqG9ETvXutU7JzvtfLi9X73svi1+1/9Rv0Q/GL6WfoZ/FH+Df98/S37Ifo2+yn+zP/c/on+w/2f/HL8f/t9+mn7Gfxe/W//n/2w+kH5l/h2+SL6Rfog/W//R/9d/vH9QQAYA4kEvwXjBuQHUwc8BTsEBgNsAMH9rvrl+Ff4Ifet9u32u/dD+MT3Kvd49sH27PgS/CsA7gNSBtgHeQdgB5gHdgdsCQwLiQorCoIJ1Ah0CQMJVQjkCNoHLAa2AxIAhPxo+Pr0JfRK9Sj4H/vQ/ID/9gFfBAIHywdKCHYIfwdABpAE6wG6AJoA5AABA8MEXwVhBOQBsv+S/rj94Py5+8f6GfvC+cP3GPf09i/5Rvzv/Nv8SP6k/4cBoQK6AHP/x/5Y/sP/oQFGAjQCBwH5/oL9Hfxi+qT4/fdd99P2AfcR+JP7wf6GAMcAEgB3ALUBHAMJBUoHyQgnChwMoA2BDgoNFQmOBWYD5gFwAFL/Tf7H/nr/W/9C/VX5QvWY8nTyFfOS9M718vY6+BL6qv1nAcoDxgXmBs8HdwjZCNkJkAr7CjILWAo3CrwIkwVQBHoCwACx/iD8Rfsv/Dr8pfvH+oz5Xvq++gP7vPuU/ND+ZQIGBncIcAggCG0HZAYZBpAEFgPQAVv/cP0r/Jf55/cq9iP2qPZJ9lH2gPYf+Nj4VfkQ+gD8t/0P/6/+xf4KAdEDkQexCAMIxgYqBrUHuwiuBxAGiQSeBO4FCgRPAdD/Hv7T/mj+QfxF+2/58vdF9yz3HvdU9hr1n/Vz92/5jfoO+mn6Af2PAUwF5gc/COoHOgfcBYYG3AbEBg0HGwYaBU4EpgLAAccArf+H//v+hf5G/xf+t/3K/tX/fAJPA7oCzgIYAscB7QIlAu0D4ASVBKsGxgQ2ArUBLv9U/on9vflJ+e75+PqC/n7/Kf3f/Ff8NP1Y/1H/J//r/zsAugAKAZ0AfgJ8AvkDSwWtA08DlgIpAJD/N/9u/osAXgApABkBxQD7//L+efy3+lX6v/kD+6H7APsA+6z6nvo2+3/7nvuu/DL+sf8ZASwCqwJcAtsBCAHJAO8AnwDi/2MAiwCjAO8AewCSALoAaQDZ/wMA5AAsAqQCbANxA7oDfwQIBF0EpwSeBM8FLQcJB48GlwSbAdr/uP8JAPD/Of+t/Rf9XP1w/eD9A/85/1b+DP2n+x/7sPuc/LH9Gv+g/3kAAwEKAWUB2wEXAscCsQKkAcwAggB5AEn+dfy1+0T8Qf0R/eL8Yf2d/SX+0PwS/PH8NP3D/kn+3/zZ++j6YPv2/F/9Vv23/L79bP/rAFgCXAFhAaoAYwC6AWMB6AG1AQcAAQHmAQgDhwMyAl0CkALpASkB2f+6/wUBrwKXBPwFQwjfB28GpAWoAzcD3AKNAWcBQQHgAHIBEQLJAZEAoP+J/g/+zP7U/Uj9ef3A/IL8nvv8/L796f4pAcj/T/9q/tf9SgFaAhwCuAIeAWkBugPZAjUDiwHbAOQA8v8s/0b7OPwN+S366vjj92f6R/ql+2H9x/3i/TL8Uvm3+cj47fxt+//9GP6v/oQAlf8bAY8A/wEeAbgBXAKBA8UCgAFGAR4CxQKyBOwE4gMpArMAxv/a/6QBugETA+cDvANZBNUBjgKrAoAD1AgEBacFfAMNBBQH4QYtBgAFwwKAAJ0B4/82ANkAowBj/gkACvzj+a759Pde+rT5PPtw/Mn8Tf2h/dL8r/4ZAIkBdQQqBYYGSQZbBVgEVgMgAcUAXADi/0j+5vz4+077WfqT+CP5mfkJ/G77i/wi+lf56vqy+qD5lPt//B37Of2R/F//Fv9nAJQAuQBfBHUDOgUNB90GbQhXBh8FgQSoAVr/Zf32/TL/3v4iAOgAQv8E//r8r/w9/VH9Ef2C/Aj+LQBaA24DMAT2A84CFQN5AtED9QT7BeoGBgYHBq0DTQFuAM79ufyA/RH9w/0+/xP+4Pzd+xn96/2+/d37O/wn/4n/kgH0At4CSwQSBcsGqQQeAsYD4AKpAw8EgAEs/5b+vv2f/c78jfri857ys/It9Bz3kPbQ9uX28PcH+7v57vfP+xT70v7M/rMAkASTCOsKgwtrDicNJQ7ZDO0KBwqBB3wCgAEN/+r8vP3x/LX9pP0u/YL72PrN+Sz2IPZx95b6yv7CACcC5AL9Ah8EFgUvBb0FUgbaBdcEmQSUAxgDqgLQAcUA1wEGAq8B5AEVAOsAUwK4AYcB2wCO/0//yP+C/nH+GP8a/sIAIgG+AYsDDwJVAWAA9wPnBB8E5wTuA8oBQAJ3/sX8zvz1+Zb6A/QD9hXzvvKH9fbyMPbm9PT1s/Rd9Zn3dPpv+bD73ftF+2wBGwGAA+UDDQOYBpgIIAilCX8ICwZsBPkCZgIBALr/9P4gARUCbAF3ArUBMgEJAGX9/Prm+6j9Pv93/zYCIQWuBnQJmAhZCC0IfwbTBPIDwwMKA6YCbwMhBOsE3gRaA6sCrQErASICXAGfAeQByQGNAl0CtQKzAWEASf8c/mv80fpB+hL8SP2AAM7/8P70AID/hAHQAO39Ufyx/Ob7t/nE+ef3Gvji9jn0BfTS89vycPPU8iX08vjI+cD7pfvf/CL91vtR/VP9bAABA7QDAgYCB0sFiAYsBdwCAAZWBc0EngWZA+cChgAi/Kv4JfWT8hX0qPW9+NL+SQLjBYkJygozDAQPVRAAEc0Qcg86DycNbAwnC1EJbAu6C2wMMAwvCC0GUgTbAA3/CP2L+zz7cvs/+5760vq++6P9E//H/hf9H/so+ur6mPwM/o3+w/8BAHcBRQQDAlwB/QFS/8wBMwOsAIQBHgBR/swASAAy/kj8gPc99IbyrfDs8aDx2vB98pbzh/UV9g32dfZS9n74Avrx+tD+HgC6AGwC0AE5AgoC3P+U/w4Av/+r/3f9E/xK+8/4tvdA9bPyR/KW8nr2jPp7/cEDPQinDYcUMxd1G3of/CDZInAiTh/SG4wXeRMeEkgQRw6ODPYJPAgEBvQCtwB5/JL3F/Mn7hHteewO7NPsZeyz7XHwOvIe9Eb2evjU+rz8kP4TAPkCTAdRCrwL+QseDGQMRAw5CwUKSgi1BswEsQDX/Tz6w/Vz9dvzH/LW8ufwxu767IfrNe3P7wPyvvKI8yH2CfiF+YX5KPii+Vz7uful+0H7UPs//Bf9mPxe/EH7wvkQ+U74ufjW+ED38vfC+Vn4ivjV+Jb7kwU8DtEV/R6pJh4uFDR7NnU2/DESKwkjeRu2F74T2g8WDW4KYQl2B/ICCv7j+Cf0wvBW7PfnNOQq4OPdut0234visOZG64rwGvXc+Af7vPwN/8kB3wU2CY4NJBLkEzEW8xe9F9oYkRdBEzEQ4guCBykDwPx69n/xWu346RTnfuMO4QDhQeJG5VLo4urT7ePw1vPS9fn2JfhU+Xb7Yf24/hcAJwBcADgAd/5R/KD55/b49E30bvRK9CL0sfTO9Zn38vef9qn4GP6pBgUSiRvbJO0uUzTiNl84fjW4MTYs1ySTIZcfvBv9FjERFg3UCugGWAE/+xP13O676D/jkd7D2+jZ7NiC2qTdmuBf41nmB+qQ7p/y5vWw+dL9YQGeBAwIsgyoEYwVYhn4HHwgNiQcJuIlciM7HV8U0gpKAQf5rvJ17XjpKOcV5aXiseGj4R7ifuOt5FvmV+nJ7OfwWPXe+Kf77f0+/0v/Mv5R/MD6IfpU+SX4z/ee+MT5Ivod+dr2vPQc9HP0WvWd9Vr0GvUA+hMB+gqmFS4ftCo7NdY6wD0APaA4TjMHLIYkaB/2GoEWQxICD+kMpgl2BAr+KPeP8HvpDOL52+jXNdX20zPUq9aQ2nbei+J85sDpm+zu7mDxNPXx+UD/TAXXC0QSaxgNHlEjLih0Kx4sZCr5JvEh0huQFFAMGARD/B718O4o6QzkYuDf3vne9d8i4c7iSeVm6PHrS+9e8tD0nfan+O769PwT/tL99Pwr/Iv7+Pqc+hn67Phz95L2N/fs+Kv5u/nq+Jn3Qvf49Djzl/bD/M0G3RNQHkwq5DVdO+k+TT4AOfwycirHIl8fxxyEGsoXghTFEl4PVQlsAR342u9O5ybf39my1SXTltII0jHUvdfg2dXcB+Bs4+Pnhuuv7vzydfcy/W8EhQuWErcYMB7kIwYpYSyULcUspSoyJxcigBtzE+cKRgIO+uPyn+xf527jXOCX3tPd992730ji3OTG5+jqY+5u8sH1u/eM+Tj7r/zU/c799vwO/Ir7efuU+0r7qfrR+Qf6IvvU+gL6R/kN+Gb3fvU68sXzyfkGAg8NyhayILcsUzSBOFY6MjcvM2UtoiUYITUdoRjiFCsR4Q9kD4sLgwXy/dX1ce6v5Znd99cy067Q1s/F0MrU/Nhq3NzfluIE5VTnvOkc7hn0lvrBAagIABD7FjAc2yGDJ2cslC8VL64s3CnTJVkgQxm7EKwIXAFb+n70Au/Q6abldeIV4eHg+ODL4STj++RA6OLrbe/z8t712vjb+zD+6f4//l793fyW/GH8Tvyu/GX9Kf6d/qv+pP47/dr63viz9sv0wPL57zXxM/cI/1MJJRPrHPcpuzMBODw5ATUVL8goQh8zGOcUixKEEp0ShBIKE1AQAwoFAt74B/BL5xbfr9m91u7UBNSy0/DUjNfW2Xfc1t9S5I3p8u2K8ZL0S/fR+pn/+wV6DhsXVB88JzYtyDC5MasvRizOJ0kh7Rn6EmoMIQYp/7H3C/EK7MvofOaU5KjiA+Ft4N/hceRD5wPq/+zR8J304/c2+uj7gv2b/qT+I/7m/FD7TPom+uj6G/xN/Tb+8P7I/tD8b/oz+Kv1DvO67hHs5e+F9ysCTg4kGH4k7jAjNzo60DeDMOcpVyEtGkMYyhZ+Fg0XJBeRGHQXdhGhCPT97fMg6ivgYNka1WjTw9M71O7We9rT3PneOOD84evku+ba6CLsDfAg9p/9rgVgDhgWSx11JNQq2i+BMhszQTIKL4gpwCIFGwYTXQu9A878D/eP8eLsiuk65u/iud/03FbcYt3N37zjB+i27BbxmPRJ+Jr67PqW+qf5Sfml+WL5yfl5+7r95/+sADsAW/91/ob8l/mi9jLzKvAg7RXqDuy19OYABA/HGoYkoC/xNlg4wDRrLM4kkB63GJEXsBnoG+Adfh2EHIIbTRUVCk39z/E46S/htdlf1djUTNdG2tzc49/m4RXixOGn4Yvi0uO25Afn7+vL8sb6WgO2DCEWNx7gJBsq1y3eL/QuGyzNKIkkqx/XGlIVoQ/pCV0Daf05+CDz2O4/66XnaOR24djfB+Cj4PbhD+Sp5k/qbu0o8FfzifWd9rT25/U99Xf0UfOG8271mfjf+wb+w/7X/pf+wvwQ+k33QvQM8hjwuO6o88f+oAxDGk4jnitNNVQ6HzqnNB4sMCbaH1cZhhcxGEwa4BtpG2EcWhusE3gGO/dE6/Xh2Nhc0i3QI9NZ2A/c2t9u45bkE+RY4vrhA+TK5ern8eta8oj6DwJqCX0RGRkCICslvSgSLIIt+Cw/KzMoQST7HlMYCBJmDC8HaAKU/XL5+PX18RHto+eb4vzedd2t3RvfQeIq5jHqWO5p8WfzP/Ts8s/w2O4w7W7tz+5T8Tn10/ic+zT9RP0g/Cv6KPgT9g71cPXy9WH2mPWz9on9nAh+FYcfQCamLrg1VDgMNpQt8iUbIS0cORsrHSogwCM6Iy0hxB4bGDUNEf6y747mud8w28nYbdhq24ze7N9F4Snh5d963pXcFt3U39fi7OYV7ObySvsgA98JCRAGFlgcxiHBJdcndSfZJWwj5yCOH/Qd1xuRGZIVuRB1C9MEIv609yLxyet65xrkJuIk4Sbh2eEI447kr+Vr5s3m7uZv5xbo6ugy6rfrKO5e8YD0yvdk+iT8SP1h/WP8A/vd+QD59fjU+mP9qP+WABb/qACnB+YQKxr/HkchJyYrKnIrvShiIs8eZh36HDkfUyHvI4AlOyPYIOIcHBWtCgP+K/Qh7wHrxuf05ODjT+Uo5jfmR+Xt4hTgv9ym2rraidv73Ejgg+bu7zz6NwNGCqwP6xP3Fs8YaRkOGQcZjRpdHZUfRyC9HuQbbRlUFmcS/Q36B58BxPvp9fDwS+xT6M3mQueP6Hnpqejy5gHl8+KU4fzgZeHH4vbkQ+iJ7JXwcvRE97j4FvqY+uH6dPuy++j80/96A2AGfwdcB44GJQUOAiv++f5iBWIOFBdqG2IfdSWTKFYomyT5H8QfniBmIQ4kESYcKBMnAiInHcoWIQ68Awv5BfO08MHuAe0p66HqU+pt56HjPt8X2+PXYNX81f/Z498n5uvrWfJr+Kj94gHrA/4FZwjpCWYM/Q2QDgUQgBHiFLUYjRoQG0UZQhZ7EuQLjgSH/Qn4xvae91352vpK+vD4BPdy8yzvgupx5rrkn+Tn5Y/ofesf7kvwJvJP833zRfJy8Izw4fI99mj5zfuX/sABJwSvBG8D8gHbAK//R//6AKYDKgYNBocEPAj8EP8axyI0JREo8S1vMMwtvybnHr4c8hyYHM4dZh5PHhkczhVKD2UIx/6J9ITr7uZf5nHluuNn4qbizuNT48vh6OCC4CjhU+Ie5MHntetL7wPz7fag+ob9d/9fAZMEKQg9C4UN2A7ID5MQMRHEEeoRfRAuDqgLlAkACPsFlwMFAksB6AAVAL79o/qn9/b0u/LN8Hzu9OyZ7JTs/ez07HDs5Ow77fTsFe037U/uVfAv8sn0kfjW+z3+8P6z/t7/twE1A7gElwZsCU8MqAyoDCAQvRYVHgAiYCF7IqslwyYFJc0fzBuiHAgdYxu7GVcX3BUnEywNEAjeA9z+Bfr49L7xBPFQ7+fsY+vW6mfrOOvC6dzoPOgt6GfoTOg26THq9epK7I7t5++s83732fsyALIDbwdCCroLygwIDXgNMw6eDhAPbQ+9D0cQcBDqD4gOtAuGCP0EDAG1/YP6g/h49yH2ifSB8jHwW+5x7GDqUOko6fzpZesw7LXsHu157Q/utO777+/xMPS/9o/5NPy+/n4AJwKHBDMGrgeaCMIIqAlGCroLrBCMF8cd9yDCH9kdMh15G0oYIRS3EeASMBWFFlsWehVYFAES6g0DCScE2f+h/O75b/jD96T2mPUb9NnyG/LN8Pnun+zG6V7ooOiI6Ujr1ezV7jHyRvXE95P5xPql/Ov+PwARAdsBmwJtBG8GTwjBCvIMxA7qDyoQqw8UD0UOKg28C9cJbwdbBA4BzP1R+1n5M/dT9Q70XvO88nrxu+9J7h7t1OvO6mnqJ+vD7G3uL/Ad8hP06fXE97T5Hfyx/rEAagLtAyMFSgZQBzIIWAnZCjMM7gwsDMMJfwbgA1gDWwW8CNcLng1kDlsPBxCKD4UNFQtLCrELoA3hDs0P6hAQEu8R9w9vDNsIEgbTAxcCsQBx/7X+Wv4O/pT9Mvwq+gL4NfbU9LrzG/MX85jze/T89DD1aPUP9cv0A/Wx9TP3Sfkx+1P9WP/CACICJwOvA0kEgwRQBCgEYQOXAjQCsQFzAfEAzP+S/vj86vos+Z73W/Za9T30x/NC9Bn1DPYu95z4efoS/M78e/2i/hAAlAFdAsgChQM8BMQEQgXTBTwGYAbhBV0FHQXPBBME6wLoASsBhgDD/+/+i/5z/lT+QP5U/nn+lv5d/vr94v0T/hz+Qv6Z/lb/kQBfAQUCegJuAp8CxwIPAwQE/QSiBUcG9wZgByoHGAbRBEkEIQRCBKAEFgXNBVkGXQZOBjwGFgbRBYUFWwVkBRIFOQRaA7MCNgJeAR4A5f76/UH9Q/xV++/60vrJ+pr6IvqR+cb4pvfK9rT27fZs9wb4u/jP+Rv7O/wu/e/9h/4j/6D/GQCNAMcAqgBRAPT/6/9RAK8A0gCuAKgA7QB5AdsBwwGGASQBXgBG/+T9kvys+177UfuU+wH8Q/xV/D38EPzb+5H7KPsH+2X7Afyq/JD9ov7j//gASgFfAbcBUQIGA3MDxgNUBMQE2ASTBEsE5QOUAzsDJQM9A1IDIAPDArMC9AJRA6QDlwOVA+MDMwRQBAsEtgPFA/0DXwTeBEUFlQW/BZMFMwWbBHMDRAJaAbUAPQBN/xr+e/1K/UT9K/2d/Ff8U/xD/FX8ZfyU/GP9Qv7v/oP/jP9h/zv/7f7e/u/+8P43/1//Mv8h/9z+nf6L/on+aP42/vr9qv1p/cn85vsi++X6SvvE+zb8hvzH/Bf9Ff3k/LH8kfzv/I39Tf4y/+7/ggD6AAgB3QDfAOsARAGhAbwB/QE/AjcCxQH/AD8AEgAkADQAMAA6AGMAhgBrAOP/HP9C/n79Ef0H/V796/3D/sb/nQDzAOsAnQA6AND/Lv+X/kL+VP7b/r3/vADHAYQC5wIgA2YD9gNZBEsEAAT/A1AEzQQfBZcFQwZKBzQImAhXCFUHBwa0BK8DRANLAwQDrwJIAsUBSgGcALz/+/6i/j/+Cv6f/QP9iPwD/LX7qvun++b7Qfyh/Bv9bP1y/Wn9e/1+/Yf9r/0M/qT+O/+r/wMAOABTAIYAlAB5AC0Aq/8p/6b+VP4c/uv90P1+/S797fy1/J38o/z2/Lf9fv7//lj/W/8D/1/+df2s/Er8WvxO/D/8SPyc/CX9pv0K/jn+cP5z/lb+P/5q/uv+Yf/T/ykArAAeAT0BCgGzAIYApQAcAe0B+AIhBB8FvQXNBW8F+wRbBMYDZANLA6QDIwRkBGwEPgTnA8MDbAMNA+cCBgMwA3MDaAPtAmoC5gGWAVMBAwGjAGsAOgAMANf/df8g/7j+m/6O/rr+LP96/63/uv+f/4D/Of/t/q3+kv6A/iP+qP1V/RP93/y8/JT8lPyL/Hf8WPwv/Bv8Rvyo/Aj9af2C/Xf9rf37/V3+h/5c/in+6f2o/Xn9Tf1p/bH99v1n/rr+9v4p/zL/Cv8B/+f+0/7p/hz/lf8pAKUADgFuAeYBggI+A9wDTgSHBG8EOwTnA50DbgNhA2MDhwOxA6QDYQPVAjkCsQE4AZ0AFwCd/zf/5f6b/mr+T/4w/vT9wf2m/Z39t/26/df9K/7V/pv/VQAMAY8BMgLSAj4DvAMUBIME3gQNBYcF6gXzBbAFGgVHBF0DYwJfAXAAsf9C//3+uP6F/j3+6/2v/YT9Vf38/Jr8IvzU+4/7NPv8+uj66vrP+oP6SvpI+or62Po4+8v7Vfzm/FX9mv3H/cn9uv2v/d79RP74/tX/ugB1AQMCcQLDAicDYQNUAycD9gLXArUCgAJYAjYC7wG8AXMBUwFCATQBKwEwATQB+AC1AEEAl//5/mX+Ef4T/lj+s/4E/0v/mf/c/ycAYAB1AJoAxwAXAWwBqgHoAVECugIpA5kDwwP5A0AEkgTuBA0F/QTMBHEEGATBA4wDQgPkAlgCwwEbAYAA5f9j/yP/Cv8I/w3/8v6+/pn+fv5c/j3+SP6J/vL+Zv+p/5D/MP+8/if+nf04/dL8efwX/MT7ffsU+5r6R/oz+kr6hvrG+hf7YPuh++37IPxh/Mn8J/2b/UL+9v6y/2sACgGZAe8BGgIuAiwCBgLyAbcBkgF1AW4BYQEkAeYAgABYAD0ACgAFAAwAJgBMAFoAZQB1AIQAdwBKAEYAbADMADABmwEBAlECqwLcAvQCCgMlA1sDiQOiA3wDJwO1AjsCzAF+ATgBKQEgAfMAugBXAO7/lP8n//T+8v4j/2b/qf/g/wwAEwAHAOL/wf+v/4n/aP9G/z3/T/+i//f/QQCEAL4A1wDMAKMASgDc/2H/Kv8T///+xf6k/nr+i/6r/q3+vv6b/nH+RP4n/jn+fP6W/sH+5f4R/0n/QP8G/9P+zP6d/lj+5P1K/er8r/yI/Fr8PfxT/HT8uvwg/ab9MP7H/nX/BwBYAHsAiwCvAMcA9AA9AZkB+AF+AhYDpgMKBBME+wPBA4MDJQO8AnUCNAIFAu8BxwGUAVYBCgGjADgAv/9j/yD/1/7B/p/+ov7M/jf/mf8JAGEAmgDXAMUAnABRAC8AEwApAJ8ASwEnAvQCqQP2AwYExQMqA24CzgF+AWkBhgHDARwCfgKrApsCRAKkAQoBWACk/+T+X/4u/hf++P3X/bj9kv2E/Uj9Lv1h/dX9VP7l/lj/if+Q/zD/yv5c/vH9nf1n/Vb9cP24/ev9HP5I/oD+r/7Q/uD+zv64/o3+Sf4T/uL9uP2Q/Zr9vP3d/Q/+Rv6E/tX+If9J/3r/kP+6/+f/BwAyAEEAeQCsAOYA8wD6AAgBCAEkASQBGwEQAQMBBQEFAREBSAF7Aa8B8QH0Ae8B0gGmAYYBdwFKASkB/wDkAPMA+AD8AAUBFQE2AVEBXgFNAREBzgCEAFcAJwAZADAAYAC6ACkBkgHBAckBkAFRARwB1gCaAGMARgBVAG4AmACsALUAjQArAKj/6/5P/uD9X/0u/Ub9wf1x/iH/0/89AIYAhABBANf/Wv9E/0L/Rv+H/7b/zv/G/4D/Kv/B/j3+yf1W/fP86Pz4/Bn9Of1E/Xf9rf3//V/+vv4w/27/4P9eANkAVQGPAdQBDAL6AcwBqAGmAZkBmQGxAcMB/QEYAhcCCALBAYkBTwEKAccArACWAH4AfgCSAKgApgCsAKgAjwBeADYAKwAbAB0AAwDr/9f/wf+m/5//lf9q/2T/fv+X/4n/d/9J/zT/Uf9Y/3X/gP+S/4n/i/98/2P/aP+D/7b/6f8kAEoAmADHAOoAHgE4AUEBGQHzAKoAbAAgAMH/fv80/+3+uv6f/pn+q/6k/oL+Xf5L/lH+Uf5x/nf+fP53/qj+sf66/sH+rf61/rP+zP7w/kn/tP9DAMUAPwGPAbgBwQGZAUsBCgEDAfYAEAEBAeoA/AAFAQUB2wCcAI0AkgCsANsAAwH0AOAAnwBuAA4AoP9C//b++/4N/yz/QP9s/4X/v//p/ycAaQCsAPEA9gAtAQEBrwBlACcAGwAZAC0AZQCfAAwBfAG+AegB2QGhATsB7wCfAEwAFwDl//n/FQAyAFoAdQCAAG4AVQAQAJ//Mv/I/kb+9P3X/Zj9uP3p/Rf+ef7k/hj/Lv8N/8j+vP5w/lz+Yf5l/qj+4P4n/27/ov/K/wEAEwAgABAAAwAvADoAWgBwAI8AswCfAJwAcAATANz/rf+L/6L/qP/g/xAAHQArAEMAYABpAJQAqAC1AKMAkQBwADIACgADACIAQQCRALUA6gAFAe0A4ACWAGMAJgDy//3/GQBEAKEAAQEcAVwBcgFnAXkBaQEuARkB4ACjAH0ASgBPAFoAZwCJALkArACUAJYAYwAtAOf/uP+f/3H/Uv9G/yn/If8c/+X+zv6v/qL+v/6+/gH/5/7T/u/+3v7i/uT+6/7l/g3/I/9H/2//lf/I////JgBPAHUAmgDMAPYAOQFcAY0BnQGGAYkBfgE/ATIBHAG8AIQAYQAgAP//4/+t/2//Sf8K/7X+kP5d/jf+Jf5N/mP+hP6m/sr+8P4h/z7/jv/X/9P/EgDy/+L/2f/p//3/QQCxAAoBYwGsAdcBygG6AY0BcAFcAVoBZwGWAboBwAG8AXsBEQGjAEEAxv9+/0//RP9H/0f/Wv8+/xP/2/6F/lr+/f3S/ab9sf0G/if+pP68/u3+Lv8g/0f/Jf87/13/WP/T//f///86AE4AkgCmAHAAfQCuALEA0gCPAEwAXgAiAAoA3P9f/yX/7f7M/gr/Of9P/8P//f+UACsBMAHbAMwA9gD2AMIA8v8KAPQAoQE7ApYCjAPWB0oK5gcGBoED7QB6//76oPaM9hH3mfhQ+6r8Y//ZAgoEqQOzAuYApv+O/jb9nfxn/Y3+ev+hAI8BhAIPA5ACtQGQAWwBqgASAL3/WP+8/6n/Sf8y/+L+BP8l/7H+2/7T/pL+hf6S/nH+Of7//Qr+ef7Z/uX+BP+b/9n/JgBnAJ0AtQAIAd0AmACjAG4APQB3AEwALQB3ACIAPQBGADoAtwByANcASAH9ADQB/wCEABsBSAH0AEQAYAD9ADYAfgAbATIArgA5AWsAmgABAJ3/iQBwAK8A2QB3AF8BwAERAa8ATgAJAIYADgA3///+of4a/6b/c/9s/+n/hf/Z/5//tf7v/rP+uv7v/pv+Af9f/5f/IAD0/8j/CQCk/6n/Zv/w/oL/Rv+g/3H/ev/T/24AiwDLAHIAw/9cACcA4P/Q/gr/6/2a/V/9Xv0w/Wz+9/+t/+IBgwOZA+oFnAZWBMYE+ACG/SD+MftM+eX5avdi+5L+Uf0V/0QACQAlAqgBCP4n/vj+uP+L/jn/QP9qA2oMLAw8CIoHygOPCLsIKvqk+Pf5wf01BbP9cPyVBZkKaAoGAxv9yP4DAdv8t/So8zz56/w2/mn7NPvOAcoCKQAO/eH7Vv1V/Vn7KPn1+w3/5ADkARUDRQQJB0EHQwXTBZIE1QTiA/QCJwKLAJYCygE/AWoCCAHBAr0GxgVkBqsGRwfACVMHyAI//tn8u/pb9uXwjO2T743xXvHl8FXy0feY/B79/fyS/fMANQNTASX/jv5hAlQFpAXzBW8H4gvKDtUNkAtoCtsJcgjpBMIABv9U/+D/A/5u/CD8IP0r/e76ufgc+A35FPgE9hX0v/a5+q77xfuo+47/qwRYA0gABwChAooGnQSv/9z/LAKpBJcCBf6h/p8ASwH7/1X9/PyH/5D/jv6a/XX9Y/6S/jb+Hv5s/kD/aP/0/t7/JAClAGMBkgGZAk4ElQSIBUcG3QZ5CHII5AcvCAkIcAhaCH0GZAWMBJkDDwPSAYsAnwBlAFMASAC6/qT9//x0/Cf8uftj+yb8Nv1V/Zb92/3O/q//0P9s/9f+uv5U/lz+Z/47/uD9RP0X/T39Zf1+/f38MvxT+6P6rPkL+WD4I/h/+NX4PvlS+Xv5yPnc+c/5wvlp+bb5/Pl0+9b7wPst+9H6Zfuq+1z7BfsB/Ln8lv1c/r79fP2N/pf+kP6X/nT8gAJEDEQTphoZGosd1SeaKkkomCO6G0scFxs0EIcKpQc8CLYLsAd+AvEByP/s+4D26e8w7bXqb+b/4xHkJOdP6tLsxvDp9Y756vpn+sf8UQBEAQ4AlP5MAMQERwdOBz0IWgoCDTANtQn+BkIFVAQDAoX+EvxQ+vH57PhC+G34Efhm94f2cPWH9JLzOPKq8TTy7vGM8ffxZfMN9iz4dvgS+cv60vvi++r5H/hS+KD4ufi0+HT4hvmY+k77PPuY+mj5UPkt+Q36n/uG+2f9o/y6/RcIzBWSI0gsjyppLFM1IzimNu8tSiPqIpEf0xWmDS8JfgrwDeoIJQHQ+0n2FvFP6hjlG+IC3z3cgNpA3Z/jyuci7JPxuvW9+Xn67PgH/Gb/tQF3AzMEkwcNDeoPjRKHFGgWKhiiFsMS3g7BC+8I/gYaBLEADP35+RT3BPZl9d3yg/DR7XLr8eoZ6rfpkevc7YjwufP09fH5Of47AXUDugPwAmMBIf8M/WD7QPnY98r2kvbg9nP2BPb79Sn1QvRk8mvwT+4M7MLqwOt77JDtre9w8f/1MPgA+qsGABriLHU4mDWhNaRBzkk3ShpAkzHcLgEs0R8nE8UJFwgKC38FY/zp9K3tlefE4cHd6dtv1+nRd89d1CXeceR26RnxxvmxApwFOQOaBTIJcAu9DNsK4go4DnIPghH0E18VgRYIFMgPgwwKCVAGAwNN/0H9svos+CX2MvRs9PTz1vFL8B7ujO2M7lLvqvF59Dn2tvhl++/9pQA0AboB2wL2AjQBCP76+hD6Dfoo+Hf0UvES8JfxrPMv9LXyevFT8UryhvOY8hnx6e/18MvyDPMk8+jzw/X1+FT4lfgWBYgZbC5NOUM0qTOzPaNGXUihPagv3SpuJCgXpgpLAYf/w/759xTxj+sj5jLhnt664VrlP+Mm3nDbxN9r6AHtkfAq9lf8RwPCBnQI9AxOEJoR/hDpDSoMDgtjCEgHywalB2wJYwhcBzEH9wYCB/0D0P7A+vT2mPRV83by6PKl8zT1bfha+yX9efyl+hn78/uB+436FPqf+yX/ggFhAk8DugO9A4MD/QEI/xT70fbQ8x3yb+8u7IbpIulw67/tTe/f8NjyzPVx+NH5jvlL+L335/Yg9v32N/cY+Lv3+vND+S0K7h4GMU40tDDeN+5BnUZmQioz1yc4IW4U2Abf+131lPQO8/zwDfGy7z/sH+kt6lLukO7q6eTkceS86obx3PWs+g//wwPNCIkKhQtUDDQK7QgzB1sEcwO+Adr/QwAZATID2gTcA+cCiwMYBvcHVQZfAq/9a/vF+4/7EPto+Vb3zPf++Db67/o6+nT6jfsn/MD8jfyS/Ob9IP8OAJ8A2f+O/gr9Y/vT+eD3ffSX8MHtr+y87SzvFPA88cnycvSm9Vv2X/d++Kn4fvfM9Xv1Uvdi+GT4I/my+e/6rvrM9h/6Bwk9HFMuhjQtMvI300H9SOBJLj9/MusnbxhpCbH9KfRQ7oPn7eHZ4cLiL+J04Wbk8etr8VPxh+5N7tDyr/eT+iz+kAFfBNMGrgigDMIQCxHfDl8MrAqqCQIHMAP2/8P9bP3U/Rz+IP5G/TT9Y/5H/+v+tfw++v74Jvgo9771pvQ59ev2LPkB/Pb9bP/QAPIBUgPZA5AC3wDj/6T/r//l/jL9ZfsE+hL59Pfr9TjznPAz74ruXe3F7Dvuu/FI9WH21/Vf9qT4zfpp+rL4J/eL9jf38Pap9tH3N/ig+Cb4mff//tYOhCJgMwo4UTaZOCY+dkQaQzs2FCdJGGEKzP/49VTuXOpv52jn7uhQ6U7pzekC7pb0BvgI9xXzf/FI9a76w/+ZA8EFEAiRCY0KvAzYDUcNEwsOB+cDFQG6/bv7GftM+wr8E/z6+7r80P3V/qb/bP93/QD71Plb+pT7rvsU+8v7DP5OAFYBcwGvATkC2QKQA+ADRwOYAd7/GP+J/s38kfmS9tn0/POx85TzSPNu84nzs/NE9Kzz8/F28UjyCPRW9e30+vQa9qn31viR+LL3ifa/9Wj24vaV92v5Svqu+vP4dvfu/5wR3iQzMkg0tzSVOwlDqkbzQh44uixNH1kPHgI798juC+j+4bXfu99H3+Xep+Dh5nru9fLZ9Fj1UPda+xj/LgSsCXEMIQ1EDCEMTg62DrgLKAehAmUAQv80/X/7ofoD+2f8Rv3v/cX+gP8QAOn/zP78/MT6GPld+EX4fvgv+Rv7aP7tASgEQwWMBgsIEgmPCI4GWQT9AisCSwHi/yn9XvmN9V7yBvCH7gLuce677xvxo/E/8mzzXvRl9QT2uvVj9ZT0ufMM9Dn1d/b79qv2vPWS9Wr2UfZf9jD4xvm9+sT4m/azACoWiCw6O5w8EDzEQ3RLLU2mRgE4KCiSFtcCF/Qd6k3iSdx32Ibak98i4vjiNebi7rj4yfzF+xj5Pvip+on9hAH3BaMHNAiECCAJNAsYCxUI2AQIAeL96vu0+aL4Evlv+lP99/9PAWUCMwPcA6ADOwHd/az6BPiQ9lH2WfdV+d/78P47AmAFuQcrCV8KCgtaCpEIvwU2Aon+1Pqy9zb1hPKO72HtIO1j7nrws/Ka9If2S/iV+Rf70PsA+6D5SfjT94z3MPZw9GnzMvQY9mr34Pdv98T3l/lH+kb7F/zb+hb5Y/QM9PICqhkWL9E6qzn3PB5I400iTetBJy9FH+UL//aq6d/e9dZ809nRxtaT3s7iDehA8AD6bAIWBfYDrwK1AbMBXwIlBK4FFAV8BDkEdQQqBSMEnwLBAfn/T/7x/L77i/yO/goBhwNkBFkEjgTVBIwEXAKJ/kz6yPZx9br1v/fL+in96/8MAyYGeQk1C3oLOQsTCWYGSwM+/7r81Prw+MH31PRt8XzvNe5L7tPuGu+X8JryDPX/98f6if3O/t79d/s1+KH1cvT086rz9vJK8i/ySvL58W/x3/EA8mDyZfPo8inyV+8h7cT3JQ4RJ386PkALQhtM51X6WYNUcUF9K6AVWv6O7pjjutmy1BXS7NRh3XPjFuj27Y71Of6rAvYBX/+L/B38bv3a/4MDqQRNBM0E4wUTCQoLUwkzB6AEiwIYAkoAFf76/FP8j/1j/97/VwCzAN0AjQB6/vH7Avoo+Uv5OPlg+Xb6s/zkADEGLgoKDOcL4ApuCk0J8AWLAXX9pfr3+CP3xfR78kzw9O4871/wa/Fm8YPw4/AF8wj2zfi7+Zz5tvnn+eX6Pfuc+Qb39PM68ivyyPEC8ePvB/A18QXxNfF98jD0E/Yi9e73Hwc+HbUykT4FP/JBpEnjTilPB0R2MFYcmAYG9Y/qAeEM2ZLTLNK82LvgnuVc6m3wb/k5AvsFMQZWBNsC9AM3BgkJwgn3BmEEnQMsBawH0wZGA6j/Wv07/h0ApQBYACIAoQGXBMkGdgcfBpQDKwHH/sv8hvpN93f09fJj8471Oviy+1gAbwVeCsQNVQ/fDwUPzwxjCcoE6f/u+vv1e/HD7d/qFumy6M3pMOw57zTyZfXM+Kz77/3O/gb+TPzf+Z33CPZh9F7yRfAT74fv7PDv8nf0bPUy9lb10PSt9ib4MPgj9eTyOf3XEisqCTthP35A6EbhTN9Okkg5NysiWgyD+PLrguJK2f/SYdG51kXfbeWw6S7vJfjUAVAHKwjEBaIDWwSaBZgG8AV5AmH/MP4n/9kBvAKQAd8AUwFkA4cE/wJLATIBwwLTBP4EjAMBAqEAPf8R/Rn6m/aJ8xbyH/J786317Pct+yYAogW1ChYOEg+VDm8NzAviCSgHOwNz/oz5ZfUk8knvSe0c7dPu3fHo9Br35fls/ZEAfALDAQz/d/tH96PzkfC87XLraemE6IHpZev/7ZPwwvP39g34RfnW+u/6Avrb9YL2mAYeHfsvQDlLOI09pkqYUe1Q7UUoMuweRgr59mnrwuDV1XDPb8581LHcUeKG6ZD0FwDCB4kJqghkB5oGxgaPBi0GJwS8/1P9Bv75/18CGAL//3f/2f/rAYcEzwSFBOwEogWPBs0F7wJeAHn+Lfwq+u73I/WW8zbzx/M09ur4ffuy/8MEPwluDCMNngzGDHgM1woxCEsEbAAM/QT5w/Qx8fvtgOwB7WHuxvAm81T1R/gd+6X8dPyn+vf3GvUo8r3vle587ofure4x7y/wtPEm8wX1FfYu9bH1s/YU98b2K/IF9HwFIBt5LjA4NDelPV1JL061Tu5EITLzH1MKZvcT7vLkzNt01njUgtkr4XXlDuvi80H9pgSzB8cHawfxBnsGxgW0BP8BCP2K+Yb5xPu2/rT/Mv8gACsCfgS0BqcHEgiKCKwIKQjEBsMExwLQAPv9Qfph9gDz8/B08GnxZfRC+Gv7if5VAXEE9Qi9DCQP1A+BDagKXgjuBbEDJwBZ+0D3gvOM8LbuI+0P7bLuy/CS80L2rfhy+7H9bv4l/Sv6ovYZ82rvcuv858rm++cg6hzsRu6c8eT0SfjW+zL96Pyu+U317fsEDdUeOS35MPIxxDwBR35Lg0lAOyoqJhoHB/74g+7o4TbZbNSO1JTbt+E55pftKvedAWcJjgv4ClcJ1gfUBioFKgPO/wz7wffc9of4vPtL/Wr++AB8BOEI0AvgDCUOkQ8JENEOGgveBU0Bh/0Q+uf22/Ji79Xu4O+N8qr1w/d2++P/iQRsCZILqAsOCxkKMgqCCW8GYwIp/gP7G/kf96b1ofOT8ZPwKvBT8cDyqvN39eP3cPo2/BD8dPpW+Iv2A/Xm8gnwheyc6cnoiulR6zfujPBp85X48/yH/8f+nvoB/yYOyB7DLLYwkC+zN2ZBoUbORnY61ikmGsQHQ/pb8CPkYdrR05fSQdl04D7mBu5U94ABUQneC7YLBwqwB44FIwPZAGX94fiM9vv2t/kD/eb9Vv77/8MCPAePCqELpAswCxMMlQ3KDOsJ1QWqAcf+6Ptg+ND0u/EG8GvwdPLQ9ET3wvrQ/8wEDAjCCDgIvghPCUgIkwXBAfT9Z/uu+dH3RPYl9BvygfGs8QPz2/Rq9lT4g/nT+fn5lflU+Zz51vhf9+L0UvEC78jtxeyh6x3qn+qW7DrvcPNv9nH4c/h79Yb6mwrKHEgsmTH+ML051kVKTUZPUkT8Ms8iow9hAFH1WeeA23bUjtOt2rHh/eXQ7Nn2tgJsCx0NkgsJCcAGngV6A5IAcPwz91z13PYA+kb9af1B/VT/yQFiBeoHdAcqBwkHMQfYCEwJdAigBxIGBAShAR7+ofqc+BT3LvZ39ejznfP99VL60P+bA54EgQXuBssI1AmwB4sD2/6I+oH3efSl8Trvgu0h7jjwvvJ89YH3FvpV/ev+J/7u+v32+PRG9IbzhvGx7XLqdukt6kTsM+717+Hxi/I49Ir3Q/nj+bT21/U5BIgY+ikTNWk0WzkZSL5PrVHlSbw2NyamFGYC1/eS63Pdr9R00BbV3N3p4tbpTfTK/5oJcQxGCw4KtwfwBTAD0/4v+xr2JPPv9Lb2OPm3+uj5MPwj/yIBCASrBOAEBwesCOYKNwztCkIKDApZCFIFjwAH+8T3RPaj9Fj0xfRl9cb4kP2xAe4E3AWrBcIGigchBmEDQQCz/WX8sPoP+Dv2i/Sa8/Tzw/PJ8/Hz//PO9bb3bfgz+I72vvU59lL2VvUp8mju3exL7bruf+/p7nHvtvDJ8sX2zPhN+JD1/vDr93EMWSFZMfo0zTJaPdVKJVFqULhBRC8vIOcNdf+19L3m0tuM1anUU9so4YPlyO2Z+F0DMAlwCBkH4wZSBsYEWgBt+xH4NPU39Tv36fie+rv6HfuN/bz/wwFmAn4BAQKkAz4GmgmkChAK9gkDCv8JXAl7BjsC3P40+/X3O/YO9aj1g/ge/Hz/8gH5AggE/AUhB04GnwPG/+D8+Pqu+JL2T/Qo8i/xt/Am8S/yZ/Mc9U325/bG9qr1cPXS9fL1pPUQ8+HvO+5b7jXwP/Fe8ZXyj/M29fP4Kvq5+dz2j/DZ9gUKaBzhK/IuZy39OYJHC040TmE/ui3yH4EPpgM++ubsieK83MrbC+El5UDnguw99D/8rgBhAID/ZQDcAocEQAM2AFH8afmD+XD6Wfvh+mD41/d9+WH8qf97AFcAkAEjBGsHrwlBChkJggh5CNMGywUnBOIB1wF+AD3+y/wC+sj4+vnS+kP8EP0V/Sz/agLcBC8GBgZtBMwCfgAy/c/6I/jZ9Wz0UPJ78Q3xIvF/8970U/WQ9GTyWfKE8530+vQ08wnxyO+Q72Dwz/Dq8KHx+fFB85L2kPiD+Br2MfGv99cL3B8UMDY0sDE+PJ1Jj0/bTsA/Mi01ICYRhwWW/CbwOeZ04JXesOE55Dvl0umY8Q353fxO/Jr7mv2CAP8BEwHT/lb9Nv1S/68B3gFwAFz9lvsy/Gf8/PtF+0X7rP3KAcsFuQjbCb4JBQr2CmwKrgc9A2r+/vuy+oz5EPm4+KX5+PtU/vf/AQBS/wMA4AGxA28DvgGdACsAiwAkAF3+L/y5+K/0KvEo7kbs6etu7B7tzO207Unu+fDv8wj23vUt84XwM+8a77Dv+e988PPxufKl87j2VvgY+ZL33/OL/HQQPyK6Lu0uIi0HOvRHjU4zTFc8Jy0bIw0Ydg/IBdP4uu5K6JDmceeb5jzmSuhq7cLyifPE8tLzYfYb+8X98/yL/N37S/1wASUDIQP6AGf9w/2r/wwB0AFDAGr/pgC1Aq0EPAU+BdEEQAUJBr8E8AOxAjQBmwHT/3X9Z/y9+g77NvwK/H38MPwe/Lz9S/9PADgAeP91/6gAPQGCAN7/P/4B/bP7UPiF9U7yC+/O7frrcOrf6ELnf+n47c3yX/Za9iD1mvTZ9IT1DPWY88LydPGY8V70FveT+b/5J/cX/gcR9CNUMXoyvC6UN5pEKEukSYQ8Py5YJDEZbRAXCLX9U/S17NDpHeoM6WjnW+cH64PvUO++7LzrfO0g8ov1h/aF9x/4Svol/+UDRQeMB5UFgQVVBqcGPAYcBI4CowFuAC0AnwCvAT0DfATaBTcGpAWDBFQCywC4/rf7g/lJ9/T14vaO+GL6u/vq+5j8Af43/+L/uP9a/yP/SP4u/ST8f/uE+4/7a/o5+Ab2MvTt8uXwse3N6nTpn+qM7YrwMvMP9dn24/hT+rf6b/lA+JH4LfkL+t/7ifw0/Qr9hPwABk4XUSZRL4Itkys4NUs/ZEJyPB4u7CJ5GzISrgljAaz5RPSD70vt8Oz26/zqseoD7aTvUO6v6/HpvOqV7pXwFPEp85b1PPmN/UoAOwN6BWYGAQiLCEYIlgdvBVQEdQR2BGQERwOxAXMBlwLuA2gEAgRzA4ADwQNsAun/X/25+jf5W/gY96T2d/br9sr49frL/Br+0P5P/0//Vv44/Tr8WfuN+t/4Uvcj99P3Lflt+ZD3RvVV8xfzRPSj9PPzGfIf8HLwn/IX9f32k/di+Mb66PxU/5kCBgVMBsEEcQLiCLYWmiO1KjUo0CWCLHszUTUTMHkkCBz0FewNlQYM/w35MvUs8fTuGu5d7ZDtCO7+7y/yjfE37+TsSe1t8LvyiPM09AH2Ifrp/nMCdAXaB6UJ7QplCywLLQoBCEkFJQMTAj0Bq//y/U/9c/6EAEkCvQPrAxMDrAH9/7T/bv/g/UP8x/qI+mf7n/sD/BH9pP1R/sf+4P7e/sn9EPzE+rv5jvjT9qH0+PLf8Q7xWfCp71bv9O7y7vfvYvHH8pzzTvNR83P0YfYs+IH50frS/Mb/bgKiBGsH0gm+C2YMZg7WFuMimiyOLnIp+SbxKqsv5y4pJTUYXQ9hCfQEaP/z+O/0ofHF7qTt9Owu7izwu/DA8ejxu/DV7zzvfPCA8zf18fTU8/PzMvfi+/f/PQLcA2IGfglaDF8OMw8+D28OXwzDCQAHOQSPAYv/gP42/gH/TgArASABmf/H/Zj80vv4+tP47fWz88LyXPNs9Z73Hfp7/Kb+zgBIAq8CGgLgABj/wPxd+a313fI48VXwl+/R7gLuv+1f7vnvCfKL827zf/Jn8j3zRPVP90P4TPlb+uT7QQBUBqgKlQ2jD6QVWSKiLo80yzL7LScubzLWM2Mu0CLLF58RLA3bB00BFPu99+b1qvLl7hzs7+sK7kLvd+7p6wfq/uru7dHwf/Gj8IPwOPJz9In1U/Wt9UP4wvt3/gMAygF0BVgKRw7aDwcQbhAeER4RjA9oDF4JKgeKBQIEZQLWAKL/Gv96/n79cPwv+9r5LPgs9lb0F/Nc8orylvNK9Y73dvmy+lH8/f1a/6n/uv0g+wD5kvc392P21/TS85/z2fTX9rT3uveg9633tvi2+Tj5Nfgo96v2TfhF+vH7uP39/Yv+GwGOBqUPJhn3HVYeyh0CILElXSmKJ4IiWh0UGr8X4BN4D7wLdghmBaMBSf4K/L76W/kU99T03/K+8cbxy/G+8cvxg/Gn8Xby2PJI8xD0D/Wm9qn3+/ck+er6mv2lACkCIQNYBMIFmAfdCPYIaQiTB6AGMwbVBQsF6wOhAhEBxf/n/j/+Iv4u/rj9wvyC+4r6Z/rv+hn7G/pq+GP3BvjA+QL7tPp6+Sj4m/cI+Dr4JfjX92T3OfcU9+L2LveS98b3VPg1+ST6mPt7/I/85Pzm/Ib8Vfzd+/76B/rY+CH5KfwiAXYGxwlRC+oNmhLLF/waJhoHGEAX0xenGKkXyhXTFOITXBLzDwYN2wvRC50KOghsBFoAtf0M/Jj7yfv++mL5tvfe9ir39va49Zj0BfRV9MX0o/TZ9Nf1FvdO+Oz4sPkX+wP9zv7w/6oAXgHSArQEKAaOBhYGpwVoBdEElQMFAggBCAEIAWMAPf9G/r/+yv/t/wj/Xv0K/Gf7cPqF+ED2E/Td8jHyM/E38M/vmfCc8u/0q/b79074X/hv+Of3/ffC+LD5nPpZ+5z7Yfyb/eX+0/+S/9f+vP0t/Kz6sPlK+ov9qAF1BEwFjAb0Ch0RUBbnF0sXiBcSGfUZUxkbGFcXnBfaFo4U0hJIEqgSOxKED0sLVQczBAMCMgDk/WP7YPkE+DP3NPZ99ObyGfI08lDyyfGR8XDyIvSJ9dz1r/WF9n/4SPte/ev9Kf7D/oIALAMuBSgGdgbPBQQFlwTnA94DvAPvAoACygFEAU0B6gBDALz/Pv8D/3r+Wv0X/Cb68vcK9gf0qPLh8Xrwwe/B733wFPPn9T74cflA+ez4N/km+rD7qvwD/O76afom+1b9ev8MAOL/Y/81/1j/kv7W/JX6+/gJ+pn+sgRXCaoKSwsCDwYWaB0GILodnRpHGQUanxqBGQ0YnBY3FFURxg51DeUN7gxTCSEEKv9I/A77jPmZ9p/yq+6J7C7sRuxG7OvrBuxE7Ubu5e5/76vw7PIe9bT2tvdO+TD8oP+OAuwEOgdjCV8LnQzeDAoN7AxQDBEL6QmECd0JwAlTCDEG1QQhBYwFUgQMAXD9YPvS+iL6xPjB9uL0vvN/8j7xOvC977DvTvCi8Lfw8PCl8WvzI/Wk9V316/Wv9wX6Nvtr+kD56vhI+on8gv3O/Er7Nvpc+tv6lvr++UP5Rfjl9xL5Of7mB5QRDxcoGPwY8B5HKGYupi3RJ/4hjh8+HjkbcReNE4gP+wq/BRoCjwE9AggBCv3K92H0ifN187vyUPDe7JTqEuo265/s5uxW7UfvmvL29Q34TvlT+1b+GQF+AuICvQOgBWMIwAoCDE0M8gvICzkMUgxlC6oJmAczBn0F4wRJBBwDZwHQ/zb+Cv31+xT6M/i49ov13vQ/9FfznvL+8d3xFPJF8rPyZ/MH9Kr08vTt9Ej1Uvb/90n58PmK+i/7Lfyq/O/7hPvx+kz6qfk8+ED3W/aA9Wf1LvY798T41PkA+gv6a/q3/UcGCBJnG/IeCB5dIK4pFTTnNygyViijIaUfzx5BG+sULw7bB5IC3v5z/Yv9zvwf+bzzve/B7unv8++f7R7qFOet5R3myOd/6pDtDfAA8tvzavZB+vv9AwH7AuMDpAR0BbsGVQgeCggLRAtPC4ALSwwNDREN6QsuCv4IfwiqB6IFqwJTADX/aP5y/dD7Z/rC+UX55fgx+Pf2VPVs89vx5/BM8NPvq+/+767wmPGL8mnzcvTM9ZP3V/nS+mf7a/tu+2P7d/tc+4H6a/li+Jv3BveD9mH2nfbc9u32Nfcs+Iz5WflD+OH6igRBEtscVh9GHvgi1y52Oi09kjZwLQkohCUrIuIcUBZVD5wHlf+l+iv6H/vJ+Yn09e7H7APtI+386gXoPueu597n5edX6MnqMO7e72TwjfGz9Gb5gv34AIUEMggyCxMNmg63EOYS2RPCEjYQyA39C6EK4QgZBrUClP8I/bz7FftF+qz5zfhZ+NX4qfm5+jz7Avuh+iL6j/nI+J33l/a69a707fPt8m7y8fIB9I71LPer+Gv6RvzM/f/+IP8//iD9yftV+tP4wfZz9JjyRfFt8OfvAPBk8BjxhPGB8qH0hfby91z6HgFzDS8abSAOIQckbC4HPShFc0HvN9Mvjyy+KgElOxxeEhQIbv8J+YL1qPQZ8nnsyOaS4x7kaObn5gbmM+VS5VTmReel6KbqYe1X8Bfzavbu+vD/ygTFCNEL9w6CEV8TmxT9FBEVkhTOEjgQDw0DCmUHWQTUAOv8TPn09tn1v/UX9kn2evb39jP4VfpY/Jv9DP6A/cn8mPw6/Fn7tvlq90b19vMb86XymvJX86j0GvZ69+H4rvqC/BH+wf5h/kH9wvs1+v34rfeq9TLz+fC574fvqfBX8ujz0vS+9Dv1RffB+Lb4ovmk/zUM9xgYHxog8SPiL1E+XkVoQeU3gTBsLVwqHiSjGq0OswLG+GXyxO//7QHqceTA4NrgS+Qz6DTqvOrf6gPr0Ouq7ervMfKa82z0gPYZ+lz+hQIYBmkJ7gzCD3cRYBL9Em4TChNMEb8Ovwu7CL8FMgI0/o/6I/dM9JjyOvIU85v0PfbE98T5TPz4/mcB+QKUA78DygObAy4DtQGy/+b9LfyE+pn4WPb99NL0IPXe9ab2N/fl94r4aPmh+jH72PrL+XH4WPf79T/0YvLN8Jvvhe517Yvtw+4W8Gfx6vJh9UX4BvmZ+CL8uQbrFIMfWiJsI20rGDnRRC1HBkBPNwAxZyykJ80f3BQZCEX7/PHX7cPrg+hK4/vdntwP37ri5eWX55zoXOk76uLrUu4Z8T3zlPTr9bD4Xv3TApwHHgu2DXsQ2RO0FqAYmhnAGKkWxxNlELINTQqBBeP/xPmm9MvwWe7w7FbsUez67DHvvPIB9277Pv9lAs0E/AW7BpMH0gcUB7oEiwHt/gr9Ufvz+Eb2ZfSP88LzbPTb9DL1v/Xw9sH4Vfrv+sL6B/pD+dz4EvjZ9g/1J/Np8eHv4+4e7vTt5e1C7YDtMO+e8WfzuPRo+V8FTRRXHxEknSadL/w9S0hzSXZCpzlPNBgwYCpMIoEWvAjY+3fyN+7Q6yrnBeG/22zaDd1V4E/jbeXj5rfoluon7anwNPQh90D5K/vZ/YkBsgWxCV8NwBAVE1wUHxXDFdEWoBaoFHsR0Q1cCvoGHAOk/o75RvTs70ntbuxl7JTskO3w73LzbfdF+wr/jQIEBXEGGwd5B2IHawZJBIYB8P6u/ML6oPjn9WDzofHP8X/zbvVk9+n4cvq5/Br/rgD0AGr/gv0K/Db6z/dq9CbxV+857jTt+uu86uLq6+tu7ZLvgfGe8mfz+PXI/lYMrhi/HxcipydtM2c/x0WaQ7k8STenMikuqyh0H24T+QXf+WfzNfDQ62HlAN6H2gbcNd//4XLjceRf5g7pT+zj7zLzvPWT91L5y/sM/+UCEge1CoUNRQ+pEJESuBSeFvcWTxWUEl4PkgwgCjgGIgEz+8z1L/J/78HtA+2f7NfsCu7z7wDzPvYS+cX7Sf6aAI4CLgRDBVkFRQR1Ar4A0P+v/rP8dPqV+I73rfcJ+JP4YvkZ+ij7kfzg/dD++P5+/q/9TPw/+tf3YfXj8pzwxe557a/sVOwI7PHrieyO7ePvcPKY82z06/cFAVAOMRnHHf0fCCbeMRU+gUIlP445rDUUNGgx4yoJIb8UvAjI/xv6bPX97v7mV+AI3hjf1uCz4Zjh/OEg5LDnUet67mTwFPKu9Nf3dvvk/sUBUgQCBxMKUg1FEBwSexPnFMYVQBVUE0MRoQ9hDXsJ9wOZ/kr6vfbJ81nxnu9J7sztsu4O8Xf0QPc8+R37Wv2k/9sBmQNdBA8EvAJcAY0AJgBJ/z39ufp++FL3H/cU9+n2evY09rz2LPjP+cv61PoH+lD5PPk4+c34tvfk9Tv01PLd8Unx0/Cl8LLwrvDG8fjzXfZm+FD4Qfl+/wcJixJ0F30Ylh3/JzozrTmUNwMzDTF1MMEvxip2IUkX7gyuBSAB0Ps29absbeUg427j1+Ql5efjauS25i3qH+608KHyhPQj9l345fqd/RcAIAIeBOUFIAgnCu8L/Q2sD6cQBxGMEB0Qjw+2DVUKFgYTAvL+MPx/+Hn0Q/Gk7+fvhvAL8c3xDPOf9SH5RPyJ/sb//AC1AvkDYgTOAwEDhALJAU4AK/4V/Cr64fjT95T2r/UX9Uv1HvaO9vb28vYU9xj43PgP+fL4+fdj9w/3Efam9Ur1sfT69D319PXO9i73Nfg6+i38vv0M/3MCzglpEX8WxBjVG90jXC3wMrQyQi6cK9grAivDJyMgAhZmDQAG/wDr/F32k++h6V/m0+a/5wnovedo50Hp6Oux7jzxUPKu8/H0RPZA+Pz5tfs9/U/+3v8gAo4EWQdpCRoLtAwfDogPghCVECQPCgwrCPkEiQJnAHf9EPlj9Ubz+vIk9MH02fQs9dv19/ee+pL8yv0K/rb+0P+UAOIAJwB4/5n+rf3C/Mf7vfrT+ST5iPhC+Nr3yvcE+DD4dPgu+Oz3Vvjn+Gv5ivmt+Mb3Uvcy96L3iffI9pD2zvaZ90L4Tfhr+H/5cPq7+hD77fxuAsUJFA9nEncV0Bv4JV8tlzBvL8UsIi0kLTwrISaDHUAVbQ4kCS4FPf9Z+Dbyq+1n7Gnrx+nC59rlYuYx6DrqDOzX7MftQO/j8HDzwfXK95P5A/sK/a3/0ALnBY8IsQq9DEsOjA/zEI0RpxE6EG0NIgsBCRIHBgVyAcr9wPpd+HP3vfax9cv0zfMO9Fj1m/YI+Af5KPqa+2X8Lf2G/Yn9lP3r/BX8YPus+ir6tPn1+IP4f/hW+B/40fei9zn48Php+az5VPnp+Oz4OPmI+Zn5Evka+Sz5ffnU+Y/5YPkL+UX4Bvg3+HP44fhH+TH79P9bBkAMkxBLFGUaniKTKZItjS23LAMtGS0rLOAnDiEZGoQTvQ4BCq0DZ/zb9OPvEe5L7QHsgekL59XmBemz60vtou3Q7ZvuVPAm8vTzofUL9wD5dPsg/koBIQTdBpYJ0AtiDUAO7g5/D5EPzQ77DOcKEwlyB6AFUgOjAP393fs4+ur4Ofd+9XL0PfTZ9Bz11PRG9Lf0NPbn9zX54fkA+nL6afsZ/Nn83fxV/BP8afsJ+8D6SPp0+pP62vo9+0b7mPvQ+/j7XvwX/LL7L/uI+lP6DvrG+eH47vf79nP2GvYK9uL1mfa796T4tvnE+pr9zgJiCKsMCxBoEyQZVSCvJW8ohSjrJ0cp4ynCKHolAh8zGfYTRw95C7kFKf8x+TL0DPJt8PTtT+sH6W/oNOk06nLqi+rz6tnrgu397kzw7PHQ8yX2YPhM+tv8fv+AAlcFHwfqCHcKUAwxDpUOWQ5ODXwMgAz7C8oKLwjsBIQCCAE0ALj+Mvxo+ZL3Qvfg9xr4pPfy9hb3RfjA+bT64fq9+qz6Jvus+8T7j/sv+wv7gfsJ/Fr8SPzh+/z7Mvx3/Ez8i/u0+h/6Ivpi+oj6GPoC+eP3WPc59yH3/faH9mH2Nfav9nb3CPjK+Jf5RfqU+yf90f8KBIwHRAtHDikSGxiAHXkhVSPZI0IlKienJ5AmHSPnHgUblRebFGkQ3grRBF//B/xp+cX1p/Gv7Vbr/+qU6ujpwugQ6Nzojep+7PLt4u4J8NjxCPSC9oX4SPr8+8X9IgBUAmgEawZ3CEgK+QvyDD4Nmw2kDYoNUAwcChkIGQawBDkDVgFG/6r9s/x9/Ej89vtp+zT7jfvS+7n71voN+kz5Lfne+Pv3sfZU9fz0IvVY9T31+vQO9fv1H/ca+Mb4NfnW+aP6OPt5+5T7YvuB+8X7nPuq+4L72ft1/NT8Rv1c/Wf9D/5I/u3+rf+6/0wATwAyAcwDNwYZCQMLHA1jEcEVGRrwHLQdah8OIRQirCLUIP0dxxpQF9AUTxF4DL8G6wDH/MD51/Z08+fvkO177JDspOw77PTr/esD7RPuge7O7tfuhe+w8L3x0PKa8x71CPcz+bL7bv3M/4IC/QS7B2AJXgqxC5cMxA08DpkNygx3C3wK8QnOCFUHPgWSA6oCDAJqAR4A2f7v/Wf9RP13/EP7+vne+Gr4nvep9tD1EfVI9Zb1lvWk9dP1tPb39+n4TPlk+c35kfqP+zT8V/xw/K78DP13/YT9Rv34/PP8CP0y/XP9jf3V/QP+mP24/dv9A/7r/T/9SP3F/mEBRwSgBmMIkAtHEBYVDhnrGv0b2h2/HxYhvSBsHtsbKBngFtMURhEEDaUIwQRUAvn/OP3h+bH2uvRc8w7ybfBL7ufs9utE69vqKerQ6erpT+r86rPrkuz57dPvBfJc9Hr20fiN+8P+OQI6BX0HPQnVCqkMHQ56Dh8OaA2ZDBYMDAt5CcsHGwYvBW8EPgPmAUwAPv+v/nH+qv1r/FD7j/pF+tb5JvkJ+ET3KPdF92H3PPcU92/3Jfjp+Ev5Pvlp+fD5qvom+1X7DPvE+vX6TvvY+2D8YPxc/Kj8JP3b/WH+i/62/rX+1f7k/if/cf9v/2j/Mv/F/4sBqwPhBTgHCglYDKkQTxUZGI8ZJRsTHTMfNSA5HwMdlBpOGFIW0hNFEOcLnAcGBHUB5P6U+yz4+vTo8qfxQPCn7sHsdev46p3qVerj6cLpEuqN6qPruOwI7urv6vGh9D73q/lc/I7+bAEPBA0GsAfmCA4KMAviC+kLOQteCtAJAwk2CLUG8ASfA5sCIwJVAVEAWv+r/tX+9P6h/h7+Z/1C/Wz9df0l/ST8d/sr+xX7+vpk+vr5vfkQ+mv6xPoL+yT7zftw/Pr8kv2t/dv9Sf5u/qb+ov6Q/rj+v/4T/zf/lf8JADoAdQCUAIIAiABTAEEA3P8q/9z+R/+mAHMCCwQzBdgGkgnsDAcQ/xGuEl8TPRQTFSUVnxOoEfkOmwzFCooI8wWUAkL/Hv2I+2b6JPn09sH1I/Uj9W718vRh9Nnz1PP+8/7z1/Oz87zzqvSo9Zv2k/cu+GL5y/r8+wH9c/03/kb/OADxAGUBwwFuAusCGgM5AwED0gL5AhUD5wKAAiACGAI0AoUCswKUAs4CCANWA68DlwNzAxUDqwJjAuABLQGoACsAvP+v/1b/E/+6/pn+av45/iL+o/1E/cf8kfyP/IL8hvxh/Ez8a/zN/D39wf39/UD+jf4E/2z/m//M/5f/lf+D/0//fv87/+3+3P4a/1gAnQFRAjMDKAQ3BmcIiwlBCgwKGgqmCq0KQgrkCAIHJgXZA/sC9AGUAA3/5P1h/X79Wv30/FH8u/uK+6z7OvuM+iv6f/mu+av5nvm9+Yj5Nfrm+mL7Gfw4/NT82f16/kT/Rv9q/9n/+f9sAAoAif8l//T+eP9+/27/lf94/0QAEwGYATkCmwJWAzUEFgXcBSEGeAaVBsQGJAfYBo8G3wUbBaAEsQNCA0sCRgGlAKv/Of+b/uj9mP3d/Jr8bvz4+/r7svvH+9/7x/sB/Or7JPxg/Ff8bPwv/B78lvy5/Cf9af1w/fH9Vv7M/mH/lf/T/73/yP8/AO8AmQHAAeYBwQLcA88EgwUzBfsELgUUBT4FegQwA4QCfgFhATYBRgDI/7/+RP6b/p3+l/72/XX9fP1e/WP9CP1g/Nn7ofvF+837o/u7+9D7TvwT/Yf9GP6X/vT+df+p/6b/m//Z/+3/2v+8/yD/zv6b/m7+pv5N/vb9uP3g/TD/fQBhAfgBjQIoBCgG3wf2CCYJTAn9CU0KnQpPCkEJRggCBy0GdAU5BLYCbAFRAIL/D/9L/ob94vy1/JL8i/xa/ML7efs6+0H7Cfuw+oH6TPp5+rX65voo+2P72Ptn/JL87/z8/Ar9df2U/bX9uP2Q/bP9Wv5P/xUAxQCYAZkC+QNiBU4GDQd4B7cHMghiCDwInAf6Bl4GyAUmBf0D+QLdASkBdwCb/9z+Ff5u/QH9V/x3+9/6TPrh+aL5UvkY+Q35JPl6+c/5B/pB+lX6kfoQ+1f7tfvq+zj8wPz4/HL9pP2s/f/9yf3v/dT9lv0O/pT9Y/2a/U/+lACZARgCjgNbBBkHHgmzCR4K5AlGCmUK8Ql5CcAH7gUdBdkDnwOCAkYBnQASAMcAIgE9AZkBmQFdAhMDGgN6A8UCkgJPAsUBdwFjANf/Zv+m/oL+zP1C/Uj9/PwH/c78Qfy++4r7hvst+9b6cPoQ+lD6p/ox+/j7o/yv/eX+cgDkAT0DWAQ1BSMG9QaNB5wHdgc0B9YGHwZZBWIEOwNEAlUBGwC8/nX9JPz3+s35v/gW+FT3kPZR9g/2XfbI9g33uPdr+PX4hvkx+in76Pts/Az9Pf1s/RX+jf7S/gT/yP53/kb+5v1W/ev8qPwA/Kz7zfsH/Q3/HQAZAVQCjATuBxoKgwtEDK0M5w3fDkkPUw8PDmYMVgu6CkYKEwmaB9MFpATeBP0EIQRWA5QC4gHpAZABhABS//L94PwA/MT6Wfnu9+n2c/Yn9pL1RPVo9TD28PbE93T42Pj8+Ur7pfzm/aT+vf8IAcUCjgRWBSoGzQaMB7wIUwlcCcsIPwisB04H8QayBV0E6QKWAccAov8X/pr89frW+dz4u/dj9sn0QvTd85/ztfNE83DzTPRq9dn2z/c8+YP6Ovx8/gwApAGrAoEDaAQRBRYFjATZA9cC3QH0AIP/vP2J/OX6v/lb+G/31fY19lv22fVN9kn4efs5/40B9wNKCG8NTRNdF1oZFRsDHOkdgB7/HXcc7hcGFVMS4w/YDUMJ+wQFAsz/8v6f/fj7Kvpm+CX4w/aZ9Sv0YPEC8P/tU+wv6wDpAOkW6dbpmuud7KTv/PKH9pH6fP19AB4DGQZNCfQKXwyXDH4MYQ2iDcwNCA3pCzsLhAphChMKxQiVBzEGQgVqBKYC2QCS/nf8ufrp+Ov2X/U/9NDyYvJg8n/y0PIH85zzwfTb9ab2ifd/+CH6z/vJ/Cv+7f87AQYCEQNxA18D2QLXAtcCXgF+ACz+Rvzf+2n5vffi9ZLzcPJw8VDxTPGu8cnyL/KN9Wn8KwFTB5kKsA73F/kfzCaNKmsreSxRLScugi0UKhwk3hw4FycTgw4SCfoBCfwm+Fb1+PL373zt0Op76Y7o3Ocx56DlJ+Xp5D7lgebs5lfouep37eXwFfSk+Mn8lgB8BT8IMAtoDaIOShAiEN8P1A7sDCoMIwvfCfgIlQeVBjoFgQQ7BGwCSwFq/4f9bPwD+7L5fPj791D3xvbR9hH3vffs+Bj5Yvm2+WD5EPpw+vf66Prf+gX7A/yq/b/++P4D/4v/pP/AAJgAJf/M/Sv8EPsb+rT4PvbD80fyQ/K18cvxC/EG8Hrxx/IX9Ab2OfiG+SH6MfvOATUMJxWqGqobEiBkKqE1ODv3OYI1rTHuL34umCpFIV0VAwqvAq3+jPrf83nrMebT46jjEOOR4erfwd7z3t/eD9823w3gYeLi5PPnpuvT79P2RP6kBL4KWQ5hEiYXuhp8HHAb1hglFiMUCBM/EJ4MPQmcBX4EfALX/5L9zfk59/T08fJX8XHvd+4N7yjwrvEk82r1M/nS/ND/aQGHAt4DUAVJBr8F+wTQA/gCbAPiA4UDcAI7Ae8AcgFhAUgAif6a/Az7Ifq7+NX2kPSD8cjvkO7n7Q3tZ+wX7Lzs/e6p767wrPE98nnzgPRG9nT5QfwM/nn+NAHFDIgaeSUHKX0ojS6KOgVFJ0azPlU0qi08KpQlDx0JENQB6ffA8wvxLO4P6GDiu+A04I/get813VTc1dzc3XbfnOFL5S3riPKO+aT+gwO5CB0PlBRtF88X1hbBFl0XvxdLFsAStA68C50J1gc5BGj+b/mi9Qzzk/Dm7JzpKOeH5mLnQOj36TLssO9e9P74E/4XArkGvAsSDxARFBG5ENYQBRHmD/YMZQmPBuUEaAQRA1UAYf3G+or5sPhZ9wX1dvJU8Pvuie6m7Zjstetn67HrQu037lTv6vDm8ebzpvVZ90D49fil+VD7Cv0p/94CmQQUBgkGPwn3FV0lui9kMo4uZjGWPBlExkNPNzInSB0zGLMUnA3xAKjzpuql58/nCeYF4WraRdcx1vHW99c/2GrbI99L5JTqUvH5+HMBYQk8DykTCBWQF/EZGhwPHMAYyBRVEeYPMw+/DfEJ9QSNAFH9+vp69yLzh+0H6fblpOOP4yvjaOSQ59LrZ/EG91r8DwK5B0QMyQ9lEQUTjRTBFWEWMxVnE+8RJBCIDsELcAc1A37+IPvj93D05fC47SPs3+se7NvrseuE65vs4u3g7knvZu+i8I3yw/Rs9kX3jvjE+sn8Iv45/mP+uP7V/mz+gP37/f3/DwJCA+0DsAflFC4kfDCwM58ufi8INtg7BzpTLPYalQ9TCQkHrwFA+HfuyOYC5VzkrOLz3hra89cX2MDZ/9xD4dHnnO8890/+MASWCiYRDxY/GHoXtBXOFGYUqxRwE4QQjA0HCtsHVwbDA9r/Kfvp9fnxBO/H7HfrU+ld6FPoB+rD7DXwbvSO+Pj8vAAsBF4HyQr5DFYO8g7hDu4PNhGUEm4SOxGBD28N7QuxCHYE3P82+6v3SPS98EnuauxL7BPtVO3s7mvvovCP8dTx9fJp85TzefNK89nz0vS29Xr3fPhB+pP7UfzF/Tn+Pf9MABECswLTAmQFjwZgCOEHPQt5Gh4tbzjgN24uDi7gNuM5+jMxINUNhQTg//39Yvns8G3pIeRf48PkluKT3g7Z9dc72ZDbJOB45mvwu/psAmkI/Q3tEioYQRqjGW8W9RGKDy8O6g2QDFgJdgUBArX++Pvu977y+uwC6N7l6+T/5YznbOq47mXyMvbY+V/9SwGyBOMGtwgBCYAKqQ2AEecUIRVjFMETexMiEoYOLwkwBLT/dPvr9wH1ifNl8prxOvAA7xru6e1X7wXxcvLJ8t3yTPRh9vX4pfoO+xX7ofsi/b3/fgFEAoQCxwETAiIB1AAVALz+6vwD/Fj8a/xY/nj/hADy/w3/twaTGjss7zP8K1khUSYNLxIyQihoFWUJZAapBbYFmgB2+azyPezf6A/lkeDS2/7YCtmF24/fZOaB7+z5IAKuB3UKtgtrDm4QoxEAELQNoAy5DcQOGg7iDF4KWwbvAGP7LvY08wjvj+u56k/qN+zQ7THwJ/Sn99j5d/sJ/JT9EgCSAuMGJwmJC68MtA2uD6UP6g0YDJEJZAepBcECmwH4ABAA+P4B/Z76z/cu9YvywvC67pDtuu1Q78bxVfNu9Cn13Pae+FP60fp5+677E/xz/f/9hf+5AFUBmQHZATkCyQGvAJL9U/xy/Gn8hvxj/ET8F/y4/aAEaRkMLjw51jPTJckiECkVLigpfRo/CzQHYAdRCj0K8gGZ+I7vSeio4trcHdf11lPZsN0743Lp9fEM/IwFLgukC4QIyAYOCbIN9w+hD6UOuw7GD9wPkA7dCmoDYvk88Ivqt+ju5/LmPudn6DjrAO+u87j3NfnK+L348/o7/lUB8AOCBxwLuA2VDvUOTg8WD6QNEwyCCcQHegZkBs0G7AVfAlb+Bftq+E32zvM/8sTxZPJ08kTzzvRP9gL3WvVr8hbwCfAr8mz1/fdO+cf6d/0uAXgD0AONAm4BAwE0ACz+2/ya/FT+fQDXAAUBXwOKBYEH0AfHCk8akiyOOD81ZieKH/wj9SmgKQgfng8FCHgFHwcNB73/lvRK6UPg8tpe14fU1tbF2m/guebQ7ET1RP65BksM7AwBCugHsQkzD/gT0xRNE6wQKg8JDoILPgdU//D16+4n6+vqmOuR6w7squ2B743xhPPm85jzTPIS8u3z8vcK/KEAEAbrCsgOnA+rDlgNOQ3GDCcMGAtPCuAKVAzuDJcMmwmZBKT+VPlw9RTzjfGn8PvwSPI59KT1/fY590v1ZPJm7k3tGO8Z8yr3iPlT+vr66/zX/mEBNABA/m36g/iD+Jn5f/vJ/OX+v/4HAS4BKQMUBFAGEBJRJgw4sjoIL04gbSJiKrMtDSf1GN8Qhg/JD9cNGQh/+m/tpeGu2dzVkNPE1SncJeOl5/rqre+v9qj9zgJABYEF1Ab2CaoQEhdeGdEYyBZxFDIRagyeBosB5Psc9330kvOI8zTyI/DZ7TLr6uf55Qnm3+j97FTw7/NZ90b73P9bBMQHiAiaB7AGjQj3DDASERWmFSEUoRHJD5MNUwqVBXj/0/kR9sn0nfQp9Rv0L/K073HtKezJ69DsX+5h76/vR/ER9bD6tv6GAIkAWv+c/IT6qvoV/l8BtwG0/0j+av8HAbEDsQLoAIn+7/5OAIADcgaQE6koejlyPPEtLh+4G1AhyyJvILYWuRAhDggNYQxXCFH9nu9U47fYzNSr06fYb+Cg5xXrbO7R8Lj0q/ie+4X+tP+8ACwEcwq8EE0WMxiDF9MT0Q2CCPQEZgKZ/0v9Qfz4+zr6vfgz98n1k/Kx7DHnpOWD6KTu2/U++mP8yf0OANAD2AXgBDQCewFxA3kHEwshDXEOuw4sD9wNCgy5CJsEsQBz/Y37K/qi+ev3h/cj9k/0NvLP8JXwBfFr8STxIvJV8/n1hfja+Rj6ovhU+AL5nvm0+hD7d/wn/d39U/7Z/9ABBgKxAY0AGgTuA6AFoQLECCAalC0YNzIvPh8sFewYchoWHsQZWxYhFZQTQRD0DP8Drvg68BrmmuDI24vbC+EF6QbsS+wF6j/qre0S8i73NfrW/On/tAVoDBsScxT0FKAUuhI0EAsNBAuSCY8IkQa9A08AiPyZ+Tz3HvSv7wrrdugd6TDtIvEF9OvzbvJB8WLzaPfk+wH/zAAlBN8ILw7WENgRJBF9EN4OSwyxCLIFaAS0AxMDUwAp/M73T/XF85ryk/F/8MTwxPGc8ovzYfTt9ET2gff399/4jvh/+VD5FPmp+Hn6Mv26/4gARP6z/In8N/62/58BIgJEAXECrQNwEeQmCjh7O74ueB7YGIId6x7CIy4gqB1MGk8TYwyTBov8hvEx6nHfodsV2eXbeeOe6ePoyOZY5LTkf+lk7qr0XvrV/t4CaQgLDUoRBhSWFA4UyxGjD9EOBRAiEJwPng1+CasEY//Y+5f5ovcb82HuUet96tLsM+/f8Gnwxu+r73LynfV0+M/6Mv5hAuMFYge5B50INgqoDG8NqwyFCsAIVQeaBpcEbgGt/jv83frq+X35N/gy90v1TPO08bjvKu9m71/wjfE082P0kPZ19w/4TPn8+fr6sPum/Mf8tf4rALEDEAb/CF4IcQbIA1YCUg3GHtUuQDE3J98YrRalGfAcFB8bG0UYYxVREqAP4gxOBCf8h/Td7E7nzuIX40HoAeuG6jrn0+Vr5p7pzO0x8w/3oPlE/Pf/LgUvCCwLRw1SDgsObw0xDkwRqhKcEa0OugmwBCIAw/yn+yb6UPcO9YLzvvJM8s3wV/CV7w/v1+6g8BX0CPcE+vj7Rv9IAcMDzAM6BTUG8QZPCJ0IAQqFCmoLlgrbCAsG3gIIASz/zv79/Jz7VPlZ9yz3oPZ+91b2rfUb9HfzOPMp9Fz1evZW9xL4H/nL+QD66vjI+JP5tfod/CkAgP/7//z8mAGKFrcs/zUFLKsWqQyUFaYdAyYhJzsjSCIaHlAXIBQpC5n/hfik72LqtuWh4/no4+8+7tbnrt/B3A3gDeV77F7yhfZF+UP8SAGHBQ4IXAqxDC4N9wzMDDwO0hHNEWAQjAx9CBYFpgPZA/ADbgEn/Wn57fbO9TT0u/L+8O7u2+xa7cXuLfG78VPydfSK97D7w/6EAsEFmAiCCRcJHwjaBXEFwwQJBpAFzwSBAyADqAP0AmoBkP2q+tz3dfdJ92b3nfeM9wD4oPfn9rb1hPVH9tX3ufnU+f75SPoB/Jr9KQDdARQE9QQqBNADAAbSCRUM+Q6nEJsVmhlwG0oafxg3FpsUrxVFFugXaBZjE98PQAvfBRsAffzl+EX3F/TI8Qfwne0/7DDr2esD7KbsvO3a7zvzhPV0+IT6MP2h/icAhAE9A/wF7gctCkYKiAkkCOwGyAXMBMUCowH/ALEAewADAHH+Tf08+/X4lfed9v32Nfd/+DP5/vkz+vX5qfrx+6j9Yf49/2z/RAD6AecCxgNWA8wCBgIiAlMBywCSAEMAfQDDAE8AvP6t/RP8ofzm/YT+VP4H/cD7t/k++gT5TvkP93X2uvbT9uH4xPdJ9sbwtu5t8cYGUhjOHc8WPQJsAA0Hig/AGCUe6R37H2YeEBjdG04WOxIEDwsHgAGx/pb+hwOgBr3/F/ao7H/nC+ff6WHs0e4l7erqV+l169nt0e+o8wz2C/lc+3X+wwPkCDALQg35DT4O4A1EDeoOwhHhEakPBgzoB9MFDQOlACD+Ufuu+dr4m/j09if0jvCe7kDuaO7776DxI/We+Pf6DPsS+mL62Puq/sUAGAJdA6AEBwbIBjwHtAUNBCsCjwGqATsC1QIEA5ADdQKUARH/kP2I+437rvuy++X6xPgj+KD3jvlc+lf78/oZ+539wADTBSYGgwblBbkGGQrODGsQbhLMFTcU4BLTDuIM+w6PD1MQ9AzoCJ4E0AJaALj+Kf3u+Lr3c/Uj9Ur1GvVY9fT1kvam9gT3Sfdo+cn6XPzK/bX+3wCbAmgDqQRvBRsG1gaFBvkFcQVmBPAC3gGmAAcAUv/X/RX8z/li+C736fb39pb2+PW49bz1//XM9U/1Z/TQ9XP2cffY96T3dPmI+pr7j/oi+j37Of2Z/g/+Yf6R+2362vk5/YEM4hR8F/kOvQPMAVwKCBJyGI4c6BfPGRoXwxSVFccS+Q5QDNoGXwIOAikCfwQqBMn8XvQo7hzsFu9S8aPyNfHM7kLtBu0H8D/yEfXF9lT3Pvjq+WH9lgEYBSoFuQXdBo0H2wlTCh8MkA1JDcoLOwoOCoYJDAoFCSgI+QX2A7YDbgMqA8j/Kfwd+RH4q/fR9q/2/fVG9gr2lvUu9f/0h/X79W/3YPjW+Qf81f1DAPYAbgBU/ov9cP5PANkBSgFBAF3/mf+X/4f/1/6z/RX94v2z/ov/Cv8r/mX9c/1V/WH9hP5x/+YAOQGWAZ0BDALMAnUDNQVrBnkH4Qf1B8QHRQczB9wGrAfbB7UH7AYkBn0FngTZA3kCXgGhAGMATf/K/kj+Uf5+/pL+8f2s/Yb9L/xG+4H6cPqn+pT7e/yE/eL+1/+dAOgAYABo/0T/xf+vAL8CWgNQBOkDbgNzA0QDPgOBA5cE4QQ5BSMDhAFMAIf/3v7H/SD82PpU+cz3mfdz95D2vvWN9PPzNvQZ9MvzwPTp9Qr3tPkg+wX7ufop+0v+yARpBxIGSwIiAJ8CwAg1DdYOig4BDB4MXwwWDWAO5Q5SDv4Nzgx1C9ELRgusCpwIDQSWAPj9zvyj/B38Svvf+Sr3uPTq87rzh/QV9A7zn/N39L/2b/lQ+/r7/Pua+x785v0a/+gA5QKQBF0FoAXwBaAFbwVABYoEGAUSBbIExgR1BHoDUwJVAMz+Hv+0/8sAKQGlAN7/Y/79/In8mvyE/jQACgEbAWAApP9E/47+1P3k/Xz91/0V/tD9Dv6t/Qj9jfz2+2L7Zfvq+1P8d/wk/Bf8Mvy1/Pb8/Pz4/fD+JgB5AaEBDgJmAloCswLpAm8DNwTXBM8EzQRUBGoEogQYBPkCBwEN/9X9O/2Y/Xn+yv5n/tL94Pxw/GX84ft3/GX9yv6i/7T/QP+v/6gATwHSAaQBlAGbAdsB7QE0AtcBMAGCABcA6/8HACkADgDO/5X/5f9eAC4BtwEjAiwCfAE0AXMBtwGZAbEADgBGAHsAJgAHAOX+WP5W/jb+MP9A/0j+uv3H/vn/wABL/939Sf7//gcAuQCRANIA2QCv/5X/NgBCAaECCANWAokCWgIVApICMAKdAf0ALQAyAEYB6AGjAaMA0v6Y/VX90v0G/8z/6f9+/+X+yv4T/3P/TADxABkBXgGbAX4CMgMeA9AC6QE2Ad8AeQD2/4L/c/6G/XL9Y/1n/az8f/ty+uj5t/m0+ST6j/pn+j/6FPpi+kX7Cvy1/Dj9pv02/lj/qgDOAVYCkAKkArUC6QLTAukChwPMAwsE4gMzA+cCVgPuAxwEJwOkATkBhwEcAmYCZgInAikCRgKkAuAC2wJ+Av0BxQEDAmYCGAOyA60DfAO1ArcB9gCSALEApQAbALr/Yf8e/xH/Y/4Z/c37Yvot+t/6qvs2/HT7C/pM+ST5tvmn+g77nvsT/Hn8S/24/d79jv4E/6v/VQC8ANABCgPFA1IERwTrAzUEYQR4BMoEMwR1AwMDsQJaAroB5AAtAND/Ef83/nL9//zq/LP8V/zZ+5b7jfu++xn8Wvy1/I39P/7p/kv/O/+y/14AnACJAD0AFQDbAHsBpgHSAcwB9gElAhMC9gFdAukCcQPIA9MDvQOoA6IDYwMRA/8CBAMIA5YCswHUAIgArwDLAKoAWAD9////HQDy/2T/Of4g/bz8P/0u/vn+RP80//b+5f58/xcAUQD//9r/LQADAboBDgIRAsUBZQH/AGAAhf8D/4X+d/4B/zX/Ef/g/jv+1f0F/tX9yv3p/fv9cf7y/lv/v//c/87/vf91/27/IADmAMUBUQLmARsBkQByAPEAVgE9Ae8AWAB6/yH/NP+H/7//qP+C/0D/6f5C/uv96/0e/kj+Rv5a/nH+d/43/uv9+P0//v3+yP/5/woAIgBMAJwAzABlANr/eP/F/5EASwG4Aa0BkAEnAUQAav/M/on+pP72/lH/2v9TALoAAwEOAQwB6gDvAEEB5AG1AmwD7QPrA5IDUgMPA9kCbgIKAgECEwLbAXUBLgG6AGcAqP+S/gj+D/40/o3+l/4c/qb9Ef2u/ID8cvxg/K78P/3M/Y7+Ff8g/9v+yP7g/oD/ZwAVAYsBxQG1AW4BFwGdAGAAswAeAUQBEwGmAE8A8v+d/0n/Kf8l/1H/lf+b/1b/2f6N/m7+zP7w/uT+7/7B/s7+xf6X/p3+v/7Q/gT/Jf9s/8r/AQA4ADYABQDc//3/MgCuAPEA0ACoAJQA1gBhAZkBpgHvATsCsQIKA+QCyALrAiMDgQNJA4kCvgFRAVUBcAFjAfgAgAAgAAoAawDJANAAdADy/2z/Gv8M/xb/bP+f/6b/7f8rAFwAWgDM/xX/n/7B/un+6f6h/jT+Uf55/o7+XP7K/aP9hv1h/Yn96f1R/mj+kv6H/pD+wf7b/if/Vv9f/3z/fP93/7H/xf/5/4QA2QAkATAB6AD9APwA4ACRAEEAPQBXAIsAjwCEAEoAeP+v/oD+qP45/6D/qf+M/27/fP/D/1oAnACoAJgAcACGAN8ANAFjASsBvgB3AF4AwwBWAYYBMAGsADIAKQCsAEEBdQEFAVwAuP+y/xIAEwDg/1H/l/77/aH9rP3p/Tf+Mv7b/Yv9cP3K/YT+GP93/9P/TwDvAHsBygHOAf0BTQKtAjIDdwOMA7ID2QO0AykDdQLAAWwBKQH0AMsAaQDT/zn/0/5j/gz+o/1c/VP9vP0a/hP+wf17/WP9vP0a/iP+Of5l/tP+Pf+M/7L/2f/l/9n/kv8l/wb/Gv+f/1MAjQBEAK3/ZP+S/+P/9P/c/7b/r/8dAHcAvgDiANcAywCxAIYAtwAIAY8BJQI9AhECygGfAaQBnQFRAS0BEQHbANAAXgDT/2j/W/80/9D+X/74/Sz+qP75/u3+pP5d/n7+v/49/97/PQCYANkACAFqAQMCegLpAvkC2QLXAsMCrQJsAhEC1QHdAeABswFyAUoBGwG3ADoAg/9A/y7/DP/v/pT+DP6+/ar9of28/cH9s/11/Rf98fz0/Gz9+/1h/qj+2f70/uv+Af8h/2P/m/+y/5D/ZP9q/9P/ewDJAIQA9v/K/xsAtQAcASsBzgB3AE8AZQB7AGsAMgDi/9D/9/8tANr/T/89/8P/KQCRAGkA8v/T/9X/IgBcAJgApQCqALUAxwDOAL4ArgCqAI8AqADOAA4BkAGfAU8B8QB7AP3/n/85/wb///7//kT/VP8s/+X+vP7F/t7+Fv9W/63/9v8pADYAUwCCAIgAmACNAI0AwwAiAboBOQI/ArcBOAHmANAA6gCdAB0Aqf+k/8z/GQB0AHQAEwBm/5n+Ef79/Tn+c/6J/p/+xf7X/u/+Fv9G/3X/aP9P/0T/X/+d/7H/mf93/4X/+f9OADYA+//i/+3/CQDZ/6D/0f8rAJ0A5gDOAJgAggBMAHsAzADAAFMA8v/i/+n/KwBBAGkAbABYAE8AWgCaALMA5gD2ABcBXAGEAWwBJQHSAJwAdwB9AIgAmACCAAAAaP8p/z3/R/89/+f+pP6k/tv+/f7v/qT+N/4I/u/9Tf6//hr/lP+i/3f/O/8c/1r/5f9jAKwAnQCSALcA7QBzAagBlAFcATABSwGfAcoBswFaAdkAjQCRALkA8QD9AOYAzACvAJEATgD3/4f/Wv9J/0//N//X/mz+8v2x/a39wP3D/aT9pv3O/Rz+Uf5I/j3+K/4p/kb+ov4+/9z/OAAkABMAVQByAKgA0gDxABcBEAEFAdkA0AD/ACcBMgHzAN0A4ADgADkBaQFeASkBzAB7ADoAEgBDAGkATgAmAM7/i/+F/3r/pP/D/9D/AAAyAIkAawBIADIAdAAcAYcBzgHoAawBbgFuAWwBXwE/AfoAowB+AHQAYQBDAMb/W/8e/xP/Vv+V/4D/HP+N/lH+kv7T/lv/vf/B/5v/kv/F/9z/MAA0AAEAyP9+/3X/0P84ADQA+f+Z/0v/E/8K/+/+5P7O/pb+ov6q/uT+Fv9C/0D/Jf8y/1v/tv8dAGcAiQCUAE8A9v/T//f/OABwAKMApgBsABsAqP9h/1L/QP9b/4L/i/+O/3H/X/8y/zT/Wv9z/9f/5//l/7z/LQCfAAwBXAE7ATIBIgFnAb4BKwI9AjAC0AFjATQBSgGSAYkBFwFgAOX/5f9cAJQAaQAKALr/w//j/7r/qf+V/4z/7f9aAGUASADn/9r/4P/K/87/uP/a//b/JwBRAGMA7v+O/3r/i//M/8X/q/9G/z7/Kv8q/5L///8nAPf/oP9q/3r/rf/5//b/HgBVAE4AGQD3/xUAVwDWANkA1ACjAH4AywDtANQAfgBPAAcACgAtAAEA0/+8/4P/D//y/pf+Yf5x/nz+d/5j/gb+/f03/j3+Z/5d/lr+gP7I/gr/Zv+V/5L/5f8AADsAKwDg/+n/EACqAF4BlgGqAEn/7/42AOIBDwKIANn+Mv+PAKEBlAE0AOT+l/5G/04AEAEIAWAAwf8JAGwAkgD6APYADgHdAMcA/QBqAe0B1AGoAUQBKwFEAXMBzAFVAcMAmAB1AJIAGwH4AA4BAwF3APb/d/8P/yn/Jf+Q/nP+6/1z/VP9S/36/LX8nfyL/CD9cP0F/of+yv4w/zn/m//3/1wA7wBBAZQBqAHZAfYBRgJRAlMCjQKJApYCNgKLAQwBoQBuAJwAoQCmAEYAwf9C/+f+3v7v/hj/CP+z/hH+1/3F/eL9Tf5w/mf+i/7M/tX+Bv8c//D+MP+Q//f/HQA9AFwAkgDXAMcAqAB9AHIAnQAHAegAAwHWAKMAoQCjAMwA/wBTASIBGwEQAWMBcgGAAZQBnQGxAWUBfAHSASwCTwLHATQByQCWANQAyQDXAM4AtwBXAJ3/+/6U/nD+U/5I/iL+9v3o/QH+Iv7x/aP9E/3A/O/8Uf0s/nH+aP6A/pL+8v5W/3f/Yf+o/63/g//j/+v/GQBYAE4AdACUABABcAFwAWwBVQH6AJYAawAXAbMBYQEmAMz+6f7R/5EAlADK/9z+v/4D/7b/TgABAAr/if6v/of/SAD//6n/Tf9x/wMARgArAOP/lP+v/+7/XgCSAMMAJQEeAS4BKwEKARMBAQEeAYQBxwHVAaMBsQGoAbwBpAGAAY8BiQFqAQEByQBpADoAbAA4ALr/Tf///hP/Kv/Z/q3+Cv7//WH+SP5R/nz+cf5U/mz+Uf68/hj/A//l/gr/9v7r/jT/cf/X/+L/l/+J/+3/QQA7ALr/r/+0//b/7v+8/9z/1f/t/+7/zv+Q/5L/ev+k//D/BwDj/7T/tP/a/xsAKQAOAA4AJgBwANcAPQFKAeAA1gDWABcBiwEcAv0BiQF1AY8BQgJ+AgMCaQEBAfwAcwHSAVwB8wArAIv/lP/F/zYAVQDc/+f+Jf7v/Uj+uP74/v/+lv5Y/iX+Bf5q/kD/6/8gABAAoP9N/z7/QP/Z/24ABQEeAZIANABOANsAQQFuAREB7wDSANAAtQB+AF4AXAA/APb/yP/I/wcAuv/V/8z/X/8T/wr/+/6H/9r/Zv8M//b++P4s/wr/vP4D/yH/WP9U/yH/zv6k/nn+lP75/jX/Hv/b/uL+3P7T/sP+uP64/v3+GP9P/4n/Pf8c/1j/df/a/9P/wf9XALwAGwH9ANAASgH4Af8BIwIRAjIC7QLvAtwCtgLVAngDJQQuBMUDPQMBA24D5QOSAyMDggIlAo4CNAKEAdIAKwBOAHcAAwA+/03+xf2S/Xf9P/0B/bX8d/w6/Nj7nPuU++z7Bfz++/77B/wm/G78nfyo/Lr8+vxP/X79Kf6F/mj+WP53/l3+Wv4K/6n/PwBIACf/yP4n/5X/gACdAAEA3P/Z/zAAwgAwACIApQAeAREB1wCUAFwB3ALkArgBPwBhAOgBlwNaA2UCSgFrAOoAowGLAroCLALdACIA2QCSAegBRALSAZQB0AHgARMCggLlAjAD7QMnBC4EZgRvBG0EZgRCBCoESwRYBGgEEQSFA2YDHAObAkACxQEFAbMAOAC2/3r/zP4R/ub8Vfz1+6z7cPsf+8/6xvrN+mn6H/rN+cj5Kvqg+rf6G/sv+zP7gvv++3f8Ff1V/YL95P0X/jn+Pf6h/hz/jv+f/5//ov9u/1j/ev/Q/gP+tf0l/lP+Ff6N/Z38nfxV/XP9B/3O/LX8mv2F/nX+hP1R/I38h/7HANcB0ACQ/7b/9gAsAnMCLgIhA2AFDgegBioFZAS0Bd0HtwgHCVoIewjUCNYIVQiTCOEI2QnZCk0KkQn6By0HOgd9Bz8H8AbGBaAEHgQDAwYCOwFBAMr/VP9a/jT97fsv+3L6pfnM+HP4RfhX+EX4zPdm9/v21/Yy99z3fvgA+fv4H/mB+UP6DvtB+6X7KfyS/LP9Vv6q/kb/sv/a//v/JgAwAMIALQHrAJYAnACoALoApgDt/0n/Lv+t/mP+//2N/Tj9Wv0c/aX8Svzh+6r7fftj+2770vsK/D/8G/wt/Cn8Ef1T/iX/0/5c/iX/8wCAA80ETQQ7A70DdAUkCCAKrwqJCsMKhwtQDJ4MzAyKDaQODRCED6QNLAy8C3oMcQ2oDBELOAl5BxQHmgULBKsCUQEwAC7/fv2K+2T6JPmD+PD3c/Yg9WP0wPMn9FP0jfM68/7yUfPq82z03vRl9Tn2HPcS+Jz4KPna+Vn7iPxV/cz9Kf6r/nX/gAB7ACABLgE/AZYBmwFcAeoAhAClAPQAxQAXALr+5v1q/cH9fv1p/RH9Rvx9+wL7NvrG+a76wPoQ+0b7H/tw+vj6k/ts/Pv9df5f/qj+ZwC8ApAFQAb5BDEEbwWUCO8L/Q3yDUMOkw50DsgOJA94EFYSIRQPFJ8SbRB8DmYOLw8zEGkPWw0eC7MJtwfjBZQDugEBARUApP4B/F35bPYl9Ub0i/ON8obxYPCK72TvoO7y7T3tCO4R76vw6PFF8g7zMvRa9Wr2Avh6+Xb7af0B/8P/bgB3AV0CxgP9BDkFSQVFBSYFCQXYBGoE7gOfAwwDvgFeAAj/Iv6Y/TT9d/zz+vn59/jP+EP4Yfed9nH2kPa99vn2FPeQ98z3L/n6+X/6kfpX+nf77wAmBVAGCwbwAhwDCQglDJoOiRGJEfgRoRInEm4RJROOFY4X2xnAGF8WphMbEvwR5BLzEkURAA/ODGUKaQfhBG4COQGIAMP+mPtd+Fj12/K18fnwfu9J7sXtZezF6yvrPer66brq3+vw7E3u/e4G8H/xL/OE9Az27vfo+YL8qv75/74AugHeAnME9wX6BvUHbghtCHkIUwigB+4GiAYxBvcF8AT5AkQBGQA0/1T+0PxI+1X6Q/km+P/2BPY/9cz06fR99Bn08fM49LH0VvUT9jf2jPZA93/4SPuQ/9UBTQNNAtYAVAPhBr8LGw9RERISKxOkEykTGhRkFQAYiBpGHN8aCxl2FvYUGhVSFZ4V8BP+EXQPqwzZCcIGIQQ0AsMAEf+C/EX5VPa+86rxAPAA7yjuau3k7Krr2+ox6ujpmOoQ7Ljtxu7N74/w/vF38yz1sfag+NH69vz9/mcADALVAsoDbQRZBTcGIQfxB20IjwgFCBYH3AUWBWoEKgRvA5kCJQHI/+/9SPwS+zj67Pn5+FT4+/bH9bj0YfQO9Az0GfTx81P0ifTM9Cv1gPV19eD1Lvb7+LX9oQAKAi0BKv+5AKYEeQi4DKsPPRHgEsATFRNLEywVtxfNGv8c7RzdGtIYXxe/FucWshZPFXATzREhD+ULZQgPBSUDugGx/5z8bfnX9qz0a/Iu8DPu6+yt7CfsO+tP6nvpSukD6j/rE+wV7XfuMfAS8ovzkvSk9Xz3Bfq5/PL+3wD6AfAC8APPBLsF0QZTCAkJfgmCCegINAhvB54G1gUGBRgE9gIOAtYAJf+h/cD7vfmD+Kn35PZH9nH1E/Q2877yA/L68fnxYPIr88nzU/QT9Yv11fW+9TD3bvy3AJ0DtgM4AW4BwwTUCGwMchAQEjUUGBbbFPsTZhRxFrsZFR1qHRkczRnqFwsXshabFloVmRMZEjYQUA1ICvwGUgRuAlEAtf3Y+hT4KvY29Pzx3u+q7S7snesw68Lqi+ro6dLpY+on6+/rNe2U7irwAvJ08+/0avYs+Cr6Vfx6/icAhwEGA00EjgWgBlUH3wdyCNgIxAjbCEgIZAd2BrYF7ATRA1gC5gB1/+395PxF+4P5Bvjw9r71cfWq9Hfz2/LP8VLx5fAz8bnx3/IT9N71W/aC9rj1i/SK94b9AwPWBYMGRgODBK4HkQlJDaEQrxNSF+8YRxamFdwVERcFGgYczBvzGuMY1haSFtMV6xTJEooQAA/KDOkJKAcYBNkBTwCN/WD6fve49Obyj/HM7wbuZ+wQ6yTqyemP6a7p4elT6i3r4Ov47CPuk+++8SD0D/Zq97b4efrg/Az/IAHiAi4EZAV6Bi0H4QeYCEYJLQp7CjQK6gh4B1kGrQUPBUsEYwP9AfYANf9E/Y370fl6+Nj3Y/fX9mz2YfVC9FXznPJ08s3yqvP99KH1bPav9q32GPeQ9lD3i/suAdgEMQbjA9IBTgS5B/8Kqw7+EN8SuBWUFcETAxTiFFcXmBpKG9sZFhgcFpQVIRbuFZ8UGRJJDw8NrwoZCLYFXQPmAaEApv3N+Vb2qvN58qfxMfCK7vvspOv+6rnqQ+pX6sLqOesw7CHt6+1m72TxhPNo9cj2w/f1+CD7zP1DADACeANbBG0FUAYLB9AHrgh3CRMKQQpKCSsIDQdvBgYGmgWKBM4CCAG4/77+if1O/O76iPmD+Oz3v/bn9TT1lvRc9Fz0J/TC8wH0d/QM9bX1fva69pX3Fvh8+Dj73v72Ac4DlwMGA18FPAglClgM0w3LDzATpBQhFFYUoBTYFb0X7hfTFhEWVhVmFdwVJxVnE90QDQ4NDC0KRQhdBo4EDwNyAcX+Ovvs94L1c/Sa82Ty6vB/7yjueu2/7NvrZetp6wbsE+0C7nXuRO+D8BfykvPt9Ar2N/dU+X/7Vv0R/0wAZQHrApIElwVABs0GEAdeB+YH9QfLB7cHWwfuBvUFmwT0AnIBdQDZ/2H/wf6t/S38zfp2+WD4xPdQ9//2/fbe9pb2Ofbp9Qb2ePbc9tr3vfgq+UP5l/gd+Uj8NAADAzEEEwO/AuUECQfYCAMLhQzuDvoRdxIiEhcSnxIyFAYWDxY3FZAULBRvFMMUXxTMEooQZA6MDLMK8Qj6BmAFCAQ5AuL/3/zh+a/3FfaY9F7zrvEA8GTv3u4C7n7trezx61rs9OyC7Yfur+/P8DjyiPN19Fb15PaR+HD6ifwI/j3/nQDeAecCEQT5BLgFeAbGBhQHXgdDB+oGYgblBYcFwwSfA3ECYQHXABUA+/6W/WX8L/te+uP5Uvmg+PT3zPeB91L36fab9uX2Y/fX9xb4VPgS+fP5Uvrz+q/8ZP8yAocDzAJ6Au0DfwZ0CU8LOwy9DXgPuxAJEbIQWRERE5cUcxWHFPESPRIHEi0SahJOEWsPxA3vC0EKeQgLBtEDjQIDARr/zvyj+WH3ZvaU9Yn07/Ld8Onu1+1G7ebsPu0a7vTuUO8h71/uUO5S783wAPNj9Vj35/hK+iv7dfyH/Yn+uv87ARwDwQQjBuEGMwcFB80GZAYEBuoF+QUZBvwFYAV8BAMD0AEFAToArf/O/rz93fxs/Bn8y/tV+6H6rvkj+cz4b/hd+Gv43/iD+d/5tvnd+T76cvpD+vX5F/sa/isBJQOfA+kCrwNbBXgG8QdaCSML4Q3mD4EQ0hD+EJMRtRIjE+QSlhJWEkwSoRJpEpYRRxA1DmQMzgoFCUUHYgV8AwgCUQBu/lP8Lfqe+Pb2HvVg86DxYvA68BDw2u+n7zzvw+6X7truKu838Jfx7/J59OL1zvaH93745fll+9/8Yf6m/wEBRAIyA/YDfATsBDcFUgVMBSMFRwU+BRIFkwSQA6ECiQFsAKj/5/7i/YD95vwX/H37ffpD+bb4Ofi/9973vff598b4JvmK+B340/fa9xr5k/pw+7X7wPsg/AP+AQGzAq8CiQK1ApsEkwdhCRkK5gpuDDMOkQ/mD7sP/hDXEggUDBSEEloRghFaEnwTShN9EbAP3g0IDOQKWgmzB78GgwWvA6YB0/5j/Nr6p/m7+Gb3h/XW84jyufFn8cjwL/Da77Lv8O8E8NPvafBv8cTyJfTU9Gr1cfZ49xD5tfqU+9v8Bv4p/8wAugElAtMCNwNaA7oDDwT5A9oD3gOpAyUDkgKtAbcAZQBcAJX/9v7K/aP8bPwn/MT7ffsX+9T67/q3+nD62PlZ+Xb5mvlg+i37gvvi+xP8Hfwp/PX7xPtV/KH9XgAcAyUEqANlAjICugNJBh8IiwnQCk0Mng0YDlQOwQ6nDzER4REoEdAQSBBQEHcRdBHJENQPzQ3nC3kK7QgXCCEH1QVxBGgCPwA5/jr8rPqF+Sr4vPZc9fTzA/Oc8kzyAPKI8fnwiPB88OPwa/E/8nDzO/QI9fL1YfaO9wD59/kx+0H8Kf05/kn/JwAcAQ4CdwJ3AmgCXwJ3AuAC8gLbApACHAJuAZgA0f8+/+T+if4X/p39Cv1R/N/7gfsV+7X6nPqp+s/6Cfsi+zz7FPvY+lf6dvpK+2n8af30/e39wP21/en9Kf5w/rT/fgFmAxEFjAW0BJ0EhQX1BvwIPQojC24MmQ1MDhYPTg+XD2sQ1BDsEKUQHxArEG4QgRAHEPUOkA3tC1EK4QiRB2AGGgV+A7MB2f/6/Y38RfvW+T74oPZn9Yn0y/ND8x3z7fLN8ovyB/LC8Sjy6PLC88z0P/XM9ZT2KvcW+D75M/od+w78zfxn/ev9Tf68/kT/9//FAC4BNgERAZoAYQBjAIAAtQDkANkAZQABAKj/QP/b/pf+Y/5x/qr+XP77/bP9m/2W/Tj93/wi/Z/9o/00/ej8jfy6/H793v0G/kL+T/6O/uf+pv5a/qH+7/7a//YAhwH6ATkCZQKQAicD3gO/BKcFUgb8BrkHlggvCcUJJwqxCk8LpAveC/8LZAzVDLEMSwytCzILwAo5CqoJJgmICJEHVQYEBeID2QLrAesA5f+q/ov9y/zW+9r6QfqG+R355/hm+P/3lfdm93r3vfcA+An4D/gw+EX4kfjM+N/4Dflv+a75t/nc+Rn6lfr6+gz7HfsZ+0H7qvsk/Jz82fz0/Dv9n/32/VT+cP6L/sX+5f4E/zv/jv+i/6T/pv+o/8z/0P+o/53/l//Z//T/sf9U/yf/T/+J/6//d/87/0L/If8V//L+3P7t/vT+N/9b/2r/df93/3f/Uv+H/9X/QQAQAcUBMgJuAo0C2wJGA8gDqQSTBVIG+QY0B2kH8QdDCLcILwlnCd0JFQoXCuYJxwmWCWoJGwlKCKcHaQcWB7IGAgbgBNkDBgNaAqoB8wA4AH7/5P4V/l79vPwQ/H379/qD+vz5iPle+XT5XflM+TH55fir+H/4g/iy+Df5lfn6+W36ffqK+rD63fo8+8/7Zfzt/FX9jf2o/cz9Af40/oT+q/7k/vD+Cv8P/+n+0v62/tz+/f7e/pL+T/4a/gj+Dv77/fj9Af4R/iP+Gv7Z/ab9qP30/VH+mf66/rX+w/74/hb/RP+V/8j/9/8/AEMAdwC3ABMBgAHkARwCMgKHAuACagPuA1AEqwQNBXMFzwUHBjMGpwYrB7IH+AcdCEEIhgjLCMIIdghFCEEIHQjmB7MHbwc8B9EGCwYGBR4EPgPBAk8CpAHxAA4AT/+S/tX9G/1n/Nv7s/uN+z/73fpg+hD61vnz+Qf6H/pT+nb6mPrR+vP6Avsv+4377Psd/E78dfyU/MX8A/1B/Wz9bv1T/VX9Zf1l/Xz9jf2L/Yn9c/1j/WX9fP2L/Yf9hv2Y/Yb9w/3M/cz99P0a/jT+Rv4p/iP+h/7F/v/+Fv8I/xX/O/9f/2T/WP9Y/6b/+f8yABUA4v/c//3/QwCcAOQALgFeAWwBZQFGAYsBDAKQAiEDbAOQA5sDqQPcA0cEtAQbBXQFsAXGBbYF4QUtBlkGgwajBqsGjAZrBgsGwQWBBTcF/gSVBD4E+QOLAxEDhALeAVwB7wBuACIA///T/4f/Ef9o/gj+1f2Q/Xn9Yf1V/V/9Jf3v/Af9F/00/Sv97fya/HT8j/y3/N/88/wK/df8wPys/JT8nfyh/Mn84PzD/Jr8Y/xr/Iv8rPzC/OT8IP0y/UT9Wv2A/bz9Bv5L/nX+jv6i/vD+S/94/4X/lP+Z/7T/5//t/+f/FwAwAD0AQQAwAAkAAQAdAB0ALQArAC8APwA4ACsADAD2/wEAJwBTAGUAZwBaACkAIgAvAEEAggC3ANkA7wDmAO8AFQE9AWcBqgHyAV8CiwK8AukCCgMyA2EDxgMaBFsEegRSBEQEZASgBJ4EfARkBFsERwTuA5sDPgMBA9ACjQI3AtQBbgETAcwAdABMAAkAjv83/9L+gP5j/hf+4v2j/X79Rv0l/Q79uvyJ/ET8DPwJ/Ar8/PsH/AP8CfwA/Pz78/vU++H7Cfw4/Ej8bvyC/Jz83/wT/S39Qv2J/ev9RP6X/rP+5P4h/2H/tv/u//T/FwBVALMAHAEcARkBHAEbASQBGQEkAS0BQgE0ARwB6gCzAKEArwC8AKgAcAAwAPf/1f/X/+7/+//u//T/1f+r/7j/4/8vAGEAkgCcALEAyQD4AC0BeQGxAc4BBgInAmgCtgL/AkcDUgNHA1QDPQMuA2EDegOmA70DhwNGAwwD4AKbAnUCYQJoAmgCFQLmAaQBZwEnAe0ArABcABsA9v/I/4P/LP/X/o7+Xf4r/sn9ef1L/T/9Rv0w/fz8/Pzz/Pj87fzS/Nn80Pzv/Bf9O/1p/Zr95P0M/hj+N/5P/n7+v/4G/w//NP9U/2H/eP98/4D/c/+X/7j/0f/B/53/g/+U/5f/h/+M/3r/i/9k/yH/7/7X/tX+6/7y/uT+tf6A/mP+VP5n/pv+0/7i/u/+0/6+/tn+Cv9U/7L/9P8kAEEAdQClAKEApQDLAAMBEAEyAU8BdQGzAckBrAF3AUQBNAFYAZ8ByQHvAfQB5AHKAccB0AH2AU8ChwKXAocCYQJYAmYCfgKrAuQCBAP5AsoCogKEAlwCOQIrAhgC7QGNASsBBwHmANAAsQBXAP//if8Y/+/+5f7t/v3++P7T/qr+ef5w/lz+Zf6O/qL+zv7M/qL+i/6C/oX+r/7n/vv+/f70/tz+0P7X/sr+uv6+/tP+3v7K/rr+pv6O/pT+gP5j/mH+Z/6h/tD+uP68/qv+jf55/mr+XP6L/tn+I/9A/zf/S/8+/0v/ev+Z/9H/FQA4AEwAYwCCAHkAiQCuAMkA4ADZANIA9gD6AP8A/ADSAMcAlgCqAMcA1ADSAMUAnQBlAE4AUwBcAGUAhgB1AGwAWABGAE8AbACIAIgAawByAIkAmADZAPwALQE/AT8BRAE0AVUBkAGqAc4ByQGtAaoBhAFzAXIBdwF8AYYBaQFKASUB9gDoAMUArgCJAHIAVQAgAPD/xf+V/4f/eP9H/w//uP6L/mf+SP4p/hf+CP4F/vH9yv2s/ZL9jf2d/bf92/3//Qr+Hv42/kb+VP5+/qT+0v79/jX/Xf9v/4n/gv+m/7//2v8FACYAQQBhAHUAeQB9AEgAJAAtAD8AYQCCAH4ATgAVAPf/0P/g////DAAQAP//+//3/xsAOwBRAEYAPwBKAEgAYwCmAN8AGwFIATABEAHkAMsA/ABVAYsBtQGhAX4BXwEtAR4BMgEyAUoBOQE0ATgBEwEeAQ4BCAHiAKUAmgCWAKYAtwCNAHAAXAA0ADgALQA2AAwADgApANn/q/93/4P/vf/p/9z/qP89/x7/N/9A/1j/Ef87/4z/MP8a/47+yP6D/2H/+f6A/vj+0//Q/0//I//i/2kAewABAKb/dAD2AP8AEAHmALoAsQD3/0wA6f9zAZcLeAz8+9TzC/u4A/UF2v9I+or74P6E/kz7EPt5/CD9A/vz+T39vv7f/Hf7TPum/VwACv/N+wj9hAEXAlwBJ/8I/4cCdwHkAXMDJQLlAgYDhAHOAp8CfgFzAzkClAIIATQCuwTj+r//igc2AB0AXf6y+6YCJQPyAbP9GPaP/RkHKgQ4/OP6V/yjAXMC9Pc9+4ACMgJjA5H7hfbX/sMASQOCAvD4fP0I/2kB2AWW/X/88v0YBUMFMfqa/XwFGgQwAkT/tv81BdQAugFxBSX/fgGgBiIB9/8+BG4D+gDuAzkFrf7D/8QEPgPO/u4DNwXL/Iv/cAE9AJsBbv4E/6wBhP7B/Yv+Ufu2/8cAJ/xK/QP7EvzZAOX+tPpq/6oC0PwF+s38FQCx/5j9YfymABEF0PwA/HQF/QAi/RX8rP08BWH/cfZE/agM1AoM/UHy7fYZCdQKDP/Z8zv86wmbArP86P3j+SIBMwfA/Ub/pQDXAIIHS/81+uf+QAMRBC7+fP4AAFP+mf98/2X8s/v0ACQByftM/GH9vv5W///9AAD//Xv9TwFf/sP/lwJl/GP+iQM3A5IBX/7j/6sDTAXzAIT9+gA+BSYGDQO5ABUB8gPOA0EBDgIWBCwDjQJJAjgBSQPeAykDDAPJAQYCvAE5As8EwQLSAa8CHANfBFIDdwDt/00EkwUBAxEB0/+HAaID6QGv/2sA3wApAN8AAf9e/ET9cP13/SL8EvqR+TD8APwf+pn5uvek+Kv5fPjX93r5KPoU+Of38Pgz+F76x/o8+CH6wvuL+x/7pfrq+3f9/fyR/FX9Cv7X/w3/L/x3/tn+zv44AV//pv9uARv9pP1kA08CKv9f/4f+IgCkBFoAjfvV/94CrAAT/6b+3wDZApQAdwAy/2b/HgCL/JT/Kwl4EBAR2wnkAMMBywlOD34SORKsEhMWghTjDicNHw8tEqYUEhHmCtQKLgzKC8wKqwbLAOv97fzd+4j75/m490n27fL77pjrEuvc7bTv5+6+7CvrqurZ66Tt0e/+8FDxdfMI9dL18veU+yv+ZP8HABMA7wE+BZEHTQmYCY8K2Qs7DE4NEw0cDUkM5ArOCv8JUQk4CY0JkweeBH4BfP6N/nr+nfxV+qL4q/Zs9JHyAvGr7w3v8u7p7RXui+3a7bTvAu987dDsOe658Pbzg/aL9qT21/YY+Z/7Ef3i/u0AvwRgBVAF7AaUCiYZrSAvGw0VoA0/EtogDCbmJIIkKyVLJxEkTRxRGk8diiCQHc0WbhJgEFwQLA0fBgj/Cfil83Dy2/He70jsweY04i/f1Nq52KPZlNx93xnfxdx43GLfSOJo5dboN+xM8A714fl+/kYD3wavCZQMkQ+SE2AX4hvOHsEehx8qINYfQB91HiMdoRtFGk4X4hKsD1YNGQr3BrgB9vuS9z/0RfIh78DrduhJ5U3jEuJT4nDhNOA+4Nbff99p4SnkeuYW6WLqietW7P/txvDf8wj4ZvpS+ib6pv1+AFoBkAJvBGkHoQcPBvoGeAduEAomvSrnH5sTlwZqEogoIy4RLS0qECtaLIskuRmPGNQg4CQPHZoSEw0pDHEMWwdTARb6OPDO6oHpIOuF7BTosOAw2wHY09SJ1OLYyN6v4gvhGN1h3e3hp+e67XDyRPUA+X38IgEyCF0PfRK+EYQS6xTQGSgf7yFMI0MiOh8FHBAaKBmnGV4aXRihEsELXgccBN4CawDY+gv3lfKD7UHra+qj6EDmwOOE4TbhaeIu42PkHeZb5ovlCef/65XxYvOa8s7zLvau+HD60Pvy/RcAQQEeAbgBYQGzAbsEbwUTAir/BwDtANADaQHF/3sTHCSyIUYVJ//C/FAWJCSvJo4nBSTTJmclIhqOFCQaXx8aHdMXORIgEKUPugtQBbP+6/VS7jft1+6j8UfwuefY3vHZKNbp1VTbnt+z42HmEeTV4rjlo+ku76T15fiI/KEBngXmCmAQpRJMEocSPhTjGG4ddh5AHawaFBlHGAQXnxSREvwQJQ4OCmEEO/+S/ZT9E/2V+p/0Se4t6x7q7elF6pXpeOgU6JHnb+hK6v3rc+2Z7YDtbe+V8gr2g/la+wv7B/om+2v85P1TALUBlwLHAfn/9P30/Az+W/91/878Y/tR+3f7mPw9+8z/ARM3IBcdDw5m+Sz+yBdvKYsvXCp5I1wijCE9HRkbdh6tHvgZlBVGEakOEwxABq0B4vsO8wbsd+rp7WvwCu0B5JfdZtyU3MTeguI35uXo+On86C3pxezW8Mr15voY/9kC7gUfCDULTg9IEaoRDBLtEooVRRhQGfkXRxWxEsAPDQ5bDKEKQQg1BW4Cv/4i+7T4Qvf99RD07u/v69fqLeum64nre+u16zvs++zy7UTvo/AA8sDzmfWZ98b5zfqU/DL+WP6h/mr/TwBDAHkAPQHUAckAjv76+3L5Fvj092f6j/18/jL87/X78Jby8vdGCIcckyDjGSQKxf3ACfsd4yrBL0Ys5SgCKZ8m4SKaIR0gdxxSGDcV1RKqEMoKPQMs/k/3m+8t6mnofevJ7GTo8eHD3C7autmq21XfXeTm6APq9erw7PDuXPIG90r8sQFABjgJygunD3sTzBT9FO0UehQNFlQX0xWJExkRGA9dDagKaQg3BpAD8QC5/Ir42/Uv8wzy9fEQ8VTwWe5R7IDr7eqm63fsLO7Y8IjyqvNh9Ar2Rfgm+W36RftM/Gz+Of+h/h7+wf6k/53/Qv6N/Db8Qfz++tz4N/Ya9TL3a/n6+aT4r/eC9tn09vX29boBWhqyJ2EmqRXV/0AFAxwgLdw36zVLL74raCWUHiwd1R0bGwcXNhM8DrMJ9wOS/Zj6MPUG7JLlzOLY5gjs9+mZ5MvfO9zD27vfMOVa6/vwl/Ha8OHxAfP29V76VQBABiYJJQo5CuQLmQ46DzwPHw94D4YRexF/D+UN/QuCCuEIPgXeAa3/cf5n/rX80/k8+Cf2IvXB9YD1/PSL8w7yTvK88tLzs/Tk9P31bPam9s72UPeV+Lf5M/sp/Hv8//xB/QP9B/yN+mD6bftR/Vb96PsZ+un4KPgG9sz0pfNH8uPyRvTV9vz5N/g79A3xSfF3AzcdwiqMKvcW8gOPChUbOCq4Npk4wTgTN/Mq3B2KFwcXvBlaGz8YlhK8ClcAePld9pPw4+iz4yniC+bm6K3l3eKn4OHdUNza3B7hSOl28Dn0Tfb39of3GPlV/QIEMgrMDbcPJBDfD+wPxA4YDqYN4A02D0MPAA6fCm8F+AHa/5f+WP5z/eH7tPoJ+mL5RfiJ9n30IPQG9Rn1m/SU8zrzWPMv9N301fVC9mj2b/di+Ej6Qfs2/I/8SP03/i7+Pf5w/vT+xf9G/0/93fr59zL2Evhg+ov7C/mW9Pzwe/FM9On0FfV89l75xPom++X2tQDxGQUstDBcIXwLRgzwHtUuxjoxPJg2pzIqKIsbLBbtE0QSjRLcDy8JhgGO97/wAvA77qvnruJZ4Kjiruej50LmKeVB4yXjWOWp6Zzwjvd/+mL7Kfu++rv6rP07A0YJmw3+DV0N8AsEDPoKjQhXCCgIOwqrDO0L6AgNBPn/I/5z/XL9uvxs/Oj8Y/uP+bb3Uvaf9pf3uPdY97j35PYN9lr2d/YI9/f3Sfm7+bv5tPkE+uP6JPxh/Uj+EACzAPD/Vv6X/qb+Pf5X/Ob6f/qa+Qb5gfgu+Cf3d/Wh8gDxSPJ/8xv0ifRb9iz4g/iT+HP2EQNNHOsssy3SHCYIyAuFHPEpKTSINYQ0QDGtJ90aYxWsEb8Ozw14DI8IBQIS+RfzEvOl7+jofuJy3/3joekp64DsaOx/6lXpFukt69/xl/cv/BH/vAA7AGb/lAExBbwJ8Av5C2MLTQxCDfgLNAnLBksFgQUqB/4G+wMBABX8hPr1+Y/5Uvkv+ZP5wvi/9nn1S/XI9xX7Gf0p/uL7afr5+Xv6sPvf+/38GP58/2r/Qv6j/aH9d/7X/Yv8i/sQ+6X70vue+/r6/vkY+WL4nvfy9lj1s/QZ9Cvz1/Mr9Jj1//XK9fL0q/Vv9zv8wPyE+7L5yfzVE44oeDMOLbsX9A11FeUgrCuRMngzmjGMKjkcEhG+C9EGHQUdBXMC9P1j9mbvAvDy7wHs0eZK4ivkhukD7Q/wnPKq8i7wfu/j777zffm6/UACiQRxBJICmQGkA9gG4gn5CxELgAkgCHgG/AWBBSoF7gOzAk0BBP8n/UP7hPpZ+5r70fqO+Tr4rfhd+c/6Y/t5+6r7/vr8+qD61Pm3+fr5tPrb+2P83fy+/E/8tfta+yn7O/x+/sj/DAEXAmEBxQD9/uD8pfu7+vX5fPjw9732RPYV9T3zvfGI8ezxcvIQ86jzofTO9Mj2svju+lP8Bfs4AAgUOCs9N5cwsxrIDTYRJxtHKKcwLTQAM14pWhpJDiYGrAAnAc4CyAO5AL/4zfEJ8Knuh+tD6D7lC+eL6pnuVfMR9rH1hPMi8ZHwdPMs+Pb8nwFABNoERwNRAfL/7wDiAlYERQVZBtQHowjQCLUGJQTBAV4ARv8V/9D+n/8FAaYBLQDQ/AT5Nfcc+OX5Y/uh+3X89P26/9YAHQDF/ST7PvpX+pb7rP3//oYA/f/V/rP8pfqj+af4l/kA/ED+Rv8j/v76Gvjp9gv3PveX9w/3KfZd9rT2pPZP9rH0LfMC8gvy7/L89Gr2EPmJ/K/+hf4S/Ej7aQkHIrw1LTvxKlQXIBHsFVUh0y5uNI80gi2tH0MSpQgHAZb+QP82/tj68fTw7qLusPAQ8A/u6OkL55nnoeoz8L/2+vkv+qb3HPZ19tX4A/23AD4DTgSbA/YCAQJVAQEC4wO/BoAIYwiBBhMECAIXADD/w/41/zYA9v6t/aP7QPkh99f1DPWS9Xr3Z/qP/a//av/9/IL7qvpG+wX9nf5DANcAfQAl/xH+dPzv+pP6C/py+oj7wPwY/hb/HP8l/wz+Jf0b/LX7o/uN+0b7CfpV+bj4S/du9hv0IvIb8X/xbfJ58iLztfVo+M35i/v4+tL7iPoh+pgI8SRrO9tABjG6GoUUrRd+HecovzCBM7AwwCKdEwEKq/94+Tj5KPiL9aDwe+ze7mPz6PFs7r7qDejo507pm+7t9lX85vwK/Db7l/mH+GL5Dv0PAqAE0AOMAyAD7QGfAZsByAIaAwUCcAC8AP3/5v00/Pr6+voi+uz3+fZA+Bn6d/s8+2/69fj3+Hn6G/06AMABzgLQA1sEjgQsBJcDxQJhATYALwDXAKUABwG8AIf/F/5G+7D5efo9+/H8Lv4a/jT9e/uN+sv6Hfuq+gT59PbZ9Gzz9PPX9Ob1c/WN9Kb06fSh8zrzaPXl+Oj8eP9c/Qr8Bfo/+i4L+CS/OE8+pi3YGJ8TbhTdGR4kjSqALLQphRxcEU8LqAGV+tH3X/Qv8yPwUe3A8lL4V/ha9DTtsufl5tvpPfLO/H4D+wOsALr89fgh9xT4HfydAJACygHLABkBQgJcAq8Bhf+t/WX8iPz0/g4A0gAbAWz/E/2j+Zv0lvM39Zf4P/yk/ZT9D/6o/lb/4P/2/0QBZgNgBa4HiwnQCfUIZAXdAZf/Iv72/eL9IP1j/Ej7g/qI+RL4Bvbb9M71UPdD+cv5q/mn+c35Q/q2+Q34HvfG93v57PqV+o/5MPhf+Ff40feX9973+PqE/Yn+nf8AAFgAEAC5/HUDYBf/LEY4ajCsHBsRbRCSE8AamiGvJFUkOx28ERkKXgE3+TD29PX/9TbztO3X7v30R/li+fj0APA77n7uKfJp+Yn/lAFyACL+NPw6+836e/37AaUFOAaVAzAAIP5W/aL++ADgArYDkAKRAJv9qfoU+ef4CfoU+/P64/nj+Jz4IfqE/Fj9Pf2m/Ar9w/5+ADsCZARbBlkIkgmWCP4F+AGJ/r78pfxj/U/+9P7g/ej7dPkf92P1PfSN9E32YPhb+sT7o/yY/c38lvsf+ij5KPhZ+Cb6JPwV/Z/8qfpJ+Y743vfn91335fav93L5afw0ANQAHQDk/Gv6OQTzGgYwDTtmMjMfsxTtEGUQ+RW8G48h8CXcH4wVzAsiAKn3efVn9A/1mPLc7czvLPZT+iD8tviw85nwFu6074z2rf2NAlsEwwKlACX9QPmt9wT6Zf3fAFwCGgJjAYkAcf8//mr9Qfxw+xX8Ff2G/SD+Lv2a+2D6fvji9oX33vhZ+5T9U/6d/kQAKgOpBgoJbgmUCLAGUAXKBD4FUgaVBrAEtQHA/aD55Pam9Zv1LPb09gb46vi0+Nj3//a89m/2s/XQ9Ob1VPj4+hv9mv2N/Ln7lvqR+cr49/fq+Lz7Gv+aADoAmP1w/MD8Ef0r/jD/w/3C/NH5lPwLD7snijkUOrwm9hHXCSAJYA+fGZ4hJSe2Jq8cEhJeB4b7fvUc9eT1LvbW8SzuRfKc+CD8qvup9tTwHO3266fvNPYt++D8SP3v/L78JvzN+/H84v7r/zQAtP8M/1r/SgEPBAAGcwW/AmkAX//Z/hX+6Px0+6X6+fl4+fX40fiu+RX8s/6cABABqgBBAG4A/ADiATID0wQxBnQGhQW0AzkBpv4d/EX6mvk++fP4V/gc+DX42Pf59iD14fKh8fnxifR0+Jz7Nv0k/VP8tfrT+Jv3avd6+Bn6mPyZ/58BUwFT/h/6g/ce9lL3nvvn/y4D9wRaAyAA0Pvw+EEBpRaLLWs7XDezJXgXPhC0DlEUhhnBHAYfKRpBEpIMKgXp/r77kPeA9FLxw+zt7az0L/sMAEf/b/lu8yzuXuyr8G/22Pqm/SL+Ff7b/TL8t/rG+oT7A/16/kn/UQA9AgsFzwfvB7YE//8m/PP5xvkV+yf9Gv9v/+D9FfxO+9L6y/qw+or6aft3/VcA6QOnBhQI0geaBvcEyALDABsAIACCADIAO/6o+z75m/YZ9EzyLPEE8VzybPQq9k/3pvcP+Lv4a/g897T2W/eT+M35wPvX/cj/QQA9/6v+pP7H/Qz99PzH/tABbgM+BEQDlAAs/7X+Dv4B/cr4IPvBDogpLTw8PKAnPRNqC2EJ9w18FjkbwR7HHVkWFxE9CpYAIPwX+yb6dve97wrsBPFi+Hf+oP8L+4v18+/y7Czvx/Lu9k76Nvuo+7D68PhT+sP8Qv9qAXUB2QB7AFMA9gELBMQEHAT/AVgARP8t/dD7gfoa+dH4+feM97b4I/li+aL5svjE+Ef6j/xeAHUDfQWlBhAGdQQTA1MC4AIgA90ACP6P+2/5dvhD+OP4p/pX+3L6uPje9tv19vXk9q34Dfr6+vH7G/yL+w76fvgq+Br5cPoO/KH9jv+zAXwDvQNmAiD/4vtw+ib5L/o7/Cn98v9TATX/T/wE9v74zQ9MKuo6AThxIJ4OewrCCUMS8BzKIHUkmSB2FncRHQdV+oz2PfXH9Zr0I+377O/0NPs7AMr/EPsE+LHze/LZ9uX5F/zi/LX7vPy5/Ej8N/85AdcBWgGQ/qT9vv3D/QwBJQSkBM4DJgAb/TD87PmZ+Lv4Qvg1+Bj4tvfO98T3MPcE98j3tPlI/GEA9QTHBykJeQgQBrIDDgJhAowETAaFBgIFEQLg/o/72Pj/98T3pveM94P3uPfg97b3I/fO9pL2cfWx9MH1UPgg/Ab/4/8wAHX/Af6a/GP7cvvF/Gr+EAAMAY0Adf9s/mH9/fwk/JX6VfvA/SP/8P5Z+6X7Wgl1HcEt6DISKVgcFhWeD4wPfBPeFBMWyBRbEIUO9gleAXT72PcD9ob0N/Bm7u7xBPf0/OQAiQH9/+T7wfhx+Mj4N/mb+O73W/kk+1P9iAAyAsoCogJYAaYAjv8T/qH+PQDbASwDkgJRAZn/WPx4+cP3VPbX9BvzDPKC8/T2WvuA/7UBqAHl/2j+c/7w/ywCsgQUB84IkQmICdkILQdOBMcAWP2V+gn55/i/+Vn6/vnC+Fj32/Vc9OrzifXW+Hf8kv7B/jn+3f24/Yb9Sv0I/V791f1p/Xn8iPso+8X7ifyN/LD7y/nB9132WvUj9vn3LPns+/j+JgDt/1r8s/voB/QaxCt/Mxkt7SJ1HEkWIxT7FSMWmRbKFPMPWw6WC4gFygGQ/qP7GPma8xbwevFw8y72hfiw+Gj4HPdf9ir44/mg+rv6e/py+4j8rf3K/2cBdwKAAz4ENwUuBd4D5wLeAYAA0/61/IL7P/sr+2f7+vqD+Tv3DPV+9I31BPeV+J753/rv/Bj/mAGrBD4HIAlCCgUK0AgtB+EEfALWAHj/Rv7A/Qj9z/vP+rD5l/gJ+CP3/fV19Wj1b/b39xL5ivlM+Rb5cvlp+X74hfdh90345fn8+vr7d/3Q/eT7yvhm9sP1bvaK90H5Wfut/TL/av5N/Ur8ofq1+in7tv4sDhwkvDXNO9Mw0SBlGQsWuBYtG3AbHRpAFkANUwiiBVj/Hfvj9+/z7PA563TniesO81P7cgFCAv//7Pve+K75ffuN/P381vw0/lUAYQLyBPIF9ASXAmb/hv2G/CD8+v2EADYCcQJKAIL9XPto+RH4evfn9iz22fVR9nj3xvj6+fj6i/yQ/l4AeQK9BBAGWQbNBf0E2gR0Be4F+wXCBY4EGALD/yX9KvqB+Hb3J/eS9zD3uvbr9yj5dvmZ+WD5ffmP+UD4D/dq9+f4C/vJ/Dj9rPsa+Yv23fQa9f32XvqU/hUBIAHt/z3+o/y3+hn62PrY+rD7of00/+YAS/8/AE4PgiR9NG04nSy5H8ca8hWNFIEV+hGVD24MdgfNCHYI6QE7/Wb4IvR98TbrCeh+7K7yJPq0/5wATgBl/t/8uP7M/z7/J/7g/Dn+QQAnAXwCTQIBAUEAof4V/nD+wf2o/v//tP8g/6H9RPxV/G77jvn/9/L1x/Ql9YX2a/lG/HD9uP2C/Yb8BfxV/VEAvwQ6Cb8LkgzvC7kIhQTCAIL93/tu+7L7zfxq/W79SP1w/O/6lfgn9mP1Mvba9nH3hfcy98j3VvhQ+AT4Bvcs9nX2yPcY+vP8Wv9BAIP/N/5c/er8WPxK+7L5u/g6+c36Bf4kAV4B/ACbAUIC/QIRAeD+Jgd0GMspMTRJMNIkfhzwFdISIRTLEs0PNQx6BvQEVwWPAXX+9vu7+L/2hvLD7s3wZ/WR+/oBPATuA94BR//T/ykBPwDF/av5YfZJ9tP3kfqm/dn+0/6J/kj+c/6f/pD+qP72/kn/T/8n//b+l/5w/g/+P/38+0H6xPga+AL4b/jW+Sv8vP+6A7kGKQiYB1IFbgIOALz+zv7Z/woB7QHdAc4AQP+Q/fz7wPqP+Q34bvaJ9bP1avb59h/3uvfN+PL4xPfJ9WX0T/Vo+Dv8+/7i/pr8Yvp0+Vz6d/u5+577GfvW+rD7Pf24/pL/Y/4X/G37tfuf/P//fgNgBekEJQE5Az8RbSLOLuAv/yUyHW8X1BLwE/sVKhV1E0ANnAdHBuQBQf34+7T6DPsU+k/2+/Y4+r78uv9R/2v8rvlU9hX2yvjx+VL61Plf+Hz4Fvli+lz9aP+6AGECTQPjA6sDMgMNBE4FtgXNBKgC4v+o/MT5H/h194f3m/ca91b2GvW88+vz5/UJ+Xf8HP/2AD0CAQO4A4oErgWPBqIGkQbCBfkDlgGW/h383/pp+t/6qvsK/Jb7afqV+VT5Nfn1+GT4ivfw9mP2MPbp9sT3GPjc93z3X/dS98/3Cfk2+lH76vvZ/Eb+Qv6h/CL7hvtV/Un+pP4c/7//6wElBK0EsQPR/6j/pgt3HYksEDJDK5QjZB+LGqMZYhpZGFAWYhDzCJUG3AII/rz8YPuq+mr4mvGm7XjuSfG29uz62/zv/a/85Puh/Cb8IPs++R73GPe99335cv2GAX0FCQgbCFkH4wRhATL/D/4l/hj/fv8eAHsAD/+s/BL6pPcy9YTyGfEH8gr1/viP/Jn//wEEA3cDRASeBX8HeQgpCEcHXgYtBjwGgwXBAxwBav6A/BL7Lfqi+Wr46fYu9UHzKfLz8cny3fSg9iH3n/ai9UL1qvX/9Wb27fay9xT5dPq5++/8h/17/Tb9S/16/mkAzgHbAYAAYf6W/Dv8P/yG/MD9c/5T/kL9OPwlA8oTliW/MYMyliqNJB0grhtuGtgXixMND8YHmwOFA7wAI/5G/H/5lfco8mzrgur77JXxNfcO+jD85vzd+z/9rf/gAHUAUf3G+sb6svu4/Xf/LQBLARwCdwK4AjIC5AH4AZIBvAD5/uD8vvtn+677hvvn+an3i/VR9A/1aPf8+kv/6QJzBc8GqQb1BacF/gUxB84IYQqFC2wLkQn8BYQBLv2c+Wr3n/Zj9ir2D/be9Y31J/U09M/yZvEq8OfvDvGG8zn2V/js+Zj68/qL+6z7p/sn/PH8//3T/v3+7f7F/vH90Pxh/CL8Nvvf+Qb5Nfqf/C7+VwB1AokCrgA5/Yf/6Q14IDAvqDTKLrsnnyItHHkZFBhcFGwRyAtHBmYGLAU0AmcAZfyH+E/zO+t26PjqUvA++Kj9nAB1AXX+3/t5+kn4ZvbJ83ny2fQo+LP8LQEyA6YEeATrAvIB7v95/ir/YAAnAjMDqgLmAWsAqP58/Tv8Rvue+jz6gvtn/Zv+VP+Q/z8AkAHcAqgDlwO/AkIBIAB0AGkBVgLlAloCcwEnAD/+mPwU+4r5w/eY9dDzefId8mDz4PTv9Xf2Efat9nb4BPql+5T8Nvwz+4b50fgF+3n+nAATADb9RfrI+Jz4L/qo/Fj+D/8g/iT9HP1//AH9HP4V/gAAzgHzAD3/H/t/+9gIFxpoJ4YsYSaZIDkfYxxUHeMedBriFBEMgQMsA00CPf/9/lX9G/zJ+t70TPGT8cvxafTn9d30pPTo83X1nvqv/gwBSgGF/5n/kQBIAUYClAGEAGMA1f8vAMkA0ADKAT8COwIyArEA1f4p/dn7y/wW/9kA5AEpAQT/Iv0H+1T57viM+d/7d//HAhIFDQYEBl0FCwR6AnsBQQGJAQUCtQFrAEn+e/tv+ZX4YPhW+PD3Hvfp9Wn0HvOw8kbzuPRb9rv3q/gf+b35sPpO+wP7SvoS+lv67/rq+x79Wv7O/j/+4v2b/tD/TwA2AHf/tv77/jX/q/51/p39V/zE+8L7zgD0DGcZviGcI88fbh1sHGUa3xlOGCUU7A/KCrAHPQg/B3wFogSLAvb/A/u880Lv5O0N75zyqPX398b55vpP/ScAkgG6AW4Adf6x/IT67vjf+P751vuh/eT+VP9J/5X/9/+qAKMBWgKBA6IErwQYBCcDTwKbAioDogPjA7YCYACt/Y37APsb/Mn9kv84ARUC6AEgAQoAJ//n/un+Lv/a//L/RP9c/vP8gfsJ+jD4lPYM9WXzR/IS8rDyiPOG9DL27vhO/IX+yP6o/Sn8x/ts/bT/+gB0AGz+A/30/Gz95v0i/jL+bv75/qv/+f8n/2P9x/us+zr8wPyo/R7+9v1K/ev8kAE9C1oU4Rn1GQcXkhZmFkcVWBXSE8ARsxAJD7kPnRGwDzAMxAeUAgH/x/pF9x/35fcP+YP6oPqe+tH5Avh291D3v/bt9c70NvXZ9uf4a/sQ/Uv+If8q/7//JwAbAJIACAFWAgQFXAfYCOwIMwdZBaYD/QFEAQoBDAGSAP/+OP3k+2X77Pud/M78mPzh+1P70PvJ/Ev+VwDKAZ8CGgPDAu8BnQC8/gP9rPs/+hT5Jfg19z72RvVN9aT2bfgE+o/6Bfof+Vb4aPi7+f76Tvus+lL5GvgL9872Avh2+c36vPvD/LP+OwBlAO3/rf/2/3sAsQCcADQA0P/Q/zsA5AEqAxUC+f9C/ZT9gwS2DJIT8RfzGE8cVyE9I6ojtiBIGawRiQlmA1ECRgHr/8j/d/40/QP7FvcX9Wr0KfRL9UT2k/er+Uz77f1rANQA7f+E/VH72vro+kT8Ef5d/xUBoQIjBM8FLQZzBYcE6wJVAcr/bP5A/oX+BP+S/+3/jwDWACYA7/70/KH67PjR97j3svg2+qP8/f+0AxAHJwk2CZEHrQSsASP/Yf2Y/Mv72vq0+Tf4IfeD9vL1+/WH9iH3UPij+T/7wvz0/B78vvql+UX5pfht9w32fvU79/r6S/72/+P/+/7i/g3/fv4//j/+P/7n/h7/gP95ACkACv9p/RL85vuC+5r7of01/woAN/+d/sgFTxJqHXckjyQvInAiVSChHIQZDBNaDGQGrwBBABMBRP5I/GP76vqh+1L5VPam9hz3Ovgz+jz70vxj/lb/6AGyA7YC3v9e+/L37vaU9jP3f/jx+c785f9jAnoEFAUIBc0EDQSJAycDugK1AosCXQLgASIA+v0g/HL7f/zU/eD+EwDgADIBIAF9ABMA9P+p/xj/VP5a/ST8o/q3+dP5YPra+lf6BPn592z3R/eA93H3yvbc9dD0kPSm9Tv3vfiu+QD6afpI+tr5TvoF+5j77fu7+7f8VP/KAS4E2AUQBrsFkATeAhkBIP6s+jP4uva/9g33u/eO+UH7qv3qAOsCGgRvA4UDIAoBFA8d2yJtIhghOCGvH5UfJh+mGp8U9AvGAwoBrf4X/D37ZvrH+0T9DvzS+z38lvwi/s79Kfwo+m72mPRL9Rr2pvei95b2uveM+Y/7df3H/Yf+8v/zAGYCXwOmA/kDXQTfBXAIDAoOCgMImwQ0Acf9dvu5+oP6qvq++hT64/n6+Rn6bvty/cH/nQKnBHMFYAUUBIACLgE0/5b8Nfln9YLyCfHP8HbxrvKf9EX30/nY+uz5zPfe9aj1Zver+Wn79fuT+277XPvF+4T9rf+kAcMC2QIuA3oDjQLgALr+L/zY+Wz32fX29X72+/ZH90n4ffqG/Hf+zgCbAiUEJQQNBCsJahLrHJkm0CuqLv0wvC/9LJcpECNNG30RZQf9AWz+nvoC+B71zfO38+Hx5fC58CjwmvBS8e3yfvUC91v4rPk8+mn6W/lJ+Ef4QvgP+b76hvx1/5ICNQULCGoJkQlECaEHDQZtBRsFAgXFAwwBkP6m/JT7gvsz+336ZPna91j3APhg+Yj7m/0+/5gA8QDiADYBjQG4AVMB1f8P/kz8j/o3+SX4xvcC+KX4e/mn+TH5fPiD9yX38vcj+TX6f/qn+fv4+fiG+QL7lvwc/sX+K/6o/RH9zftM+gf5jvjz+Hr4fvdC9zX30ffn+Pz5Wvst+3j6rvsO/ar+N//Z/xIHrxOnIKUriTBxMXAzXDNgMbouGidxHW4UnwqVBHIA4fm89E7xwe/j8azzKfS19VH2mfZH9/b2kPZW9ZHzZ/Mg9Of18vew+Tv8if47AI8BcAGEAM7/q/+kAeMD4wSuBVYFRwUWBkwGoAZABigEyQGZ/3L9Svtv+M71VvTF8y30BvWp9lL54fsF/un/BQEiAksDHgQvBegFlwVUBJsCpgDi/iv9Qfue+ZP4UviV+BL5Q/mt+Mb33vZa9RfzAvGy7/PvWvJW9cb4efy1/gcApQDa/5D+Qv3Q+y/7Mftt+yf8nPxp/OT7qvvU+6f7M/tM+pz46fjJ+tT8LP/n//ACfA0iGlokNipMKv4q6CyKK+wpryYJH3oWNw14BjwFYQJI/Nz2hvLv8V7zIvPX89X0GvXF9sz4nPrL+zz6evgz+Lb3Efek9Wr0w/X593j6RP2d/p3/vgDmAY4E9Qb8B5gIOAh2B9YGKAU5A48Bpv+O/nn96vvj+uj5nPlX+pX6G/oo+f/3/feF+cD7kP6YAS4EowaCCGAJTQkUCOUFkAMrAfD+Jf0f+xT57vbJ9KrzTPO685r0pvUI9w/4zfhx+Yz5QPnz+O74cvn6+fH5EvrN+nT7wvu++xD8zvwF/cv8TvzC+0X72vqT+qf6FPvb+qP6Avv++l77B/tD+gX9xARbD04aoSFjJTopICzFLZ0uVSxLJ5cflBUuDh4KgwZAAtn8g/gE9372HvY09qL2UveB95X3Gvhf+DH4xvdt94X3GvZr87Lxk/E689n1nvfW+Bb67/p3/NP+CAGfAg0DygLXAmoDHwSmBD4F8gV2BmYGCQVcAhX/hvu2+Lr38vc++dv69fsT/Xr+NAB+AggFOAelCEMJtQghB+4E1QFd/jr7HPhj9STzAvGg73/vdvCo8mf1xvd4+Y/6XvsZ/Gz89vsX+8f6/PpD+z/7y/ox+oX5N/lc+tb8Mv8pAHr/lv6f/r7+Wv7f/Er6IfgB9yr3l/k7/GH9bP1W/S4BEwqiEzsbXx/IIdIlxClsLO8tGyzaJg8fsRVJDz0LzwXu/1z6xvZb9lH2LPYG98X29vWW9Vj1Sfbc9sP1IvXe9Gz0T/Tt8xX0dfXe9h/4Ifml+VX6t/t+/V//mABPAQ8CWAOIBewHxQl3CqwJPQjRBlIFpANsAbb+4ftb+Yn3xvZx9x35YPss/i4ByAPYBR0H7weaCDgIdAagAx0AtfzA+V/3lPVe9ErzgvI48mvyIvNT9Mr1ifeG+Ur71Py1/Ur9Tvx3+z/7ufvZ+xn7TPrL+YH5Dfoi+wr8/fww/Tb9lv1s/X38Uft2+lX6C/p0+RL53/gU+YP55frK/0EIsREKGo4e6CDiI3wmPinxKt8pxSb+IMAZSBQDEB4LfAXQ/mj5Avc59SD09vOs88fzB/QI9H70sfQl9AH06fT99e72Xfe79374RfkC+lP6mvqY+oj6Evw7/hcBWQR6BiQIhAkcCn4KiQpKCaoHzwV+A5ABRv/6/EX78/lJ+Vf5TvkC+RD5jvkJ+1z9oP/xARwEfQX+BYgF+wOjAdP+zfuO+JD1tfKc8BDwovAJ8v/zefUe9pL2FvdN+Cb6ffs4/Jz8Jf0i/kn/bAD/ABABjwAg/8f9Kf1s/ZD+uP8QANP/1/5K/W77cfkC+Bb3xvZm98r3z/d19z73oPoyApkKSBIaF1ga4R9AJb0olSrBKD0lIiFjGxYX3RPyDgMJoQJl/dr6sPhj9iX1ifQI9cH1IPYI9wL38PVG9cv0IPVs9cf07fTi9e32xPg++mD7gPzN/Gz9jf5f/2kAXgGSAnwEZgYiCAMJswgACP4GtgWmAxUA2Puv9zj0gvJK8mvzpvX199r6Tf6WAecErAd+CV8KsQmVB1kFJQM5AaL/2/3z++r51fc19m71aPW29Q/2aPba9pv3oPgW+qj7s/wr/dn8Pfyc+z37dPtB/DL9i/1f/Qr9o/zC+176LPkz+MP3fvdh98/39ff/92j44fiO+U75fvhk+j0ARglIEx0aTR7PIg8nHyvVLWcshSieIuoaLBVXEW8NBQlfAxP+Yvt/+Wz3uPUi9FfzLfN180/0CPXM9PbzSPOP8/PzCvRs9ED1+fYE+an69fvU/D398v3//hcANgHBAYcC6wNoBYUGxgZ6BnYFMQQVA7gBZQC//mH88/ng9z72CvbI9ln44fqJ/SsA8gI6BVMHJwl5CXcIAgZ6Au/+ufsf+UL3+PX29Fr0OPSs9Gz1pPYE+P342vkx+jP6mPoO+3b76Pvi++L7rPzo/UL/CgA0ABIA5f/n/2H/Cv5X/DH6MPi09mj1vvTQ9CX10PZ4+cf7s/wQ/D/9WwPFDDoWhxzeH84jLCi3K+stnSzuJ0MgkBZVD1QLawfHAlP99fj590740/gE+qD6rPo4+gn5c/iy97b1WvRM8xnziPO18g7yQ/Kz8hH0n/Xc9gb5HftN/R0ALALOAwgFtAWuBssHEgjAB8sGSQUTBCcD4gFPAGr+iPye+5z7E/y+/CX9c/3X/a/+r/+UAHkBSQLKAhMDygLbAdsAif/x/aX8TPvw+an4WPdu9kn2jvby9nX3EfjT+Of5Evv1+4D8e/zb+z372Pqw+sb6jfoq+ir6Svqh+tb6Pvo3+UD4R/cR91v3dffj90n4f/iP+QP7Jvwr/U//0wT7Dc8W/xzKIHIjFicfKv4qjCpLJwshWhpUFHgQ2A0pCYUDA/93+3T5RfjG9oD2QvbH9VL2xfbl9nP2IPWb9MP0kvTO84TyqfHJ8Z7ybPSD9nH4zfoc/QwAZgOHBbsGTgelB3AICgnOCPUHewanBAwDfgHa/03+9Pz4+1z7mPvo+1P89vyH/XD+Sf/G/+f///8/AFoASADG/+f+2/2s/Hv7ZPox+ff3/fZv9mH2tvbr9oz3u/ii+X36XPsJ/Ob8X/3m/B78MftF+mb69fob+7D6cfkS+F/3Rfe794P48viO+B34Rfhp+ez6L/xw/UT+gv7y/voAbwYxDtsUixlNHf4gNyUjKOEoeCiiJU4geRolFU4REg4pCSMEfQCN/dn7U/rc+KL4CPgq9yf3v/ZW9mz1E/RN9Gf1XfZ699P37Pdr+FT4Vvik+Ef4QvjB+OH5xfuE/ef+0f9+AFUB7wFCAoQCXAKHAtwCnQKSAkYC+wEjAuQBXgGEAMz+jf0l/V/9S/7v/lb/BwChAGEBBgLyATgBuv/H/ez7BfpZ+PD2+PXJ9SD29vZD+Hr5k/qK+x38r/wI/dv8lvwn/Nb7rvuW+2774fpm+j/6pfo2++j67Pm0+Kb3Dffn9r32AfdQ9373bfjs+bf7XP1z/icBpwYSDjAVlRk0HDofXiJEJbQm8iXHIwIfbRlaFVMS+g9uDHAH9gPZAfT/8P4e/bn6u/jm9dfz8fJ48Xrw4+8m8OrxqPMB9R726fbj95f4tPjf+Ff43Pcq+M/4u/rW/Mz+QgEwA94EVQajBioHawe/BioGzQQuAwoC+gAIAbEBvAFNATsAA/+N/nH+lP6k/t79x/yU+9/6B/s6+6X7/PvZ+4j7wPpe+UP4PveD9of2s/Yj95n34/dg+Av5oPk6+tj6Wfvi+1f8Ef1P/oL/DADT/y7/Vv6S/bn8p/vv+nL66vl7+Rr52PgQ+TP5JPk++cj5XPr4+pr8OAFNCboRdhcUGggcux91I3ElTyX4IpcfchuQF34VkBQeEqANvAj1BDUD0AGJ/9n87PnF9hH0KfIi8WTwTu9j7onug+8O8aXySPRj9oH4ffo9/JT9q/54/6n/rf9v/7X+XP6Z/ov/IgEwAlMCCALVAWgCgAM8BE4EkgOfAkICWAK4AoQCfgEpAJ3+Of04/CL7JPpX+TX55/nP+mL7lvu1+xX8V/wS/GL7PPr++Nz3//b09q/3rvi/+Wn67/ql+0T8//zv/Xr+5f4n/+L+0/7Q/qL+cf4G/lz9pvyh+4H6ZPkC+Hj2CvXZ83fz1/Mn9RT3wfhI+jT8IADqBh8O5BNgF7wZmx0LIicl/yXrI4EgCh3ZGVcYBxiOFp8Tjw95C5oIVwVhAaT9mvlq9i30TvKR8fnwQ/DL8MDxtfJe88fyBfK+8azxdPLJ83f1h/c6+Rv7HP3X/roA7QGCAtMCXQIyAq8CYQO7BPAF9QYtCKwIqghyCMAH/gbKBR4EXwJKAEj+hPy3+kD51fe69nH2gvbZ9pD3W/hV+fn52vl9+d74Sfgl+Cz4Pvhr+Fb4UPjq+O75Rfsy/Ln83fzQ/Ar9df3M/fr92/2Q/ZL9af0c/Zr8rvsf+/z6vvqK+uf54/ig+Lj4QPkA+iH6+vnP+q/9gQPXCsIQZRRWFnsYkRsPHv0eIR5RHHQahBj7FksWvRWtFPoSsBAjDk8L8we0BOgBcf8g/ez6H/nI99z2F/Ye9Rf01PKI8cbwrfAQ8ffxOvOb9D727ve7+Yb7xfyt/Wj+5f4c/yn/Kf+D/40A7wGyAz4FAgYhBpoFXwVHBeEE1wNhAroAVP+O/vb9i/0I/WD8y/tQ+8/6TvoU+gD6Jvof+vX55/kF+o36FPsi+6r6yPkj+VL5Jvok++T7Tvx1/Eb8svsg+9/67vo9+6f7NPzf/H79F/7l/nf/qP9m/87+RP7t/Wr93/y3/NL8av1U/hr/q/8JAN8AswJxBeMHLQlNCeoI+AiaCZgKpAt+DB0Neg3BDSMOAA/zDxsQaQ8jDvAMQAy/Cz0LewoyCb0HeAZOBVQEAwMpARz/Bf0i+8T5u/gP+L/3q/cc+KT4KPnA+fX5ufmB+ST5yviw+Hz4c/iO+B/5Pvq5+xX9Ff64/gj/LP9f/6v/EABhAHsAmgDdAFEB4AGJAlQDCARNBAQEgwMPA50CCAJ5Ae0AWgDM/yr/tv6E/k3+yv0F/TT8cvv++nL68Pk6+VT4gfcB99X2zPbR9oz2bPZS9lv2uPY59973Q/ig+P34afkb+ur6ffvd+wD8G/xr/Ar94P2h/kT/yP9cALEA0gBBASIC9gMqBjYIGQriC44NGA9BEA4RmBHZEeQRuhGREagRyRHAEXAR/BChEO4PpQ4YDXEL3wk0CDoGzAOEAZX//f3F/LD7vfrf+QL5M/iJ9/f2h/ZY9g/2ofU99Sn1jfVC9hH3xPdi+Of4bfkL+qH6SPsH/Or8A/4W/wwAIAFAAloDJQR+BF8EEQS6A4wDhwNqAyUDqwIIAlYBhgBx/1z+OP38+wL7Dfpp+fX42vgd+Vn5wvnN+Yr5Tvns+F/4pvcG98b27vZL94n3jvdt92338vf3+Cv6Qfsw/D/9qP7t/w4BmwHFAcUBhAEuAcwAYQDT/37/m//XAEkD5wU2CLEJlApfCzkM4AwaDfYMqwyHDIUM7AzYDf4OGxCqEK4QKhBHDyYO4AyXCxcKXAipBgQFqwNzAm4BfgB8/2z+Xv0v/Bf7Evr1+PL3D/dz9gj2jvUs9QP16fQ/9cz1TfbI9h73Zvf09wL5JvqR+8781P3i/gAAPwFhAjIDtAPwAwgECgTaA6kDlwOUA3EDCgNuArwB+gA0AH7/pP64/a/86Ptw+w773fqy+sf6y/qq+o/6Svoh+tj5Zvnq+Iz4N/jl95v3dfei9/X3k/h2+Xj6j/u+/Mn9i/5L/5v/w//K/8X/tP+i/9D/DABGAEQADgAJAKEA7wF8A7sEpAWFBnYHgghsCSkKxwpYC7ELDQy8DLYNuw5mD7IPmg8WD1IOZg2mDNsL6wrXCYIINgdHBrgFBAXRAzcCIgAr/oj8LfsJ+uH4oveQ9sz1QPUI9Qb1HPUs9S71D/UO9YT1I/be9pP3Tfgv+ST6H/sd/C79N/49/04AWgF5AncDWQQ+BcIF/AXPBRYFUARsA5sC5gFPAboATgD2/7r/gP/7/oT+5P0l/UP8f/vb+ir60/lX+QT5nPgq+Ov3xvfy9/n39Pc1+LD4j/lw+iL78/vg/M79if7Q/qr+VP4e/jL+h/68/tf+1/75/jv/sv9cAF4BmwKfA4EEPgU+Bs0HggkDC1sMig14Dl4P3Q8rEGQQaRAqEHQPcQ5QDU0MZgvFCkEKnwnsCNQHwAauBXgEDwOGAQwAlP4b/e37Cft5+vH5f/kY+aX4aPgf+KT3//Yg9if1e/Qy9HP0IPX59RH3SfiR+RD7ffyo/aj+MP98/7j/EgCPACsBvgEcAmwCugLtAhYDFQPbAnkCBQJ8AeoAXAD5/7L/Xf/Q/iX+av2U/LP7+vpg+tr5S/nE+HH4Rfhg+KX4FvmR+Qn6ffrH+h/7bfuj+9j7Cfwy/Ej8T/xh/Jb86/xf/fT9d/7r/iX/Kf8h/3z/8P+hAGwBNgL9ArgDnQSFBZcGfwcXCIYIBwntCSULkAzBDZEO+Q4oDy8P+w6kDjoOpg37DDkMeQubCpsJjQhvBzUGuwQEA1MB2v+1/sz95PwH/GP71PpZ+r/5GvlL+ID30fZW9ir2J/ZU9q32RPf79+X44fnE+pz7XPzr/D/9lP3H/Qr+WP6d/vT+W//F/yQAlgAMAXwB4gEpAmoCdwJWAjIC1AFVAYkAUv8a/ub8FfyB+wn7lfot+ur53/n5+fn5Dvod+j76SvpI+kz6P/pe+lv6Yvpb+lf6W/pZ+oz6rPrR+hn7YPvQ+0/80vxp/RP+1f60/5YAZwElAvYC+QNHBdwGfQj6CVgLhwzIDdoOrg9FEIgQsBC7EJUQZRBFEAsQ2A+hDxYPZA41DaQLzAnNB54FagNaAWT/lv3m+5P6p/kL+av4ZvhH+A341feX90n3HPf99gH3QveA99H3D/hC+LD4V/k1+hD7nvvh+xX8Q/x7/PT8ef34/X7+Af+U/zYA9ADHAXMCvAK8AnUC6QGYASUBrgAZAF//zP5f/in+Bv7e/cX9fv0i/dD8ifxr/D/8+vvF+6r7o/uc+4v7hPuE+277Z/tr+437s/v1+1r8vPw2/ZD91P0P/kD+VP5n/n7+pv7p/iH/kP/5/4kANgE5An4DxAQoBkoHXghcCSAK1wp3C/8LVgyUDKsMsgyyDLgMcQznCzkLVgp1CZMItQfIBsoF0QQEBA0D7QHWAJX/cP5l/Xn8xPs8+8b6efox+s/5YvkS+f74BvkH+RT5/vj5+Cj5o/lp+hD7f/vS+xL8RPyd/DL9tf0g/pT+I/+y/08A1gAuAVEBNgEKAd8AwACYAGkAKwDy/73/R//B/kD+wP0O/Sf8f/te+5/75vv2++b7G/ym/CL9Qf38/Hn8APyj+zH7MfuI+xL8r/wp/az9Rv6b/tX+5f6d/nH+Qv49/nn+wf77/gH/VP/a/4gAfAFTAioDNwR0Bb0GwAe+CMsJ5AreC4AM4gwhDVgNiQ2DDWEN/wyXDCcMpAviCgUKDAkQCBAH6gWgBGEDWgJVAWMAYf9j/rf97/xM/Jz74fo1+nb5zPgl+Iz3FPfO9rj23PYK92H38PeZ+FX5FPqu+hn7bvu++w78XvzQ/FP99P11/hP/gP/D/9D/uv+Q/1b/D/+Q/kb+DP7r/fv9F/5h/rH+zP7p/tn+pP6O/jn+wP1K/eb8kvxr/G78hPyz/Oj8Af0e/Uv9m/3p/Rz+NP43/jT+MP5R/qL+1f7v/vL+7/7T/tP+Af9x////oQBTAf8B4gLiA/sEIQYFB7UHPwjhCHsJ/Al1CsEKJwudC/ALKgwqDC4MMwwjDMgLSQtsCkYJAQicBjwF5QOdAkIBBwC1/oT9mvzs+2f7z/pO+rb5Kvml+CP4m/cj9+T2qfaD9oP2uPZN9w/44fiT+R36jfrq+j/7Z/uf+9b7Hvx7/Pj8vP2F/ir/h/+U/2z/Sf8M/+f+8P4T/0v/lf/u/ysAZQBpAD8A+f+D/xj/tv5j/hz++P3b/br9xf3r/RP+Sf5z/pD+sf7g/gT/N/9m/4D/gP9h/z3/5f6A/jT+4v2j/Xv9af2G/cf9NP4D//n/BwEGAgwD/QP5BPAF4QbxB/UI4AmdCicLygt3DAoNdg2iDa8Nmw1FDd4MPQxzC6gKxwm7CJ4HSgbuBLYDjgKAAWUAE/+1/XL8Y/uB+rv5+/gq+HX36fa69sr2GPeZ9wv4c/jR+D75vflg+uj6P/tw+4T7jfuq+9n7Hvxh/KX82/wO/Vz9o/34/Uj+hP7I/s7+zv7c/uf+8P7k/tf+l/5J/gz+r/11/S39/Pzd/JL8gvx5/FX8Mvz1+777vPvU+/j7OPx5/OT8Yf3Q/U3+tf4a/5D/2v8SACsAVQCRAN0AOAF3AcUBNgK8AmYD5wNFBL0EZAUdBrcGQQeuB/cHNAhgCMcINAmNCcAJ0AnOCeQJGgo7CkIKAwqECdgIHwhpB7sGIQZoBZ0ExQPVAt0B7wABACn/O/5c/Z/87Pt7+y/75vqp+mT6KPrq+eX55/ns+fP59/no+cn5q/mD+Xb5g/mp+dH5BfpF+r76Wfvd+2H8vvzv/Bv9P/1h/Y/9yf0F/kb+bP58/o7+jf6Q/nn+gP5z/nD+Yf5d/mz+VP4y/hH+Bv7t/dT93f3d/f/9T/62/hz/d//M/w4AVQCEAJIAdABBAB0AAAAiAFgApQDdAOAAAwFVAZYBzAHpAfoBJQJwAvkCzgO2BLIFjgY0B+EHdAjfCDQJVwlPCSYJ6gihCGAIEAjJB3sHJAenBhYGWQWJBMwD9AI9Am4BiwDD//L+N/5e/cn8Vfzm+5T7FPuK+jr6H/od+hL6B/oZ+mT61vpO+8f7NPya/Ob8Gf1E/Wr9n/3D/eD96P37/Q7+LP5o/q/+6/4q/1r/X/9f/zv/Hv8a/+v+w/6U/mz+Rv4j/gz+//3k/br9fP07/Rz9Af0K/Sn9Sv1s/ar94P0D/iP+Sf5u/pf+0/4I/z3/Uv+b////ZwC+AAwBMgFeAZIBrwHoAfoBHgJTAqECHgO8A0cE6wSOBSMGtQb+BhQHBQcDB9MGpQZxBiQG8AW2BWgFFAXGBH8EFASiAywDwwJGAqYBDAFsALz/D/9q/uT9Wv3Q/Gz8Hfzq+9/72fvb+937x/u8+7f7z/vq+/j7G/wr/D/8f/zQ/D39qP37/S7+Tf5x/rP+Af8y/3j/kP+U/5L/ov+d/5v/jP9b/zD/7f6o/kD+6P2P/UL9Gf32/Or82/zZ/Nb85Pzk/M38tfy+/OL8Gf1u/cz9NP6f/vT+S/+Z//L/ZwDOADIBhwHtAWUC5AJHA58D7gMTBEQERQQ+BFQEhwSbBMME4QTpBP4E5wTYBMMEoAR4BEQEEQTTA60DeAMwA+QCswJxAi4C+AGvAWkBIAHQAIsAWgAyAP3/4v/Q/7H/if9s/z3/8v6X/iL+x/2A/U39Mv0g/Sn9T/2Q/cH9//0g/jb+Yf6A/pv+qv6q/sP+4P4B/zL/Uv+F/6L/n/+o/47/aP8+/xb/1f6v/oT+Vv47/jb+QP4//hX+1/2d/W79SP0t/QX92fy5/KH8rvzA/O38J/18/eL9VP7S/jX/m//5/zsAcgCcAJwAoQCYAJEAkgCdAK8A0AD0AAUBLQFNAXIBkAGZAaMBnwHMAekBGAJoAoACuALcAuICCgMYA0YDYwNdA4EDnQOFA2QDTQMqAwYDzAJ5AiIC2wHHAa0BeQE0AeoApQBeADYACQDT/7H/Tf8V/+T+uP6Z/nX+VP4V/sn9i/1q/Wf9Sv09/Wn9fv2o/dX9Cv5U/of+of6q/sX+5/4l/1r/gv+o/9z/CQApADoAKQD9/8H/if9m/0v/I/8c/wj/7/7p/rz+jv5T/jb+Bv7y/e/9xf21/a39o/2d/a/9x/3v/RH+NP5T/mz+pv7b/iH/Xf+U/9r/JwBwALUA+gA4AYkBvAHiARcCOwJRAnMCkAKxAtcC9gIeA0kDYQN3A3wDaANSA0YDVANAAywDAwPXAqECegIyAuQBkgE7AeYAnQBaABIA9P/3/xsAIgAnAAkA4v+6/3X/Kv/n/qv+Wv4r/hH+DP4R/gP+DP4T/vv9+/30/fr9Dv4r/lr+ev6N/q/+uP68/uX+HP9U/3j/jv+p/7z/yP/i/+L/w/+o/4X/gP+A/6L/n/+b/7H/kP+D/2P/MP8R//b+xf6X/nr+gv6m/tX+//4P/yf/Uv+A/4z/qf/K//f/MABRAG4AjQDDAPYAFQFEAVYBZQFwAV8BXwFpAVgBagFzAXcBjwGQAZgBnQGGAXIBagFfAUYBLQEgATIBOwFWAV8BZwFeAUsBMgEVAQUB8QDtAOIAzgC5ALkArACcAJEAeQBnAEoASAA/ACAA7f/e/73/xf/O/7j/jP9J/yD/BP/n/tD+zv6b/oT+gv6Z/qj+2/74/hj/X/9j/3P/ZP9s/3j/h/+F/2j/Vv85/yD/CP/2/g////7g/u3+8v7//hP/Ef8R//v+yP62/qv+n/7I/uT+Ef87/2P/kv+4/+3/AAAHAAMA9//j/+v/BwAeAEEATwBgAGsAYwB3AH0AcgB3AH4AcgBwAIQAawBgAEgAPwA2AD8ASgA6ADgAMgBGAE8AXgBpAHsAoQC6AOIA7QDkAMkAwwDCAKgApQCjALEAuQCvALoAugC+AMcAuQChAIkAfQBuAGsAVwBOAFcAPwA9ACYA9v/a/8r/lf+Q/47/jv+k/7j/1//n//n/7v/u/+v/5//p/9n/vf+Z/5n/jP+F/4f/g/+F/4X/cf9h/1//Vv9C/zv/R/87/zX/RP87/zT/Kf8c/xX/Fv8h/xH/D/8G/yD/Sf9S/3P/cf+D/7H/yv/w/wMAAQAFAP3////3/+f/AQAQABkAQQBPAGkAiQCuAMwA8wD9ABABGwEcATYBQQEyASQBHgEQAQ4BFQETAREBCgH8APEAyQCjAGEAOgAeAAkA+f/a/87/wf/O/+P/6//g/9f/w/+8/7r/q/+b/6L/lP+S/7j/zP/n//v/9v/r/9P/1/+4/7T/uP+k/7T/qP+f/6D/lf+4/8H/tv/l/w4AIAA9AFgAbgB5AHIAZwA/ABAAEgAQAP//1/+2/6j/pP+0/5v/l/+Q/1//Yf9E/0b/Qv8y/zn/Pv89/yP/If8j/wP/+f4E/wz/Of9a/27/ev+L/6L/tP+8/7j/0//i//b/BQAyAGcAjwClALMAuQClAKwAsQCoAKUArwCuALwA3QDgANQAtQChAH0AgACEAF4ATAA2ACsAIAAXAAEA9//w/+v/4//Q/7r/ov+x/63/vP/I/+L/AwAgADoASgBwAHsAiwCfAK8AswC6AK4AnwCdAIQAfQB7AHAAewB9AG4ATwBEAEYAOgAtAB4AEwABACAAGQAiADAAOwA2ACYAEgDr/8b/tv/B/7L/tP+x/7r/w//B/6//r/+p/4P/df9R/0n/Uf9S/2T/ZP9S/1T/WP9b/2b/c/9x/3P/cf94/2H/T/9N/1r/bv9o/27/ev+Q/6//0P/e/+D/0f/w/wMABQA0ADAAOABDAEoAPwA6ADAAGQAKAAcADAAJABAAGQAeACIALwA0AEEARgA7AEgAYQCAAIsAnQCvAMMAwACqAJgAnQCfAJEAmACEAHIAbABYAEYAQwBGAD8ARAAbAAUAEAD///3/7f/g/9H/w/+//7r/uv/B/+f/9P8VACcALQBGAFcAbABuAHsAgABsAFwATgA/ADIAIgAiACQAJgAyACIACgD//wkABwDn/8H/vf/B/8X/wf+x/6T/jv+D/4X/jP96/1L/Uf9b/03/av9f/1//av9j/3P/Xf9q/4f/lP+m/9D/1//V/9r/0f/M/9f/1f/a/9r/yv/t/wUAEgAgAB0AHQAkABUABQD5/+f/5//i/+f/4v/n//n/9P/7//v/6f/g/+D/2f/e/+D/yv/V/87/yv/V/+X/9v/3/xMAHgAyADsAPQA0ABMAGQAKAAcA+f/n/9f/5f/2/wMAGQAmAC8AIAA2AE4ARgBGAEwASgBIAEEAQwBKAFoAYwBVAFgAXABpAIAAdwB+AIQAcgBuAHQAXgBaAIAAgABrAFoAOgAwACAADAAMAAUABQD9/woAEgAgACQAHgASAP//CgD3/+X/yv+4/73/rf+0/7H/w//a/+X/6//l/9X/0P/F/7//vP+v/6//sv+y/7H/lf9+/4f/lP+J/3X/df9q/3j/kv+Z/6L/rf+r/8X/2f/g/97/0P/i/7z/yP/R/9D/5//u////AwD//wUA9//5/wkAEwAtAC0ANgA9ADIARgA7ACsAIgASAAMAAwADAPn/9v/9/woABwD7//T/9v/2/wcA9//0//T/6//r/+X/6//j//L/7v/5//v/AwD//wEACgD0/xIAGQAeADIAMAA7ADYAOAAyACAAEAAKAB4AJAAnADoAOwBIAEYANgBMAFgAUwBeAGcAaQB9AIYAjQByAEwAUwBDABsAAQDe/8r/uv+2/7b/uP/G/6n/tv+p/7L/yP/K/9z/5//u//L///8MABMAFwAbABcAHQAdAB0AFQAQACcAIAABAAwADAD0/+n/0f/O/9P/4P/p/+7/9P/2//D/AwD///v//f/i/+L/8v/3//n/9P/i/9D/2f/e/97/4P/c//b/+f///xAAFwAZABsAEgABAO7/3v/a/8b/1//e/+P/5//u//L/9/8QAA4ADgAFAPv/7v/t/+L/7f8DAAkA/f/j/+n/8v/y//b/4P/i//3/7f/u/+P/3P/T/+L/8v///wwAHQAiABUAEwAHAAMABQAbAB4AHQAXACAAIgATABIAAADr/97/1f/F/9H/4P/7/wMAAADw//D/6f/Z/9H/yP+6/7//0P/i//L/9/8BAAUAEAAZAAMA9P/5//f/JABBAEYATwBRAFoAUwBwAHQAZQBYAEMAKwAZABcAEwADAPv/+f/i//D/9P/u/+X/0f/T/87/v/+6/8P/xv/a/+D/3P/t/wAAFQAQABIAJAAiACsAOAAwAEQAVQBOAFUAPQA6ADsAKwAgABkAHQAdAA4A6f/Q/87/uv+6/7L/tP/D/9n/6f/w//T/3P/R/9D/wf+//6//m/+Z/5n/sf+6/7//3P/j//f/9//0//f/7f/r///////9//v/9//7/wEAHgAdABsAJwAkACkAJAAeABsAHgA2AEQARgA9ADAAJwBDAEoAOABEAEgAOAAyACsAFwAbAAcAAQD0/+D/4//5/wUACQAOAPn//f/2/+P/4P/a/9H/zP/K/8z/w//M/9D/zv/e/9z/zP/K/9P/4P/n/9n/7f8AABMAHQAeACIAHQAdABUACQAAAAUACQAQAB4AIAAdAAkAAQADAAkADgAJAP3/8v/n/9H/yv/X/87/sf+p/6//pP+b/5v/qf+v/73/xv/Z/wAAAwAFAAcA/f8VACQAJgAnABUADAAKAAwA7v/l/9P/1f/c/9z/8P///yYAJABBAE4ASAA9ADYAQwA4AEEARAA9AEgATABcAFUAUwBhAGUAYABRAEoAPQApAB4AFQAFAP3////5/wEA///7//f/8v/u/9r/4P/c/9z/6f/w/wUA7f/r//T/2v/O/8j/xf/T/+P/9P/9/xsAHQAXACQAIAASAPn/5//Z/9r/5f/0/wMA9P/w//T/BwAXAAMA8v/t/+X/7v8FAAUAAAD5//3/AwD//wEA+//n/+7/+//5//n/7f/9//n/BQADAPv/AQDw//v/9P/p/+v/6//i/9f/1//V/9H/zP/M/87/2v/B/7z/uP+8/7j/vP/B/6//tv+8/7T/wf/R/9D/v/+t/7L/xv/O/+D/5f/w//n/BQAQAB0ALwAnACQARgBMAFEAUQA/AEwAMgAyADIAPwBOAFMAWAA9AC8AJAAkABsAJgAVABIADgAJAAMA///w//T/CQD5//b/9P/5/+D/1//e/9n/0/+//63/sf+9/8H/0P/Z/+X/+/8FABcAEAASACcALQA2ADYATABaAHAAcgByAGsAYQBKACsAFQATABcABwD3////6//M/9X/1f/c/+3/6f/c/9H/zv/Z/9P/0P/e/9f/3v/r//b/AQAOABMAJAApACcAJgASAAoABwAFAAkAEAAKAAcACQAFAP//9//l/8j/xv+9/8r/3v/y//T/6f/7/wUAEwAeABUAEgAZABMAAwAOAAUADAAHAPb/7v/r/+n/5f/j/9f/3P/e/+D/5//e/9r/3v/r/9X/v/+8/8X/v//B/9D/w//R/+L/7v///+f/1f/Q/9H/4//g/+D/+//7/wAAAwADAPv/9////+7/9P/2//L/+f/2/wMAEAAdACQALwApACcALQArACQAJgAbAA4AEwAbACcAOAA9AEMAOgAnACsALQApAC8AHQAdADIAKQAmACIAJwAyACkAMAAkAC0AKwAkACAAEwABAAAAEgD2/+7/6//X/9z/1//n/+D/2f/T/8z/1//Z/+X/2v/T/+L/4//t//n/+/8MABsAEgAXACAAJAAnACkAMAArABsAGwAQAAUABwABAAEA9v/5/wEAAwAgABMAJwA2ADsAOAAnACQAFwADAPD/5//V/8P/wf/K/8b/w/+4/7z/xv/D/8z/xv+8/7j/uP+//8r/4//g/9H/1f/T/9P/v/+y/6b/vP/X/9P/5f/n/+L/8P/g/9r/3P/j/+D/4//u//T/AAAHABAABQD9//b/8v/l/+n/9v/7/wMACQAdABkAHQAiABMADAAQAAkAEAAbAAkACQAJAAUABwAJAAwAFwAkACkAHQAXABkADgAMAP//7v/0////+/8BAAEA/f///xUAIAAdABUADgAKAAwAHQAZAB4AKQAvADAAQQA4AD8ASABOAFgATwBYAFgAUQBRAFEARAA9ADIAJgAeAB0AFQADAPL/5//T/8P/vf/G/87/yv/G/9H/4P/j/+n/8P/7//f/BwABAO7/AADw/+7/9//9/wAAAwAMAAkAAADu/+D/zv/O/8b/vf+8/8j/zP/D/7//sf+t/6j/sv+y/73/xf/R/+f/8v/9/wwAFQAZACIAFwAiACsAJgArADQAOwBEAEwAOwA6ADYAJwAvAC0AHgAKAAMA+f/e/9X/0//e/87/xf/M/8P/vf+6/7T/r/+o/6b/tv+//8b/wf/I/9f/5f8AAAcACgABAAMAAwAMABcAHQAXAAwABQAKAAUA+/8MABMAHgAwADYAJAAwACsALQA4ADsAOgAnADQAQwBRAEEANAAyAC0AIgAFAPD/+//y/+X/9//7//v/DAAHABIAEwAFAA4AAAD5/wcABwAOAAcACgAJAAEAEAAMABAAEAASAAcABwAKAA4AGQAKAAEA/f/y/+3/9P/j/9r/5//g/97/5//w//L/7v////T/9//p/9z/0//e/+X/1//a/+L/8P/n/+X/3v/M/8P/tv+//8H/uP+9/87/3P/p/+n/8P8AAAEACgASABIAFQAdAAwABQD5//b/CgATAAMA+//p/+f/7f/j/9z/6/////f/EwAnADAANAAvAC8AJAAnABMACgAAAOv/9P/n/+n/8v8BAAwABwAHAAcABwAFAPv/7f/y//D/5f/u//b/9P/0//n/7f/0/wEA//8JAPn/DgAQAPb/BQD5//T/7v/n/+n/4P/j/+n/5//2/+v/0//e/+P/4P/l/97/5f///xIAFwAZAAoAEwAtADsANAAtACkAMABGAEQASABGADIAMAAwACQAJAAeAB4AEgADAAUACQABAPb/9v/y////9v/r/+f/9//9//v/DAAOABUAEgAJAAkAEAD7/+7/+f/w//D/+/8HAAAA+f/3//T/6//t//L/6f/p//b/7f/p//b/+//5/+n/1f/a/+P/3v/j/+v/9v8BAPn///8KAPn/AQADAAEAEAAVACsAKwA2AC0AGwAbAA4AFQAKAP3/7f/g/9f/zv/Q/7z/uv+0/6//rf+6/7j/tP+//9X/1//g/+3/5f/l/+f/AQAKABAACgATABkAEAAQABcAJgApACIAIgAiACIALQAmACIAIAArAB0ACQASAAwAHQAwACcAJgAXABIADAD9//D/6f/j/+f/5//j/+X/4v/r/+7/7f/u/+v/4v/u/+3/7v/0//n/AwAFABcAHgAiACsAMgA0ADgAMgA/ADYAOwBEAD8AOAA6AEQALwAtACQAEAD///T/5f/R/9X/0f/c/9P/4v/j/97/5f/V/+3/9v/r//D/9//u//b/+f/5/wEA9v/9/wUAEAAdABcAEwAbABMABQAFAAAAAwD7/+v/7f/r//L/6f/j/+3/7v/5//b/7v/t/9X/4P/i/9X/5f/r//L/7v/3/+7/2f/j/9H/1//T/9D/0P/c/+f/3v/Z/9X/3v/n//b/+f/t/+v/9v/7//b/9P8BAAcAAQD5////CQABAAEA//8AAAoABwADAAkADgAOABMAEwADAAEAAwAKABMAFQATABUAEwATABMAEgAOAPv/8P/y//n/9/8BAAMA///y/+7/AAABAAUAGwAkABMAIAAgACAALQAtACQAKQAmAC0ALwASAAcABQAJAAMA5//X/9z/xf/F/8X/w//O/8z/2f/R/97/2v/K/9r/3P/l/+D/3P/e/+L/3v/R/9X/xv/Q/9r/4//t////CQAKAAUAFQAVAA4ACgD//wwAEAASABAABwD9/wcACgAHAAkABwATABMAFQAXABUAJAArACkAJAAnACYAFQAZACAAHQAnADQAKwA6ADQAMAA2AEgASgA7ACkAJAAVAPn/9v/t/+P/4P/g/+X/4P/V/9P/yP+//7//vf+6/7//zP/V/+X/8v8BAAMAAQAFAAcACgAKABMADgAVABMAEAAdABsAEwAVAA4A8v/y//L//f/7/wAABwD//w4ADAAOABIACgAQABsADgD3/wUACQAJAAAA+f/0//L/9v/y//T/9/////T/7f/t/+3/7f/j/+n/2v/K/8H/zP/T/9H/1f/O/+n/8P/p/+v/3v/i/+f/6//y/+L/2f/r/9z/3P/T/8P/vf+9/8P/uv/B/73/tP+//7//0f/X/+L/9P8BAAkAEwAgACQAJgAwACsAJgArAC0AOABGAE8ASgBIADoAQwA/ADsANAAZABMAFwAHAP//8v/r//T/6f/y//n/CgAQAAUAEgATAAoAEgAdAAoAEgAQABIAJwAbAC0ALQAtADAAMAA2AC8ALQAmACIAJwArADgANAArAD8ASAA2ACcAJAAdABMACgAQAAMA7v/u/+X/1f/X/87/0f/O/8z/zP/O/+D/zv/j/+v/8v8AAPL/+f/7//L/6//u//L/7f/w//b/8v/3//f/BQASABAAHgATAAMACQAKAAcA//8DAP//+/8AAPv/AQD5/+v/4v/w//3/+/8BAPb/8v///+7/5f/i/+L/3v/e/97/2f/a/9z/4P/V/9H/1f/a/9P/1//e/+D/5//p//f/7v/2//n/8v/5/wUABwAQABsACgATAA4ACgAHAP//9v/t//L/7v/l/+P/6f/j/+n/5f/c/+v/9P/0/////////wEAFQAZABkAFwAZABcAEAAZAAoACgAHAAcABQAJAP3/AwAKABIAHgAVACQAJgAgACAAJgAmACIAHQATABAAFwAdABkAFwAXAAwAAwABAAMABQD7//L/9P/0/+3/4P/g/+L/3v/w/+L/0P/Z/8j/xv/K/9P/1//g/+7/9v/3//f////7/wUABwAFAAUAEAATAA4ADAAHAAUAAQAHAAMABwAHAAoAEAAFAAAAAQD///n/9//p//L/9P/r/+7/9////wcAEgAJABIAGQAZACcALQAmAB4AJAAdAAwABwAHAAwA8v/r/+7/5f/e/9X/0P/G/8H/v//M/8z/yP+//8X/yv/Q/+L/4v/r/+f/9v/9/wMAEwAgACQAIgAeACIAFQAHABUAHQAeACIAJgASABkAFQASAAwADAABAPD/9//2//v/5//0/wAAAQD///L/6//7//n/7v/5//n/9/8AAAAABQAKAAoAEgAKAAoAFQAXABcADgAVABsAGwAmACQAJwApADIAKQApACsAKwAyACsAJAAnACQAFwAZAAoA//////v/9P/t//v/9//9/w4ACgAOAAwAEAAMABMADgAFAAMABQAQAP3/+f////n/9//0//D/5f/a/9z/4//e/9z/2f/Z/9z/2v/X/+X/6//r/+v/2f/Q/9D/zP/R/9r/zv/M/9r/2v/V/87/vf/F/8z/w//K/9H/2v/Q/+D/6f/p//f/9P/5//b/+f8AAP3///8AABAADAAMABcAKQAyADIANAAvAC8AMAAnACAAKQAmABkAFwAHAAkABQABAAkAAAATAAoAAQAAAPT/9P/g/+L/3P/R/9n/3v/X/+P/5f/c/+f/8P/n/+P/6f/5//3/9v/u/+n/7f/0/wEAAQDy/+7/6f/5/wEA+f8BABAAFQAVAB0AHQAeABkAHQAbABIAEgAQAAMAAQAMAA4ADAD5//f/9P/5//3/AAAHAAcAFwAdABUAFQAbAAoABwAQABMAGwAeAB4AGQAXABcAGwATAB4AIgAkACYAJgAmACAAGQATABIAAwD3//f/9//r/+L/3P/i//D/5//r/+f/4P/p/+D/4v/r/+3/9v/t//b/9v/3//3/9v8BAPv/+//3//T/8P/t/+f/0f/c/9z/2v/e/+P/4P/g/+X/8P/u/+f/5f/r//f/7v/3//3/+f/3//b/+f/9//T/9P/7//n////5//D/8v/0/wAA//8JABIACgAMAAwABwAKABAADAAXAAoADgAZABkAHgAiAB0AJwAkABcAEwASABMADAAJAAMABQAAAP//9v/5//n/9//r/97/4v/a/9z/3v/l/+P/4//t//L/7v/2/wMA+//9/wMAAQAFABMAFwAeAB4AJAAvAC0AMAAmACkAJgAnAC0AMgAwAC8AMgAkAB4AFwAKAAcACgADAP3/+//0//v/8v/r/+7/9P/5//b/9//7/wcABwAFAAcABwABAP//AQDt/97/3P/Z/9r/1f/V/87/yv/Q/9D/xf/F/8P/vf/D/8X/v/+4/8X/v//K/9H/2f/n/+3/8v/0//3/BwAFAAoADAAKABAACQAOABIABwAOAAcAAQAHAAMA/////wAA////////AwABAPv//f///wUAEgAQAAkAAwAFAAMA9v/3//v/AAD///b/+f8BAAAABwAKAAEADAATAB4AHgAiACkAJAAnACQAIgAkAB4AKwAnACIAJwAbABMACQD9/wMAAwD2/+7/7v/0//L/6f/r/+v/4//n/+f/5//i/+X/8v/w//b/7v/w//L/4v/t/+f/7f/w//D/9//7/wEA//8HAAkABQAJAAkACQAMAAkAEgASAAkAFwAVAA4AFQAXABIABwAHAAUACQAHAP//AQD9//n/8P/3//L/8v/y/+v/8v/3//L/6//0//f/+f8BAAEA+/////3/DAAJAAAACQAKAA4AEAAXABUAHQAVABIACgASABIABQABAAAA9v/t/+v/4P/p/+f/5f/r//b/8v/u//b/+f/2//T/+f/3//f//f/2/wAADAAAAAUAAwAHAAMADAAOABcAFwAeAC0AJAArACcAJwAeAB0AFQAOAAoAEAAFAPn/9//u//D/6f/g/9f/3v/i/+L/4v/i/9f/4v/i/9n/3P/j/+n/6//t/+v/7v/u//b/9/////v/7v/u//L/6f/y//L/7f/p/+n/7f/e/+X/4v/g/+D/5//j/+L/6f/i/9z/5f/u/+v/7f/w//f/+//5/wEAAwABAAUAAwAJAAwACgAKAAoABwAHAAAAAwAHAP3/+/8BAP3/+f8BAPv/+//5//b/+//3//n//f8OABAADgAOABIAEwAQAAoADAAXABMAEwAKAAoADAAHAAUAAQAAAP3/+//3//3/AAADAPf/9P/7//n/BQAHAAoAEgAQABcAJgAnACYAKwA2ADsALQArACkAIgAmAB4AGwAOABIAEAAJAA4ABwADAPf//f/7/+v/7f/i/+D/5//e/+D/5//e/+X/5//j/+v/8P/y//b/9P/0/wUADAAQAA4AGQAbAB0AHgAbABcAIAAgABcAGQAXABkAEgASABkAGQAeAB4AHgAeACIAJgAZABcAFQAMAAMA8P/p/97/2v/Q/8z/zv/M/9H/0P/R/8z/0f/M/8X/zv/O/9D/2f/g/+L/4v/l/+f/6f/y/+v/4//p/+n/5f/r/+n/3v/Z/9P/1//a/9r/0//Z/9H/1//e/97/7f/w//n/AAAOABAAGwAbABcAEAATAB0AGQAeABMAFQAQABMAFwATABkAGQAZABcAFQATAA4ACgAKAA4AEgAMAA4ADAAMAA4ADAAOAA4ACQATABAADAATAAoACgAKAAcABQABAAMA+//9/wEA8v/7//v/9P////f/9v/5//b/7f/n/+3/8v/u/+v/5//r//L/+//t/+f/8v/2//f/+f/2/+v/7f/2//b/8v/y//D/+f/5//f/+f/2//v//f///wEABwD//wAAAQAFAAkACQAVABkAHQAVABkAFwASABUAEgATAA4ABQABAP//8v/t//L/4//V/9z/1f/X/9f/0//a/9D/0//R/9H/2f/c/9r/5//n/+7/+////wcA/f8DABIAEgATACYAJwAyADQALwA0ADgAMgAgACkAHgAXABMABwAOAAEA+f/5////9P/p/+f/4v/u//T/+f/w//b/+f/9//T/9v/9////AAD9/wwACgAHAAoAEAAOABkAGwAkACAAIgAtACcALwArACcAKwArACYAGwAeABMACgAKAP3/8P/u/+7/5//t/+v/6//t//D/7v/t/+f/7v/y/+3/9v/3//v//f8BAAUA///5//D/6//n/+L/3P/Z/9r/2v/T/9D/zv/O/9P/1//a/9z/4P/a/9z/2v/g/+L/6//2//f/9v8BAAkAAAAHAAcABQAHABAADgAMABAAEAAOAA4ADAAQABsAEAAJABAADgASAAwACQAOABIADgAKABAACgAOAAkABwAKAAMA/f/9//f/7v/r/+v/7v/l/+n/7v/n//n/+f/0//D/6//p/+P/5//n/9r/1//l/+D/4P/g/+P/6//u/+7/7v/y//L/AAABAPv/+f/9/wEABwAMAAMAEAATABcAIgAnACsAKQApAC0AMgAtAC0ALQArACQAJgAgAB0AFQAFAAUABQD///b/9P/w//b/8v/u//b/9//w/+v/+//3//T/+/8BAAAABwAKABAAGQAKABMAGQAZAB0AGwAnACQAFQAeACQAIAAiACYAHQAXABUAEgAHAP3/+f/2//D/6f/j/97/4P/g/9r/1//c/9D/0P/X/9H/1f/R/+D/5f/p/+v/7f/2//D/9v/5//n//f/3//f/+f/7//v///8AAP3/AAAMAA4ADgAOAAwABwAHAAoAAwAFAAUACgAFAP3///8AAP3/9P/n/+n/5//a/9f/zP/T/9D/0f/G/7r/yv/G/8X/zP/T/9z/4//y//b/+/8DABAAFwAkACsAKwAyAC8ALwArACYAHQAXAAwABwD5/+X/4P/Z/8r/vP+2/7H/ov+d/5//nf+g/53/qf+t/7b/v//F/87/2v/0//b/BQATABsAJwArAC0AKQAyADYAPwA7AEMARABDAEoAQQBKAEwAQQA9AEQASABPAFMAUwBYAEwAUwBhAGUAdQB1AHcAhAB7AHAAaQBaAFgAVQBDADsANAAnABIAAQD7//L/5//V/8r/vP+o/6T/m/+F/4X/gv98/3f/d/9s/1r/Y/9b/1r/Uv9R/13/bv98/3r/gP+O/5n/qP+v/7b/wf/T/97/5f/n/+n/8P/2//b/7f/l/+n/5f/c/+D/3P/e/9D/w/+//8H/yv/K/9n/2f/j//T///8SACYANgBGAFUAYwByAH4AlgChALEAwwDWAN0A8QD/AAcBEwEcAS0BMAEuATIBOAE0ATkBKwEeARUBAQHkAN8AugCWAIgAXgBEACYAFQABAOL/xf/B/6D/g/93/1v/Uv87/zf/Lv8a/xX/A/8M/wT/+f7w/uv++f4D/wP/+P4G/w//Ff8h/yz/Kf8u/zX/Pv8+/0n/Sf8+/zT/If8Y/w3/CP/5/uv+4v7O/rX+ov6U/oT+cf5o/k/+Rv5C/j3+Qv4//kv+Xf5w/oD+qP7K/gH/N/9v/6j/6f8pAGUAvgAKAVgBqgEFAlYCswIYA2gDxgMYBHwEzQQRBV0FnAXlBRkGOgZUBlcGVQZJBjMGDwbsBbYFcwUmBcgEbQQABJUDIQOZAhEChwEHAX4AAwCA///+i/4X/p/9Of3k/ID8Qfzt+6r7e/s9+x37/Pru+uP67vr4+v76Evso+zz7Uftw+4j7p/u++8v73/vq++376Pvq+/P77fvt++z75vvt+/b79fsH/Bv8K/w9/Er8Xvxn/IT8mvy6/Nf88fwl/UH9bP2j/dv9J/5w/s7+MP+o/zgA1AB1ARwCyAJ+A0AEAAW5BXgGIQfuB6UIQwnbCVEKwwoeC1gLdwtxC1oLMAvOCl4K0gktCXIIqgfdBvsFJQVABF8DhAKxAeAAEwBR/47+6f1L/cf8Xvzx+6X7afsk+wv78/ru+gD7C/sp+0z7f/uu+/H7Nvx5/Mf8Bf1N/YT9tf30/SX+Sf5q/oD+i/6F/n7+aP5I/iz+9v26/WP9EP26/GP8B/yw+1n79fqj+lX6Dvrc+af5e/lt+VL5UPld+W35l/nE+QD6NvqI+uH6Pfuz+yT8lPwX/Z/9Kf6+/lT/6/+fAE0BDgLiAqADfwRrBUoGKwcZCP8I1gmkCmwLJwzBDEcNpw3wDSgOKg4dDuENmQ0oDYwM4gsMCx4KEgkBCMgGjgVdBCcD9gHQAK3/nf6j/bH80Pv++kr6rvk4+dP4nPh8+Ff4VPht+JP4u/j9+E75oPn6+Vn6u/og+4L76vtI/Jz84vwi/Uv9af2E/ZT9lv2P/YD9Vf0k/ej8i/w6/Or7kfsz+9b6b/oh+uX5pfmB+WL5VPlJ+Wn5iPmg+dP5Gfpr+qf6F/uC+/r7gPwI/Xz9CP6d/jX/9P+xAJABcAJLAzsELgUkBi8HPAg0CSQKEwv7C94Mtg1fDuMOSg+sD/UPEhAXENEPbw/3DlkOiQ2iDKYLggpNCeYHjwY3BfQDpAJRARAAw/6H/Xv8j/vE+gn6W/nR+F/4Evje9733xvfh9wL4MPhm+ML4L/ma+Q36afrh+kX7mPvm+0P8iPzZ/Bf9Iv0//UL9Of0b/eT8lPxE/PX7ivst+7n6Wfr6+Yz5EPmX+Ev4Avi49373VvdQ90n3O/c591T3c/e99xT4aPjN+EP53/mT+jH71vuL/E/9Wv51/4gAtwH5AlIEnAXaBiQIeQnHChoMKg08DlIPMRAMEbURLxJpEpISixJNEg4SnBEMEUUQRQ8vDvsMlAsQCnsIBwegBSMEqwJVAQUAs/6A/Wv8i/vR+iL6evkC+Zn4YPhk+G34dviO+Nr4JPmR+ff5YPrW+kj7rvvx+zT8bPyv/PP8/PwX/fj8wvyL/EH8/PuW+0X7x/pO+tP5Xfnc+F/49feD9xr3v/aW9lT2MvYc9hH2A/Yh9kn2ePbF9g33Uve290D4pPhJ+QT6ofpF+9j7mvxy/Y7+tv/WAB4CUQOdBPIFZAffCFgK3gsdDSoOPA9TEH8RfhITE3sTlBOhE6ETeRMcE4sSsxGuEKEPXQ4cDcELPQqfCOEGHwWMAxECrABb/xH+5Pyj+576y/kL+X74KPje97r3kveb99f3Gvh0+K34JPl4+cv5QfqK+tT6JvuG+5T72PsH/PP76PvL+4r7QfsJ+8D6b/oF+pr5LPnV+Hb4I/i690337vaU9kn2Dfb59df1v/Wt9cP18vU+9qn2DfdN99X3UPj3+I/5Kvrs+sD7HP1z/sj/PwGCAg0EsAUtB+wIggosDLYNFg9eEH8RvhK1E3wUyhT4FAgV7hTMFIUU2xP6EgcSrhBZD/kNagzZCiYJeAeXBcUDNgKcADL/uv1y/Eb7GPoo+XP4zvdP9w333Pbg9gH3Uven9/v3OviV+Pn4ffkA+mn6G/tu+8f7QfxY/In8s/zF/MP8iPxG/A78x/uU+zH7o/o++qn5Jvmt+Ab4ovcR95L2Ifbp9aL1UfVI9Ub1IPUK9Xv1jvXm9V322vab9xz4zfia+c369ftE/b7+CgCQAV8DLgXPBjYIsQlsC+IMLg5XD1cQHhHkEcMS4BL8EiIT1RKjEhcSMRFpECMP9A2iDOkKeQm7B0cG5wQABO8CPQE9ANf++v3U/Z39MP2d/JH89Pwt/cX8OvxJ/pIBDwLn/3v9E/3g/ev+l/6A/a39D/53/Sn8Lfs++qn5zPjK96T3pfhZ+tv6tvmJ9o/0vPQu9TL1dPPP8c/wZPAu8Bjw2O987snsG+uN6mPs9+6P8N/wpfBX8EzxCPSA9gb3nvd6/gMKFRNtFVURzw4QEkUa+x+lH9Qg5CSDKKIonyVRIwwkyyPsHhkYIBQ0FPQVURRiDrEIrwTVAT/94vXa8Kvw1vAC7pznX+Ot5BjnOOi75Q7i1OFZ5rPrwe/o8yj3H/sM/2UB+wMgCKgM2A8XEfYRAxQfFsEWExXvEqwQZg/yDWEKnAcqBiMDuv/U+ov1xPIq8IfsdOh65TbiSd9W3jzedt5v3WTcS9qP2cXbTN/V4grl4eZ96N/psey38Wz0W/ZW9bT44xDDLpE8GzXgHlAXxinhPOVBKz+vPpZGzUtFQtk2ZDEcLmIoshlYCgsHewo5CloDfvU55pDb5dOc0NDPYM/LzUnLwck0yiHNjdGe1oTaGt3W4Nbo0/XKA5wOnRP3FWca9x8sJsksRzAbMvIxTS6PKvcpOShpIjMYVgzVBAMBaf1E9zrvI+db4PzZT9QX0WPQbtAbzjfLhMkpyobOX9J41b/WCdiz2TreCOQ96p3uDvOm9TP4gvzy/wwD5QNCBRUUyzJYSjhOezs9Jhsq0z/ISfBJu0WYRx5QnkwAO7Eu0yfRIdYW/QO4+CP4kfnp967wtN8y0IHEt76JwL/Eo8QcyLLMls8G0kfUgNri5ZXwbvaW/KAHgRaSJaYuFDIrM3YyKjP6NNU3AjkMNY0rBSEdGTQRTQn3/zv18+o44p3bcNfu1K7Qu8xGyGfGd8c0yLjJrctIzz7U6tin3THgY+OC5ALnJ+sv8IX1cflp/Xr/mQQHBi8G0QUYBn4SZDBjSb5NXD88KNUoVTwXRr5H2kKLQKhFxUHqMuUoKyLpFq8LU/qA7HTo2ucf6CjnAN06zW/Brbs9vqXDSsUczPnVEdzA4NrlTeyi96QDFwiyEHccYyYbM9I7/j3WPPs4SjVeNEAwtCnxIaoZZxJXCAj9U/GM5sjb/9PLz6rO5c0PzNDKIco5zNvOCtHQ0pnUFdkv363mbOtd7vzwkvP+87Xx4/DP8tb5cv21/p/8mP3c/u8A6/6zCGYpDUNNUIs/syTQIuA3gEegTYdHgEGaRRZCFTXlKKYdchD5BZr04edP4zThKeK14uPU68K4t6q0obywxY7JV9BY24ThAufI7if3QwVGEkUaCSO3LCY01T5aRyBHnkIuOUkxFy1EJ9ce1RQDCLL6KO495LLd9daKzurHIsWNxdDGPcmry/POv9PL1xHbRN1/4ZXnkfCV+TD9+Pwx+0z73flS+Zv2H/gL+OX6Qfo1+Sf1xvAi7Nn2kSKSQm9UM0HYH5IcdDIGQEhHeETVQOFLpkY0N2UtdCIhFdQHI/A/4NLbvNsB4d7mP9pYyOe74LYwv2zIpc1O1z7lsum67j31fv95EdMcRSEcKH8wOTfgQqFHp0VsQNgzvymvJKgcUxP1Bwz7/+784pvZ+9FWzC/HFsMawt7C28XOyyrTzNkG3vHfMeHp5IDqOvDu+D7/KgOpA1QDkgDm/er4yvbQ9dP4GPr8+eb1ie6G58nsSxS3Oh9UNki1JfUX0yeUN29C+UTBQLVHUEJSMoUnCR+dEfkE2u+O3ePVDtJ/12nieN8B0dXCiLtJwkzNYtSu3sPs9PXU+8MAdghFFk4iHyomMQw3TDqqQFFF/EM4POstSyBMGHgPcwSn+JntYeM92PrPfsn3xC7BAL57vofCF8jNz6jZquFN5I3kvuTL6v7z6vv0AxkIwAlyB2IFvwLe/+j98frV+Jf3IffL9P/zW+7E6v0BTiliS4BT5TexG88hwzBwPMc+Jzc6O9pBZTdXKgAf4Q81BKzxQtwB0TzLI8282LbeY9q60AfIn8my09TadeK07Qb5/wOFC08SyhxxKakypDeiOL83djk6Pbg+Hzn0LSMgehTCCbX9XfD74zDZANBsyyLHAMSdwHS96b8CxLHIqtDK2nbmtO+X8ADwuvMz+ZIDpglhC58J1gbFA+kBb/8z++n3n/O88lvwIe9n6+7kFuhHB7YvTk+mUDcv3hy8JOEylkDtPoI01TmZOAUtMiWQFvYIZf5b6F3WVMziwm7IzdbG3MHdkdXuzMzShds64eTpRvTT/8cLzBVZHxMt6TalOkw7DzokNjQ0mjMLMv8vKyWBF84Jd/tx7UjgX9WpzX/HKMJdwc7AUsGvwWrCLMlG0v3c+eg68UrzT/Rq9cT7owcuDNQOtAwMCN4EiQBi++f4l/f18sTyZvBS7ZrorOFJ5UAGdjOJU8BWjzaMIKgmhDRPQOJAUTcaOr86Di34IXITfAOz9hPkvtHYxoq94b2iyk7WINvj1onRJdUh30DnSe/8+oYIsxOCHeklmzDEPIVC70QnRmpAzziBMBgpASVPHDEOSACc8kXmytqRzvXGob/Rue6407r0wAfGQspH1KLfEunI8BLzgvQ6+OH78AUDEnkU5g9HBugA9v7A+nP0z/BO75ft4OuF5yTnquIw3SHtehfxQxZb7ksHLOMoLzV6QPdE6T54O3k8STHjIvgbzw85AW/u0ttFzq/CxrmxvkzO/Njp2dHUPNWg3IDkc+yD+fEIExQuHbomvS/vN/473T9OReNEczkwLhwntiDCGFsMXf+688/ndthvzfrGrcGUvlq+x8Eix5DLA9D12Kjhz+lL7gfxAfbj+XkAowlgEWMTeg1WBFz+f/tz9mPzafAK7t3rwOhm5UTjwt8w3S73ZyNHTLRbYES9KK0mpTFKPT9EjT/gPsw54SvSISIYNgnG91vldNYlzLq+QrcpwCfQ/dui3sre/+KN6Ynt1vFB/RwLSxXBHu8qojjPRCdKjkg+RME3/ydsHEQVEhJXDoYIhwGC9ivjRNCSw0W8RrnluDa9dMbEzgHTA9oa47rqY+4Y7srv+vM6+eUCuA0TFkkUnQoMAnX9EfhK8gruQeth7L/sEe0b63Pm2t508jMgHEpLXG9DpCSfJcQzXDzbPUoy7S6AL14hwBeAE6gIwvy16vPXiMwVv9u2/L9A0oDjSOov6ljuWfK39Dv2RP0TDGAXKCHsK5E0Vz0IQV4+nT5NOOQqQSCoFKcNQgpAAuz6F/KC4sPUWcycxuzETMVXxhjNfNKp02vYxuBp6gDygPQ79GX1r/WZ+b8C5QyxEa8MBAXu+v7z9+4I7YfuKPHm8bzslOr44c7jhAKrL01UkFpHOzsjRixWNsw+bzgpK6wsNyjPGNQP0AcI/kPzVN4m0LXHSbvrt7i/j9F843DpNuxI8u74A/0r/lECrg8QG5slTjF+OdNCh0L+PM43mS4pJKoZQA8HCU4Et/oB9EXpHN3506vMW8r2xxbGf8VFzALWtN/05o/rse5L7hbvF+0b8Aj1Iv0SCNwNhw3LBcH9wfV19O/z+PTX9HvynO/F6vfoT+Js89Ab5kg1ZO5TfC5VIwkx5Dx+QlguFSTjJ94fGRhMDyMEE/yS7ODULMprvOCxSrVGvxTV5ORT6OXt4fe8AIoF4wQXB0gRjxqJJ6My+j2+SJ9Iq0QSOuwpzRpSDkIFuAEO/DL1bfBE5srcxdDdxjnCcMDpwk/JLNNh3Czk/Of27Ffxn/T39tL18vaK+HD+IwU/CXMKjAYDAjj8Zvjq8ijuU+vX637tSe1F6rLuDBMcP9Rgk18mPM8nGS3iN8c90jXSJOQlTR8BFB8P6wEu94/rWNyU0obHVLN3rVi20MqA4mXr4/Iv/N4C3Aa6CewOBxeHHfoidCnuMa49okK3Rb1BPDLvIz4U7AUH/bTwCeft5HHfEdwM2NHOGcm2weq9JsN8zBfYoeOS7LXzKvdU9+X3VPf++Er67PvtAL4BQwBc/gf8efz//KD3I++C607pa+q76BbgfObuDKY/KGb2a71LpDmlOuM5sDnqLM8f4CPEIVUXgxf4Cif/IPPB3jnVZ8X8rTal0K54xFTeS+fV7Tz3jfoOAssGHQ82GEwZ/xxtJ2QyZDx+QE8/LkJbO+8tlR5oDIz/sfSU66nlH+CR17/Sd9A1zl3La8eNxnrKftMr2kjjOey98d72GPhD+AD6kfvQ/O3/cf8V/1P9xvhv+I/5vPt/+a31UO+N6h3puOMT6zYKMTTvVg9j7U4lQCs/AjyLPi018Cb6IhwcnRSNE2UHb/ga7hbg/NlxzCu2Y6wWsHHAcdOr3mLnG/L++VQCFwrjEM0XjxpcItktajnsQQ9C/UDdP+E5WTCRI/8SvQYX+5Hwwunu3kDVQdDczcDN5cu7xufElscbzmTXd+F36zPym/ae9wP2hvMk8frywvrVAU0Dbv+T95L09PWR+Rv8gPyU+2v4ovah8ePvxf03HEg+FFbjVKVFvD5mOyg74DV1J4IbMBT5DeQLsQhb/0r1sugx3j7U7MSzttmwr7gFyX/X8+G86fvwevnQABMJURTXG6MimCpQMlc7iT2eOcg5Jj2hPoM6UStkF9oGuPda7ZDnC+Hi2b7SUM2By6/LEctMzVvT/Nnn3ozglOFH5RrsAfPU+VP9d/yW+1H8Kv/MAXMBDv4b/HL86vvH+kD5kPd+9jf19fLA+rsOCia0OW49vDa1M/UyMTLKMGsoNyCJGtsRLA2qCMMAG/qU87Dv6evt4GPSE8hYx4vP2NfK3SfjBue67nz3sv//CWIRMxiMIT4pJy7VMAgvLC/lL1YtRStmJkkftBYrC/3+kvRY6mfiDd4723fZudW20n7Tq9Y725HfpeIs5J3kY+Wz6RLww/Uf+VP8iQHgBDsELgGa/Q77OvrT+UX6A/uo+9H5avjs9/L0z/osCwseyi1tMDEoPijAK7EsYS7BJgAf/hq6E0UQ8Q8pCT0BhfkH8irvD+f02jvTztKN2JXde+Aw4yHnQO2J87T4zv+HBdIKLBQ0HRMmSiwSLP8rYivXJ3ckYx4sF2oSZgzCBQUBS/kW8PXnEOAq3DDdhd013Vff6uDS48Doj+ux7WTwefJU9rv6Vfyo+y/6DPsg/N/6Yff889TysfTB9mP3UPjM9x72hvOI8dLx4/rpCfcXnCMIJ7kpNzBnNBw13zFmKmki6hkbEaINPQsiCYcFA/9B++D1ce3i5R3g092n3tHe7t/C4g/kUOaC6SzwK/reAX8HygtMEfEY1R/+I/Qk/CJ0IAEe0BqiF98RTwsUBw8Dcf54987uUucZ43fheeHS4l7jmOPZ5G/ooO0z8v7z7fQl9/P4B/rY+Ir3M/dk+IT6cPzy/Wz9U/w2+xf7Fvoj+TD4q/fD98r2Nfh1/pAKPBYhH/0k5SjEKyQrmyf6IfYdShnZFAoSGw9+CwMHTwNfARcC5P6p+BLyieuQ52jkOeNq5GjnBenX6kbuV/K993n8xQG/BQ4IKQksC/MOTBKDFFgU5RTwFP0S8A70CUwFawDk+2r1D/Ah7cPs0+1f7grujewF7Hvs0e6K8ALyRvP/9Gb4jPq8+5z7/PuA/Az9NP1l/eT99P1o/sr+zAAIAYn/OP3o+rL5xvgE+sj+KwjkEF8WGxgoF3QXRxlsGgEbvhk5FMYPHwx9CSwLYQvUCsoLSQuRCUUGYQDJ+wj4E/S78ULvfu8f8Fvvk/Du8bH08vg/+9T81P26/OL96f95AQQF8QeAC5kOtg0gCsgGCwTOAQMAVf02/Pz7G/so+g/55/dW9hn0VfPV9KP0jfT09H71nvhF+Q/3bvb09lv3lfmT+pH7m/6o/rP+SP6a/Ob7d/zU/bj/XgETAbj/Mv5N/mz+6/+SAYkCYAXGBxwL4w29DjwP6g6VDt0PaQ/KDiEPzAwMDCsLYQmACPUFEwP2AXwCEwOJARD9TPmv9vj1gffH+mP9Lf3h+/P5f/s9/R7+bABJAnEEzQX3A7UCXQOkAZIBwQGA//L92/rG98r3Hfny+LD5FvoH++L8G/xX+wz7MvxV/cz9sfya+wn7uflS+vX7Z/2A/jL/IgAkAccAbP8X/rf86vyR/Ar8Ufy++oX5ffnH+kv9oQATAiwD1QQRBQkFHQWSBNEE9wXTBpwIFwsEDZwNPA3dCoAI1gUYA6QBoQDR/xX+nPyv/MP9lv02/e38ifwD/pn/8gF4BKsFRwYmByEH3wYtBsQEjgXEBuUGIwVYAcH9ifwg/Pz7qfos+YP3MvYP9qv2avcP9l/1gPXb9T326/Yj97b4GfvL/KL+Ef/i/ov+3P5J/gb+I/79/nUCTgTpBBwE4AEmACH/VP6h/oz/yP84AW4BJwGJAJ3/MADgABEC5wI5A60CrAGYAHf/JQH9AXUCaAKmANz+n/13/dL+8wD4AK0BYQILBGgFaAUIBfkFPAdrBwwICwjHCHcKrAqmCQoKbgigB2QGnQPfAAz+Wfu2+UP6Jvk1+En4SPoW+i38NvoN+cT7xPcj9kD2APgK/X7/W/95Adv+//76+xT7YPti+Br5u/cd+5T85P7y/eb8WP5P/4IAOQEcAV3+pP4g/KL/kgLvAakD6gB8A/cEiQS8A+QA2wCEAkkCyAJEAe3/BP/p/fYAKQDmADYAAf0n/hkAwAARAn4AmP2N/Q3/9AKFBRkGgwUfBJsDAwPZAicCaAPuBOsEdgVOBZkD8AIRAi0BowG+AP3/r/9Y/6b+7/4D/vH8CP5L/k3+Uf+d/3MB4gGNAMX/l/4c/VP72vqp+mD7FfuI+vf6OP0r/hb/RAA0ASUC6AG4Aq0BzAG3AeP/dAAs/z3+3v58/pv+3P6v/mj+Y/82ACsBLQE/AboAMgHdALH/MgC//kb/fP7k/jT/if5z/1T/fv9q/5IA+AEpA1oDTQNdA0AEfwUPA9QAvv6m/cD81vwB/SD7bP2k/U/+W/8X/Y/9Dv5n/kL/ugCkAXcBRALJAcwB/wDt/3IAOwIzBFsECwT4ARUAWv3p/ov9QfxY/Of5/vtj+2D8Dv1j/5gBogJ8At0B5gHH/qH+Nv74/kb/2/6J/ysBjQLiAYsAxf8/AHcAuv8FACz+8v8kAMH/CgMGAvID8AQ+BXEEwwLZ/2kALQH8AKQBq/+RAOT+Xf+2/3r/6/4X/hH/8v4FAYv+kfx7/XT8LQBPAJv+Qv8G//L/YQFxA/YADACd/VP96/6x/csAP/1l/pL95f+dAEv/vACU/mEBtf02AJwAvgApARH/LP7HAEEBrADyApQAZwH0ADIB9AKQAWwD6QPTAqkEggA3/0n+1PwK/IH65fnH+0r9X/6CAZEAtfwW/wr9D/6jAP3/BARkBBsFmQWyBGgCaAXXAz0DGgO8AQoBsQHbAN7/kgBd/2cB1P2vADsB4v/gAET+dPy8/XT8dPwT/7j97f6PAMcClgFTAGf+6Pvv/Lf8Ff6o/ov+Qv0r+gv6Avkr+i/7f/vv+9n7L/xM/H38s/4MAeIB2QIMA/IDqwSMBrIGoAZ4B5gHZwhgCBYGYwPAAI0Alv4g/aP7yPj7+Fv5Pvi994X5afkS+fP6S/1u/YD89vyH/v//6f/GAzwHqAjSCsEKzgl3CAUK2wlXCPwGkwQuBIkEnwNzAukCXwE4AV8B4v6E/sX9Vf1o/77+If8k/TT7o/3Q/Uj8+PvE+yX9of7x/CP/lP+JAlgALv4//D74mvy5+RT6YPtH+RD68P6U/pYAqP4n/ED+O/25AOv+0P9aAAUCcwEBAJ0BpQDAAHUAGv8vAIAAWv9A////iABOADL9IPzi/nT8NPyT+6H8wvxV/Tn+i/8VAg4C7QPsBV4IPwgQCYcF8gMfBn4EDANfAZL+rP0e/0wA4gAnAqYDcAIcAzADwwIdBREFPAQRAyICwwK8A7sEGAL4Ad8AQQCt/97+yf36/fn/4P8tAHD9rf8BAEEBLAMgAN7+/f5j/Kj9tQBo/qr9WP6b/tP+5f8n/iD8PvqH+Nr5u/lH+U74I/hL+dT7vv3X/A/+uv3K/f/8NPzu+ez5DfrB+FL6sf1a/qH9if5z/Ub/m//u/yX/DAB+ArQGWgk0CjALUQkrCcsI2AdpCN0HzQZ7B+oFigWeBG8EoAPXAlEDugMEA2YC9gMABHEE5wOmAmMCLQDV/eD9Vf1s/Pb7+Pp8/kn//f6ZAeoA/wGNAo8BfQBaAnEDEQGrAmUAA/9h/9D78v7B/p/8tfsw+J74UvhF+B34GPc8+034J/Ze+bv3fvh9/JH8F/uT+/D3wPqw+G72gPZk9wX92f6oARf+r/09/kT+4v5T/t79Pfxl+zz6j/tV/dD/lgKiBtsKpAypDaIO5g9ZES0SgBGeDvsNLAx0CU8IRwfTBh0GGwVsBKkE8gIbAAz+z/sh+bb3qfZ79e32T/dm+X/82/2WASkDXwX8BmcGbQbWBtIHiAjSBzcGmgVWBGYF/wKPAJ//f/o2+jb62vjU+Sb4m/aL9uD2pPTv8TD1VPZF+nL8fvcY+QD8w/2o/rz9IPwD/lz9Wvzq/KP6jPpB+X354Pwl/1X9SvsW+lj3C/fZ9ZLzWPRm9zv8lAHzB/QLHw57D/UPQxKEEywVohShE7oS8RBJD8wM3grsCO4H3QZMBi4F5wOHAVb/zv1P/Mv70vrd+jT7i/zM/rr+Iv7r/a3+gP5o/oL/QP/5/73/pQDMAP/+bv8I/u38S/50+5j68/t/+wP9Sf7P+mD7XP1e+i7+BP8j+T76fvj29R387Pev9Xv5h/Vv+Sz3I/YU+634j/ru9770Zvcl92j3B/re+Nr5OvvJ+YX5J/ds9xX2RvWk+Er8ugHxBkkLZA+kFOoZVh1XH0sf0R02HH0aABi0FMURjg9WDfgLUQqzCHIHfATXAYD/zP3P+zX6YPhT9afym+8B7ljthe4f8ADyCPUH+Z39DAHEBIoHbgkhDM8Mqgq+CIYG2gRvA00DBAUPBHME0AGy/2H9xPn7+PD14/e/9ZXxafMI9JL2I/nQ8pLuPO+I70T01PBg8KPzzvSj+ZL3bPaO90/3w/Wm9DD0j/OP87LxW/B78X3zxPJY93L7Df85C2ETWBywJ+wqQi0LMCAuPyzhKeskeyHRH78dyxtQGMATHRCWCygGTgAx+kL1EPFf7GvoCOQZ4B/ed9ym3G3eTOD448vo3u519VP7tQAxBo4Lxg/9EyYXThh9GRsZpRgoGBoWNRRnEXMO9AqDBlgC7/wn91fy6e2m6oznYeV65NzkPueI53/px+uz613tpu3p7fnvBfIA81XzL/QB9J30VPUX9X70dfSv9A71QvTU83f03vT9/JcFvQy2F5AdlybNMbE2IjtmO1Y4yzQMLqsmQyGJHPUWJBJkD1YO5Q0pCx0FCv+b+A3x3eqS4wvd7tfi0l/RLNJU1ObWr9nl3dXjteok8SP4VP+iBgAO9BP8GB4dIyAnIyUlZiaSJtYjOiFWHbcXDBIFCpACRPyh9b3vV+of5SThh97F26ramNon25vdq98M4nPlcuji6zPvffII9f/1J/Yw9Sv0JPRE9dr2MPhi+Sj6svoF+3b5Sfn5/ucF9w/qGjQikC0VOOE9Y0FUP5A5pzKVKrwivB0nGhYXehXME30S3w/vCioFov6692Dwwedk377YHtPxzgTMGMuizI3QUNYY3Zbk0Ots8/P62QF/CCoO/RMXGmQfJyNIJdEmdSd4J5cmiCObH00bDxa8EEgKXwKB+crw2OmF43jdwNiV1Y7U7tVK2ETb89424pvkv+Zt6G7qY+1Q8ObyIvWH99j5+Pqc+5j7Svtw++D8X/7r/sf+1vus+3kCsQiYEREclSIsLlE3pznJPJM52zMTL8MmgyFdHtcaTBgwFYQTKREaDfUHtQDH+tDzJOtP48zaztQw0BLMwcvIzcfRUNfX3P3in+kv8Bz2k/sXAb0FLQppD+kUFxvhIMMmRCyLLu8uZSwEJwAh8RjmD8cHVwB7+c3zz+5p6pnmauId34zcHNog2fXYx9qp3svhH+XA6B7szO/b8YjzD/VP9jn4z/iZ+Br5j/k4+uP5Lfo8+g/5jPn99jn35v1bA4UNOhhNH5wsDjcNPPBALT6FOWU0UCvBJAAgMBx0GbsWwRXiFBsSvAypAzX6xPFi6G3g6Ni40RvNrcngyCzLG86b0m3YsN6V5jLu3fSS/PID+AokEUAV7BikHRIiFSYoKrUsIi4MLlwr1SY8IGsXSw6VBH/6W/GB6VLkJOEf33rdO9yC293aDNuf237dn+AX403mAepa7ffwf/NI9X73v/n4++38qv3b/VH94PwB/I/7ovnX9471rPLu9+3/UQgsFlsfyCnBN8s7Rj6APck1TDHSKgUkQSJWH3wc8RnpFYAT0g99CYsBtPiM8WXqdeO/3WDY9dRl0jTQGdCP0Z3Ty9aF27Hh4ehO8G33Mv67BMAJQw4lEzYYWB38IeUmmiviLmMvmy1AKWIiMhqTDwIFwPyh9Czuqemx5GriV+Fg3zrfCd6D3M7cntyK3Sjf2+DI5Jjpq+6I8xr3efqJ/I/93v3o/Db8KPv3+ez4fPjV9wj2rvTA8fHxIflLAesMAxqhIxIxrjvOPl1BYD1cNrgwNSe/IIUe+htWGyAbbhvkGy0ZmxKnCOL9HfO359Xda9bA0fHPd88n0L7R3tKJ1BLXXtoF34LkVeqy8fX51ACqBwYOuBMHGksfZyTuKXUuvzBmL5MrDCYnHmgVJwxWA/38FveP8gLwaO1T60XobOT34OLcwtkJ2KXX4Nl13Hrfh+Sz6SbvpfMP9sH3p/iw+H74QviM9xP3cfbg9Rj3Kvhk+JD4VPar9q/89wM6D8kacCQvMnY9uUORRwJE9T1WNystlyZBIv0dhBxgGs0Z/BrUGO0SaQkF/hvz2ucA3drT3syCycHIncmHzM3PutJb1iLaxN5x5PHpM/D59mz+5gb8DgcXAB9fJVUr7S/LMVcyGDAXLJcnTiEeGokRJAjV/xL49fFd7Qfpkuao5Ani1N8Y3D3Y59UI1DXUHdYv2ZHe3OTU6oHwWvT29of48Pj++HH40/dE95P3GvgU+W/6Dvr6+Rj4F/Yx+58Dsg5aHDAlfzD+PVtEI0h4REc7fzT6Kvgi9x5zG6QbPRxGHLodJxvKFIAKhP1e8vDmPtxU01LMCMqSyvnL6M4s0pzVt9lQ3T3h9uUD623wLPZl/F0D4gpyErcZBiC6JXYqHC51MJUwlC4oKrEjDhy2Ez8LgQNy/L/2efJU7oLqIedC45Xf+NvY1/nVjtZQ2DLcL+CZ5GXq4O6y8nD1Rvax9uL14PS49H70mPTA9D/1ZfaI+I/6yfrh+Yn2EPRo+PD/EQqKFl4grS35OypDHkeBROg81zXWK08jJR8iHOIbiRyWHZEf3B2eF9wM4P//86vnsdzw09bMOckXyMHIX8wr0WjVmNmV3RDi4ea36tXtf/Gt9W77wQKqCv8T9hwBJXAsgzH8MxU0UDFuLMMlPR2FFGwM4wWCAJP7bfci8xrvn+uM57Pj1t/V2zTZJtgD2JjZAN0v4b3mj+uH7mvxSPOE9IT1jvXD9e/1Pvak9pD3wvh6+QL7A/xI/Ez7Ofh0+UoAzghlFEkeZCcgNHY8WEAcQfE77zV5LpIlRSGcH4wfRSDhH3QgSR+5GdEPxwIh9qXqEODh15LSANAM0JTRMdRr1xXZydjQ2ODZGNyG34Li1eaL7cn0Af31BCoM5xPbGrUheihILcwwgzFqL6orNyVCHVoVhQ1bB44CT/46+/D3hvSX8PTrLucM4mLd89n619jXXtlC3FDgHuVP6tXuB/Jg867yLPHN7+zuXe8x8CLx/PLy9EX3APo8+z/7mfl89xf76QLsDPcYoyJELTg6Y0FHRChDWTzbNdAtcCUHIpEgMyCjIEcgmiBAHmIWIgs7/lzymuev3bTW+NKo0T3R89DA0f3Sm9ME1AnVDtig3IvhX+c87gP1QfvxAK4GwQ0YFdUbdyLNKDAutjBLMIQu0ionJSceCxYWD7wJhQQbALr8nvmr9jLz7O4v6rjkNd+o22zahNrX29rd+OBj5bfoo+r964Ls1+yH7FzsT+0W7wzy+vQL+BD7yfya/TD8+fmS9nDzevesADoN9huFJnMxkT24QqBDhj5MNLcs8iSRH9wfaSE/JBgm9CX0JSkiWRkRDJT86u+X5PHaeNQe0MDPO9En0r3TZNSo0+vSRtJk0zjWmNlS3rTk4uxd9sr/KQmUEk0bsiLBKGotJTACMRwwLi2sKQwm9SDkG/QWZxF6DIgHwQE2/O/13u676GziC91l2W/Xy9h32zXeHeG+4v3j4ORj5Czk9uPX49HlcOm47iv0jPid/AUAtQFyAT0A9P2e+yz4/PPp9jIBzw2kGwElRCwRN3Q8sDuHN9wuLylAJk8jxyQxKDUqoyqJJ2Uj9x2fE7sFuvd+7T7nG+In3WXZLdgg2HbXbdUh0wHRC8/azsXQ7NQj29jhH+k68Rv5IAFVCNQOrxU0HPYiGinFLEsumy6ZLa4rbyhEI2wdQRh5E54O2wkPBAH+W/hD8nHspOYg4ULdRtv62lPb29u03M/dbd/Y4CbiOeSV5nnp4Ow68CT0Gver+DX5o/kh+kP5l/g8+J745/lU+eX6JQOpDV4ZOCIKJ/YuTzWsNhc1TS8bKtAmnCJ5IXkj7SVzJ8ElNCNbIFkZ7g14/zPycOlI47DeSdzV23jdEN/E3hTdddlt1FHQnM6v0C3WQt1q5QruGvet/3sGcQwrESEVaxn2HJkf3yH1IlMjxyJKIaIf8h0/HJMZxhWCERYMcQUM/kn2uO8B61nnzOQ24+TiHuRS5RHmlOVW5HXjieJs4rjjseWs6Gjs4+9589D1UvZL9lj2SfY59sr2zvc8+jj8y/w0ABkHwg/6GDAf7yQkLakySDTIMQcsGCiLJdIjsSQ1JksnyiaJJEMiah2gFBwJU/xM8mrrzOVc4sDgHeC+4HvgpN6L29TWltLF0I3R59Qg2m/g4efl7zP3Bf1TARgEpwYwClIONhOaGM4dwiKgJh0o0SdqJakhPh3nF8US3A3tCPIEcwET/gv7Qvc/89PvHOxe6K3k/OAS37De4d4o4EPhn+JS5cbnG+oR7DDt6e5B8TjzpvSr9Vb2u/c8+sP8gv93ARUCPgW4C3sTdRw2IhUmHiwDLwgvoyxxJosiaSDkHQIfKiGeIqwjGSF5HT8ZchHdB379+PTC8DnuXOyY62PqZOk26EDlrOEu3ZPYSdai1gHZgNza337jiuio7afybfea+wAAFAU3Cl4PbhRkGKwbpB5gIB8h8SAUH74cTBr5FpITtw9GC2kH9gMZAM379/b68enty+pM6IPmMuVq5BfkIOSW5OTk4OT05CPlBuaM5xLpDOv07EvvcvK/9Q/5xPvD/av/JwGjAaQBtgNXCcARmBrfIHwl9Sn4LEItTCoIJbIhuSB6IK4hPSPHIwwjOh/1GJsSiQpGAR/5VfPG8LnvN+5C7GXqOuhN5Z/hHd6A29/Zqtk325Pe7+JF50PrKu9K8473nPuH/3cDzQe/DLMRExZTGZEb1xzrHNAbnhlfFvESaw/vCxwJvwZCBKEB3v4Z/P75z/ca9cvy1vBf71juzOwi69vpiOjB57Ln6Of56APrJ+1U75zxMfO49NH2nPgS+uP6Svul/G7+nf8DAEYBpQV4DVIVfxpRHXofCSJsI9YhzB4hHXkdAB/5H/UfhR9hHlYb7BZ0EqsNrAh3A4X+d/ul+a/2zfIT79frxulb52XkquI/4t/iyuP/5LLmz+jv6vLsf++Y8r71ufjY+yP/8gIABi0I7QkrC5sMwQ1FDssOCw+rDvQNhwxNCkYI7gVHA/oA+P7O/cv8oftK+ib5Kvga9771HvTx8jTysPHo8IjwrfCK8fHyF/To9OT1/fab91b4Uvmu+mv87/3k/j8AOAGsAJ//FQACBBoLxxFWFQ0XThgHGasXqhMLD1sMRAywDX8PuhHOE3oUZROGENEMCgmkBIQAxf2P/Eb9Yf7l/lj/Jf9z/nP9e/st+Qb32fR087vynPJr80/0QvWZ9p33ufi7+db5/vlX+qD6YPsV/BD9d/6y/9sAswEwAnUCaAITAvgBFQJ+AokCIwLOAfMAEwBS//H9qPya+4P6Z/qE+n/6Cfs0+x37UPsS+yn7d/s8+wP8h/3v/joAyQDiAE8BOQGxADYAAABrAIAABwAu/2P9NPuK+UH5mPvw/kgBKgN2BFsFAAbPBPkCbAJ+Ar0DuQWNB7oJggsYDIwMDw1UDbANeg0fDTAN/wxjDDcLeQkMCJ4GqwS4At8ADP98/cf7BPqn+Cr3hPV/83bxKPCt79Xv9/CI8o30qfbc97L4Uvmu+Wn6cvvC/OT+IAEEAwsFxAbQBwkIFweyBXMEhQPbAo4CrQJGAw8EfwSvBGYEpgOkAloBuv8K/q/8ufsL+9H6Hfu5+078Tvyo+yL7APs2+3b7tfsZ/Ob8qv3X/Vb9HvzA+mn5a/jw9yH4APmP+o38r/4yARYDrwNhA2oC4AEgApICrwO0BUwIFwtLDW8ODw+nDm0NQgw1C94K+AqzCoQKbgrtCfMIGQerBIcCSgAG/gr8L/rP+Ab4Ofd+9jT2xfWh9eT1bvZ49134Yvl5+pb7i/z6/A79Sv3H/Z/+yP/CAJ0BdwIjA+kDfgSHBKsE6QQxBW0F6wQxBKID5QLmAWsAif4r/WP8xfuo+/b7OPxe/Nn76PpI+sD57vj09x73zvby9v327fbc9gH3fvca+On4Cfo/+278if1T/tL+Lv96//f/5gA9AsgDiAVVBwcJggo0C6sL7QvwC9ELwQu2C78L9AvOC1ILewpECewHjwZCBSgEJQMeAjIBXgCS/77+wf3m/I/8WvxD/CT82fuc+2v7K/vz+gL7dPsm/CL9K/5G/4sAtwGNAh4DagO2A/8DQAR/BK0EdQTXAyMDTQJ5AXcAjP/p/o7+Qv7Z/YD9Ef2c/Az8Z/va+oj6QfrG+Un59fgU+V75o/nq+Sr6kfoD+1P7d/uy++r7F/wy/I389PyQ/SD+fP4E/6D/KQBKACkA6f+g/0b/2f6b/o7+2/5h/xsAFwEjAjID+QOBBBsFhQWnBa4FzwXnBdoFawXgBHEEHATyA8YDsQPDA8gDbgPDAhMCOQGjADAA4//g//v/JACCAAUBggEKAj0CMAL7Ae0BDgI5AoACnwKrAs4C+wLOAnUCygEeAcAATwDa/3z/S/8q/9f+df4w/j3+U/5N/hP+zv24/Yn9K/2x/Gn8Z/yN/J/8ifwm/J/7NvvG+kr66Pl7+UP5UPl/+Rn63/rW+838pP1A/lr++v11/RD96PwD/U39wf2Q/oD/YAAbAV4BbgGGAa0BCAJTApICwQLiAs4CoQI7ApkBxQDD/9D+I/7J/Zj90v13/nX/uQDVAa0CkgNfBPIEWwVrBbgFLQauBhAHSgeNB8sH+AfzB+EH4wfLB2cHnga9Bb8ECwR1A+QCjQL7AWkB1gAiAIz/0/4p/rj9d/15/Yb9T/3i/I38JvzN+7L7rPuo+5T7Z/sz+8n6Nvqg+Qn5uPju+Fn5o/kZ+oH6KfvL+1r81vxL/a39zP36/Rj+O/5q/pb++f69/2kACgGHAb4B4AHOAbEBqAGvAa8BugGjAWoB+ABcAKv/E/+N/hf+x/3J/QX+VP5o/jn+HP7x/Zv9Of3f/M78RP1c/sb/hwE5A3MEZAUNBowG+QZ0Bw4IqAgnCXIJhgllCUoJFQnUCGsI7gdrB70GuQV+BEADPQKUAfMAVwDp/3r/9P5T/on9vvz2+x/7g/o6+kz6mvrS+vH6/PoV+177vPtO/PT8nf37/UL+IP6W/cv8+vuN+6X7NvwH/ev9tv5k/5//bP+k/pb9n/zx+8T7Hvz6/O390v5f/5v/kP87/6L+2/0D/Yn8iPzi/HL98f1L/o7+of6b/mf+Ff4M/kD+uv5A/9D/dQAHAWcBmQGsAagB1wEgAo0C+wKOA9kD9wMfBDAENQQRBMEDgwN+A5IDzgMKBGYE0QT+BAYF+wT9BO4E4wSgBGEEIwTVA4cDLAPvAtwC/QIjAxMD6QKUAiICqAEZAYQAFQCL//n+Yf6+/Vj9Gf3r/Nv8zfyI/Cv8wvtp+0b7Y/u3+x38lPz9/FX9c/1y/VP9P/1p/bj9Hv5o/o7+av4P/p39Ef1g/K77Nvsf+1z7s/sb/Hn86/xp/eb9T/6A/nz+cf5d/mX+uv5C//v/wwCPAZQCgAMLBFAEVAQNBKQDOQPDAmwCRAIVAu0BmwEtAaoAEgB4//3+kv58/qr+5f5L/7z/JgCYAOoA+gABAeAAsQCYAJoA6gBPAeIBiwJbAycEqwT0BPUErwQfBHMDwwJGAgMCxwGZAYkBhgFsAUQBHAETARcB7QDOAJQANgDR/27/Nf8T/yr/Rv93/8X/5f/I/3X/Fv+d/iv+of39/Gv8AfzQ+6z7sPvf+xL8RPx5/Mv8Qf2f/e/9N/6v/lT/BQCsACsBnwHxARcCxwEVAWsAyP9U/wr/wf7M/hP/Y//Z/yQAZQCIAI0AVQAgAPT/ov9R/xb///7p/gP/Ef8V/wz/1f7I/sP+8v4+/4z/xv/g//n/9v/g/+L///9DAJ8AIAGdAfIBHAL0AaoBiQFwAVgBeQGkAQoCcwKzAvkC+QLvAsMCiwJ3AnoCrwLVAuQC5AKQAj0CxwFPARsBIgFLAXsBrAGxAawBiQH/AEQAav+4/jT+vv1W/Qr9Dv1G/Yf9r/3B/c79wP2v/bf9o/2G/U39Ef0D/QP9K/17/cP9Bv5d/oX+qv6x/qv+of6C/nn+X/5A/h7+A/72/Rz+Z/6q/tz+I/9U/1L/Pv8V/wP/DP9N/8r/nQByASACcQJjAiMCtQFYASIBFQErAWkBewFeATsB+gCuAF4APwAvAEQAbACvAPQACAEZASIBJQFIAUYBKwE/AT8BZQGGAZIBmwF8AWkBJwHdAHUADgDZ/8X/rf+6/9r/GQB5AOIALgFuAagB0gHtAbgBfgE/Af8A6AD6AE8BqgH6ASIC+wGbAQgBPwBh/5T+3v2A/UH9G/3z/Mv8s/xP/ND7SPv++sD60fob+5b7Jvy1/Bn9XP2h/d79NP6A/uT+Y//t/3UAMgHpAYICDANPA1EDCAOfAiwCvAFNAfYArgCGAHUAZwBRAE4AOwAtAAoA1/+t/3X/VP9G/1T/cf+g/+P/GwBnAJgAzgD/ACQBQQGNAeABSwLFAgQDOQNLA1sDOQPXAnAC6QGCAUQBHAH0AAUBFQERAQgB9gD8ABMBEQHXAH4ABQCD/w//pP5o/k3+aP6r/vv+GP/i/nH+2f0p/YD88fty+1H7lvsd/Mv8fv0w/sz+Jf87/xP/vP51/jL+Iv5I/p/+7/5E/6v/+f9MAHkAggCWAKUAugC6AKwAhABaADQAEAD3//b/9v8AABcAJAA4ADsAGwD9/73/eP9N/yX/LP93/8j/SgDrAGwBzgHBAWcB+AB+ADIADAAmAGcA0ABNAa0B7wEYAjkCKQL/AaMBQgEZAeAA7QAkAY8BBQKAAtkC/QIPA9ICaALUAS0B5AC5ALkA9gArAXMBoQGPAVMB2QApAGz/sf4B/nv97fyh/Hv8a/yU/Mn8DP1N/br9HP51/tn+E/9b/6b/CgBlAKgAsQCdAGsAIADM/3f/Vv9u/6j/qP+9/9P/3v/3/+f/0P+0/37/Y/9u/5f/tP+2/5//VP8K/5L+HP6m/XX9d/26/TT+lP4R/3f/sv/n/+v/8P/9/wMA+//y//3/EAA0AFgAiwC3ABABhgHpATQCdQKxAsgCrwJ+Ak8C5AF1ARABugCCAIgAnADmAFEBnQG+AbgBhwH9AHQA5/93/zD/6f7S/tP+6/4K/xz/NP85/03/i//B/x4AdwCmAMcA1gCUABUAaP/g/of+df6q/tz+Qv+9/z0AewCJAFUA//+f/yz/8v7Z/un+A/8e/0f/Yf9P/0f/Sf9G/1T/gP/D//v/EwAnAAoA5f/K/7L/wf/V//n/KwBYAFEARgAvABIAFwBDAHAAXgCUAIgAjwCfAHAAYQA/ACYAEwABAOf/1/+y/6D/ov+o/5v/qf+p/7T/0P+i/6D/lP+Q/6b/vf/K/87/3P/p/+X/4P+d/3j/h/9h/3j/gv+F/9n/CgBBAJEAowCUAFMACgDR/7j/v//l/zoAhAARAWEBfAGGAXUBRAH8AI8AFQAAACQAYQCqAPgASAFsAT8B6wCEABAAnf9A/yH/E/8q/z3/Yf+H/63/7v8SABcAEwAVAPv/vP91/2r/Uv8+/4D/uv/a/zgATwBaAF4AEwDV/3r/LP/7/uD+2f4l/2T/rf/w//v/0P+Z/zT/0/6t/l/+N/5U/nX+qP7p/hP/bP+///T/XACdAN0AHAFRAXsBggGHAW4BWgE9ATsBLgEtAU0BMgEVAcMAYAADAHj/E/+//nD+SP5w/qb+wf7//v3+5P7X/tX+2f4P/4X/IADiAKYBYwLQAiEDZgOJA3cDagNNAwwD4gKWAloCAwK4AWUBEAHWAJgAaQAmAMr/ZP8G/4T+Mv77/dD96/0R/kn+kv7O/hX/Hv8s/x7/5P7y/tf+3v7r/hX/Lv9u/9f/5f/e/87/pv9k/0D/Pv85/1j/q//t/zAAVwBBACsACQDB/5L/d/9x/5f/qP/a//f/EgApAAAA5//B/3H/MP/i/g//Jf8j/4z/vf84AGMAdAA9AND/w/9k/3z/sf///6oAPQHQARECyQE/AbcALQCL//n+tf4M/zX/vf9MAHAAugDCAGcAJACt/zX/I/8D/zv/R/9j/+f/kgD8AFwBmwHeArYFtwaMBcEDzgH7/9v9nvol+M/3c/hM+gH9N//oAU4E4QTwBBgELgJcANf+K/3N/Bv9uv0D/xcAnQG/AuQCZgITApAB+AB9AMX/Nf+L/5X/gv/X/5f/zP9IADsAoQCEAD0AewDV/4L/vP+m/rz+Pv/H/pn/xv+2/9AAiACdACkB3P/0/3AAHP94/63/Bv/c/73/c/8eALL/Qv/3/xj/6/4N/xr+6f6D/+D+xf/g/9X/WAESAO7/KQDr/rj/NP/b/tz/Uv80AGoBCgApASIBFQCYAYQA8v/bACkAbgBGAXIAmAC6APT/RgCo/27/EgASAHcACAH8AHQAsQBhAGUAYwDQ/7z/Wv+C/8X/uP8c/7r/xf/9/6UAJgD//wkAewAHAAwAuv95ACUB3QAnAJ8ASgHVAZ0CBgJPArMBHgLvAGEAUf8E/5D+//7e/un+AAClAE8B7wBjAZT/9/+x/nn+w/1I/mH+EgC//tf/wgBEAeMD9gBaAhgD4wM1A4cBF/2b/QP8Ifov+ff2QPgS+6T9Ff4h/+3+PQHYBREFcP4N/1P+AwBRAsP8nvqjAXoDkgLBAfz7cAAeAn7+PPs/+qX78v8T/9X9+/6dAF8DwwF9ALP+LP8VAIv/cP0s/+/+9gHrAmcAxgW6CiALkAptBtMDCwhzBbP97fsi/Kr+qgFf/UL9dQO9B8EFtQL5/jAAlAFP/fv4Mfid/A7+av+1/tz/tgR/BTMDGwEAABP/F/6B+mj42Pg6+Rv6b/pM/Lr+EAFfARMBXAI5AmoCFQHc/yIBmAF8ATIAzABwAlQD4AGvAOQAMgNqA+0BdwH5Ap0EDAOdAGP+RP8h/2P9Xvql+XD6e/qI+Fv31fjx+tD81vtw/GP+iQBcAVEAOgDOAI0AIP/C/If9Fv/9AEICLgPzB/cOKxCeD5QMkQjRC8IHJAEF/f34g/lQ+r/2Hvaw+PH6ifxg+zr6NPu7+y37/vkf+W368fof+/z7zP3M/9cBlgL2A/cFKgfjBs8GYgbxBg4HcQVYBGQEQAT7A9UDvgJPAx4DiQIHAcP/kv5f/fH8Jvyn+7P7Y/sM+2n7P/vi+4n8rPx8/RP+fP47/2r/XgArAWcBxwGOAmED9QSnBewEuATyA94CmwJBAYL/N/93/VX8vvt2+mT6UPrw+an5YPkG+S359fhU+Xj55/mN+pX6n/t1/I390/7M/xABegJNA+sEbwZcB6gICQmfCE0JGQnJCPMIRQhhCfIKvAwfD98PEBFuEX0PrQ28CWsFRAIr/hD7v/lv9w/33vYM9h73Kvcy9i714vPN8qXyd/KP8gr0FfZN92n5VfvJ/Gf+MP/4/tz/WADt//0A7wEwA60ELwUzBfwFpQV6BLgD6QGjAB7/YPwH+6761PrJ+9j7gvuu++j7YPyL/B38BfxX/LH8Z/0Z/eT8Vf1f/fj8bPw6/Ff7kfou+Fj2fvZx96T3kPdA+U/8bP8XAj0CnQPWBbQDCQWHCgsQYBctGWEWXx6oJGEmVCbaHnEchx6vFggNmgX5/vb+a/sy9BTyhPHf8PvvjO207cXuHO4T607pG+rO647sY+5t8W/2Kfyt/sMAsgR2B50JLQpBCL4IUQmLCEMI4QeuCNcKUQqCCYAI0QZtBowDAQCm/ZX6nPgo96j1dfYq9+f21fcC+Ff57vq++u76a/qM+fP5Svpn++r8Qf3X/dP+J/+d/8H+c/3N/Dr8QfvJ+ZX4r/f7+M/5MfpX+pn57PiD+Vv5C/km+Rj4v/hF+oj6p/pt+gr8vP5PALUAXABuAHkBrf9+AFUH7A4WGGAb5hqDIeopfi6pMKMrgydkJ8ggmhflDpgGBgN6/4z5efUO8/Xwpe/37kTvyO796zfnlONo5KnlGObs5+TqFPHT+Kz8YACrBUEJDQ2IDowMqww5DJQK3QqvCqwKyAuoCtQJWgpGCYIHWQSCADf+rvx5+jf4q/aJ9bP0//Mp80bzcvSx9N30vPVl9u73bfk1+jj8O/4w/97/0P8E/xj/IP6I/Pj6xvhP9+n2v/bt9tX2fPaT94f47vi5+Pv2jPbu9lL2gvXi81zzw/PZ8/H0T/Yj+Cv6ZPlc/QwKyRjtJpEsICszMGo46DzQPXM36S9TLPwjoRnZEa8KKgaxAWX7ZvaV8Rnqo+Ik383frOBZ3r7ZOte82mDgmeSs6YrurvMU+b77nf4RA+cFwgjTC+cNQxB5EOcOcQ8HEeYSqBP4Ee4Pzw03C3QJzwfRBf0CJf5X+TD2yfMW8sjw/u+n8JzxXPIm82z0HPZj9+n3M/g6+Mb4QfoO/Gr+YAA2AUICzAN4BWsGuwVLBNACOAFP/0r8Evn/9gb1nPNI8l3waO8x72jvHfDI77ruHu6e7njwTvFS8TjygvNR9rb3ZPhKAEwOxB7OLPIx+DR7PC9DAUh5R18/rTYmLK0eHBT2CpACJvyk9UPxSe8k637la+Ha4HniQ+KE39nbcNqB3N/fweVu7YDzQ/lJ/scCbAl6DrAQ0BKYE10UNRVsExkRqw9bDj4OFA3/CbsGcQOUAbEA6/59/Dr50PXC80Xy9fAG8DnvKu9v75nv4+/a8BTz0PWy+BD8QP+3AaID9QTJBhcJ/Ak/CZUHrgVOBOAChgDZ/af6Kvdp9OjxR/BL79DtqOz663frruuW603rDOyo7fPv8/Hs8mXzpfOi9Q/5V/wI/3D+7/5KCAQYECpfNws6ezxkQ5hI9UtASKM9wjMfJ94XSQyHATn3m+5W5sXiuuJR4Efco9lq257gq+RU5jPmm+YL6Rjtf/M4+lj+qAFZBWUKwBBIFHUVuRb0FrAWHBXUEIwM2Qh9BeADEwIu/zr8ePmV+An53/j59w/2CPTN8sjxQfEJ8b/wcvFR8771R/gt+gn8cP7QAFoCyAIRAx8EQgX8BSwGwQVoBcMEMgN+AfT/zv3S+ij3CfP771juLu1+7BfsmOv2637sh+yJ7PrsAO8r8q/0zvVz9YX1lPaV9575+vvp/f/+lP2d/9cK2RzBMAU9+j68PyVCiEVKSH9DsjjNK4kbQA21Aln5UfJA7ATodug/6UfnkONw4Cbiheb66OboHec158TqOvCm92z/pAVyCqsN7RBlFD4VlhOREOoN9wxjCnQFmAAD/Y38K/7v/u/+Z/2y+qX5afoB/P77tvgT9WDzmvPX9CL1QPWH9rT3OPkz+6j8ef4XAJIBqQOTBLQDLgInAWcBAQLHAe0AbP/r/Yb8LfsQ+gL4t/SG8enulu097R7ti+0P7oDuBu+278bwyfHA8svzh/TB9Ar0iPOY9GP2wPkF/dX9x/xo+UH5qQP5FJ4nFTUbOjI/CkfqTF9QiE0zRDk44Ca4E9gEQ/ju7VLlPN6A3MHdv92H3bneQeOC6Rbuy/Ak8j/zJfWI+L/+ZgWUCXELNQy2DnsSQhQVFDASBA/tC+QHhwMrABn96vqy+dP4z/gU+WD5FvpV+hb6LPmB9971OPQp8x3zx/OH9Z73y/lT/L/+OAHgA+wFMQd5B20GpARxAh4Aef5+/d/87fsz+mT4D/cj9nv1T/SW8j7xKvC57zzwVfAY8O7vnu848D/xl/HN8bnxCfLt8qrzhvQX9QT2gPcR+Gj5cvuj/PP8RvsF/agJPh3eMFE9q0B7RCxLt0/oUCNLzj7gLoIayQf++0/zQ+u14j7cDdxF3hvfst9y4cbllOqJ7QvwNPJG84D0b/c2/fYDPwjbCeAKAA2OD9sQVRA+Dl0LIgjyBHkCuQBo/+D+xf4h/+3/XAA/AIX/Bv61+8r4PfWh8SzvAu7a7SHvyfGL9VP6lv7XAboEjwZvB8AHRQc4BowESQJyALL/Kf8j/mX8dPrl+L/30fYX9gz1j/MJ8vDwu/D58Orw7vAo8Q7x+/AY8XbxffJu89X0jPY19yz2UfOY8YryTfT59gf5NfnR+Oz3/PtzC4ogfzOkPtxBMka9TNRPsk6YRzg7iyuiFwIGf/uL81rrteIq3Z7eO+I749DjQuav62vxcPRP9kL3D/dP93/5XP51A9oFcgYVCHULyg5VECAQtA6BDLUJkwY3BEgCvP98/d/73foL+2X7ufs2/Ib7ivnu9vTzWfEd8EnwYvGz8tTzh/Xl+K/9NAJ6BR0HWwcrB6UGkwXlA68BVP/V/ar8Pfvu+bL42vdY9zD2x/RY82nxou9N7vLth+5C7x3wlfDY8DjxjfFk8ojz4fNP9Pr0+vRq9GvyevBk8FXxi/RS+Ir60foC+eH7eQo4III11kJ5RqtJEE+XUpNTKU5JQS4w1hqyB8/7OPLm6BfgF9qZ2vLdq9804Q7k4+i47jrz1fWd9gj2Kfb1+JL+vQNpBiII/Qn7DPAPLxDEDv0M1wrvCJcGzALt/iD86vrx+7X9jv6A/rz93/xM/Lv7k/pf+A/1afHc7k3u9e/h8j32y/kb/Q4AjQLKBPUGrghRCZMITga2A6gBHgAh/8z9Rvsu+A/1qPL+8eTyCPR+9OvzhvKN8cLxsPI59Df1LfTd8ZzvoO5k76nwMfHW8B/wxu+y8Obyo/TD9H71Nff5+EH5g/YU+DkF7xlWL+Q9UkPbR7BNX1FmU05P7EJJMF4YNQO89uXuReh/4VLc2tzS4PLkR+n27K3wYfQz97v5mvrB+Ov2Kvgc/QQDcQZBB8AH1gk3DfkPqhBkDtkJbwWrAhUBw/8B/sP8G/02/hr/MP+4/m7+GP6j/FX5YfR679XsN+1L7xfyEfUc+FH8AwFSBf8ICguOC44LrwroCIMGmQNYAfb/7/08+1b4ovUF9AzzJPIA8hTy2PGT8fvwv/A28arx1PF68YPw9e9F8AXxyfHj8S/yRPPM9Df27fbu9/74Ovnh+ff5JPko9+3z0fYJBeoZ2S5cPKlBiUYNTMVPbFBsSX86OyY6D/P8ZPKb62jmUeGr3nvhc+bq6jXuRfD48uD14fcQ+fD4r/f39rb4ef0eA9gGAwjuB7MIOQreCnwKtwj7BWoD8QDF/lr9V/zv+5H8gP0//hH/0f9cAE4A0P6o+7L3x/PT8K3vfPCw8oD1gfiP++n+BAM4BxoKJwtNCjYIqQaDBUcEEwNRAQT/lvwH+on3OfUZ88bxwvEH8uHxNfG78ITxIvN+9Cv1mvSf8mjwuO7t7abtku0I7u7uf/DY8ajzCPee+QP7vPxT/Zr8Xfk29db60QwxI9s1Wj6FQahHmk0wUNRNBkMvMk8drAep+VHyAexC5vPheeLR59/rvO0Y8CTz4PZS+TX6oPqc+f334/fb+gAAjAN4BLQEQAWwBvMHAQjHBz4GNQN5AE3+JP0u/ab9Y/+UAbgCcwOiA1gDnwJgAFr90fnQ9EDwuO1a7R/va/EZ9FD4JP1RAbAEyQaPBx0HhQWdA/IBAQA3/hP9d/zF+7L6v/k1+db4HfgI9xX2CPXD84by7vE28r7yT/OE83TyxPAu73Puuu6r7onuJu9v8Ffy3/Pw9VT4Gvm2+Vn6Z/od+vn3gfqYCNscOzCpOyk+qUGsRu9I20gmQqU0UyOgDmf+bPan8PXqmeV347DnouyD7iXvXfDq8/X3Xvko+YD3VPVo9Sr4X/15ApkESQUqBs8HQgphC/0K4AkDB18EAQPtAf8BRAJlAvIDaAXqBQQGsASOAgAANPzj9xDzO+636+TrQO698Yf0gfea+xsArQQJCAoJqAgiB2QFdgQuA1MBeP+d/Vj85fqt+CH3kPaF9g33VPed9yr48vdf9/f2ZvY99dDyfu+H7Mvqx+p16znsHu1j7RHuBu8v8GTylPMO9Lr1lvak9un0TvJB+UkLTiBFMgY6OjxNQsVHzklsSD8/pzE6ISgO1QEr/Nr20fHy7LHrbe9c8ePv4O7n7xTzx/Rw84Hx5e/Y75PxLPXE+gH/0ABfAi4EQwffCWUJhAi7B30GIwYCBQQEJgXyBeEGHQiWBxAHIwaAAyIB1f0h+cv0OvBP7aDtKO8+8djyY/PZ9V76bv9YBKMGmAYHBjUFxATPBBgEnQLdAPj+J/2B+8D5OfiX9xr4k/lM+2n8vvyG/An8WvvG+WT3x/Tu8c/vOe7e7APsVeuE60jsBu2J7ajt0e4u8BnxYvPw9Tz4a/kW+F78OwvDHjox/Dr5O8k+k0LPQ1RDTDx4MLIiYhETBPT9H/mk9JPv8use7rTw8+8I7lPsDO1L70fw3fDN8CTwz/BO8zf4fv04AHwBVgLRA20GDAhnCGUIJggFCQMKbAkmCCIHCwjHCokMNQzACWAFGwHb/UH74/hT9cjw3O3e7TPwG/NR9QH3k/iK+vT8zP98AjwEgwRCBDkEagOkAXf/of26/Lz7yfnp91b3Dfjq+Wf8fv7O/3z/if2U+7n5nveh9HzwuOwe6vfoPOn36RfrCOyL7HHt1+418dfzWPU+92j5svq7+mb4pfmKBcIYVSwcNzk2FDSsNsg78j+RPMMwpyEUEVQEsv9P/0n//vvm9QDznfOP9K7zB/AK7XHsguzd7CHtqO3z72fz+fdc/d8ABgIcAWT/Tf8OAGEABwFRAngEcAdVCa8KUA1/EAwTNBOwDxkKigQbAG79o/sC+U31e/Ed78TvsvIh9mr4jPhJ+PL4mvot/Sn/fQAiAhUDMgPDApIBeQCv/5L+IP7y/aP92f3S/iIB4gMmBeIDiQC5/Oj5dPj59hv0ZO/H6v7oXOqf7UnwxvCi8NPwhPG78v7yZPKu8ePwKfLO9LP2zPZh9CP2VgNJGD0tnTc4NNUuHC7wMOgzOy+LI8EWEAn2/9P+AwLAB2AJ1wSLANL92fxK/Gj4y/N27/rq3+iT6NTq+e8v9Gz33/kQ+/j8Jf64/dD9Nv4N/1gAswDxAWgFeQmcDeYQAxODFBgURRGFDZ0J1QX0AV790fj09BvyTPGW8if1u/cv+fr5B/sV/Mf8ZfwO+/r5B/qf+zb+FQBVAF3/vv77/3UCMQQuBFgCEwCt/qP9WvyB+tz3RvWL82Dyj/FZ8Kvu9u3F7nrwHfId8kzxxvGu8pTzvvMx8jrxjPHj8c7zDfa69qb25PVk+SYGyxddJ9stTisaKLAocCtELDkodCGEGusSGg2FCyYPYRaqGYcW6A+ECK8Dxf/n+Ub0++426iTnfOTD5GXptu4F89T0X/QV9UD2DPY29ZT0D/bj+ab9fgB4A/cHGA6mE5wWpBbkFNUSjxBCDZYIJwNx/sf7rvqV+hf7vvvU/Lj9yf1j/Ur86PmU9h7z8fBQ8ZjzO/aV+Pn56PrW/AcAUgMzBX4E6QFR/zL9M/tv+Tn4pveX93j3S/et91f43vjl+FT4HPgz+PL3T/fB9TD0cvMy8yfzEvOh8mfyXPK38Wnwqe/d8fD4+wODDvATURTMEk0TzRafGXcadBp9GosbhBxPHWAg7SSwJzcm5R8zGL4RgAtxBZ//YvpC91r0l/Hf8PHwmPH18TzwT+6Y7F7qL+mn6OboE+tJ7g7zFvlc/rUCqwZ3CpwOOxH4EBsPGA1qDLEMGAxLCrUH9ARPA7oCMAN+BOUEZARHA3IBX/+o/Ib5fvd69uD10/Vf9gv4k/pp/Hz9+/2x/Yb8Z/od+Nr2T/Y59nf20Pba93L5cvsO/jYAAQEwAPv9DPxR+1P7nPvd+ij5rffk9nr37PjR+WT6Nvp0+Sb5qfg++G/4nPil+ZH7y/xu/WH9bv1+/24CNQUQCP0JWgzID5oSCxXgFsAXtRjNGAkXahS5EeoPdA9tDx8Ptw6tDRYM+gmBB8MEiQHy/S/6vfbi86DxBvDE7xnxt/PZ9iH5hvpM+1f7OPu0+qX5p/jl98b3xPhm+pj8Nf9sAVoD4wTjBZcG3wYWBn4EcQI4AM7+bP6+/pL/cABaAXkCnwOMBLsE5QNzAnAAS/40/Fz6Sfkk+d/5Mfuo/O/97/6J/8b/tv/S/t/8qfoQ+dP43Pki+9D71PtB+wz7EPxc/ej90Pxc+jP4PvdF9973RfhX+E74hfgQ+af5DvpV+qn6d/sZ/SP/RgEBAyUEQAWsBpEIKwrZCsAKAwopCYsImAjSCf0Lvw1bDhsOPA2SDMwLUQp/CFsGHwRYAssAGwCYAEoB3QEOAp0BcgGNAWEB/wCC/0H9M/ti+dH4TPlD+gD8+/1z/4AA/wDgAMwAYACv/8r+U/28+6D6vfpM/OL+XAGZA3EFrgZeBxQHPgZiBSwEvgL/AOn+5vzo+tz5PPqw+zL93f1y/U78XvuB+ur5afm/+Df4Qvj5+G/6J/wQ/WH9j/2+/Sf+J/5N/Rn82/oQ+t358flm+ub6Y/vf+1z89vz//GP8lvsO+077MPzd/Dj9Wv1l/XD+sv+YAPMAfgBjAPQANgFPAbEBygKuBdIIfArVCpkKXwv0DLQNVg2dDF0M8gxQDTcNvw2BDlQO/ww3CsIHGQfTBlAGcwR5AeT+3fxh/CL9S/4s/xX/IP7Z/M37XPsg+z76Pvg09XTyTPGK8tn13/mS/TAAswG8Al0D5QNOBHgE2ASTBKgDZgL9ACYA0f8gAOIA4gEyAqQBgAAV/0/+ef1P/KH6Fvl/+Lv4p/lF+iT6lfna+E34W/in+HP4h/dE9sP13Par+Oj5Fvq0+cj5M/oQ+u74fvfc9sH36PmU+3f8pfwk/B78Xvyz/Bv9Vv2H/Rj+qP5A/1EARgEFAo0C9wMpCHEOQhR/F8QXThelFzwYbxhJGMYXLBfVFWoT9hH8EcUS1RKuELYMXgjeA8H/7/sf+Aj1wPIW8UzwcfAq8UHykfK78fvvou2s67PqkeqR66rttPDr9PD5BP8ABIYIRAwkD2UQkxCEELkQ7xDNEMkPFA5hDJsKswjLBuAE7QInAef+Yfzd+av3KvZA9dX0VfRX8yLy/PA38FTw3PBp8dTxXvKY80/1+fYc+M/4ZPlI+ij7gfs6+0z6vfly+mX8Ef+AAbECFQPHArcBXABL//n+LP8E/xH+Ff2u/MP8MP1l/TT9Nv26/tkDbwy0FdIb4hztGisZtBgOGcgYXxc1FXASEBA8D2kQkhInE9oPggkyAhL85fcB9TTytO8L7rjtQO9Z8VzzmvRj9Afz7vC07mztb+2H7sjwNvR2+Jj9DwMMCH4MAxB5Eo8TORPfEeYP1w3TC/QJZQjdBtMEwwJnAC7+w/yn+zj7CfuM+pz5SfgT94z2jvY39xT4Xfjn98721/Wz9Wz2RPed9633xPf39zf4Xfjq+Kn5Nfrl+R/5jPir+IP5OvoM+9j7vvwQ/U/8PvpW+Pv3z/gq+nn6g/kh+Dv3Efce98j25vWX9iv7lQRaEbwcYiPbJA4jNSGBIMYfth7mHIYaxhjLFxsY4RkHGzEZahPZCi4D+P12+ij3G/On7wLu5O0G71fw2vA88BbuAeuG6JDn4+ee6frrMe+d89X4av5mA3IHmwpJDbsPtxHLEvgSTxKzEOoO4wyCCmIIVQakBDsDwwGhABsANgBgAKL/t/1t+zX5nveJ9mr1gvS+8ybz2/JT8qXxEPEu8JfvpO8o8DPxWvJ/8yv1m/dr+sL81P3e/dv9nf7///0AvAAe//j8M/tI+qf5YPhl9k/0o/L18YrxDfHY8Gbw7u948NfzSP2SDOkcsCmgL2Qw3C+oLtYsRSoTJo0hohwNF+0T9BMuFiwYJRZnEHcJYQJe/Lj2nvC46xjoCOYz5v7nTOu27kfw1e8T7kTs0Os57HrtI/C18734bv7rAxMJrQw6DxURMhJfEyMUmxP+EWkPWgyhCckGfgQnAzYCQQHF/+L9wPyq/Bz93v39/Sf9UfuX+O31DvQD81ryjfG28OPvKu8j7+HvpfH887r1ePak9nr2ifbG9i737ve/+LL5f/qw+4b9W//dAL4As/4B/Mr4HPbx83jxWe/O7Qzt+O3G7/XwFvHK8JLz2/y0C24cPioSMpI1SzaUNfEz3jBeLLglpB2HFt8S1xNkF80YHBbmDy0IJQEt+vPyluxQ56LjsOHj4JjiM+Z/6Urr+Oo96qrquuvO7L3tLu/o8cP1yfpEAToI0Q6sEw0WGhf+FiwWHxVsE50R5g/NDXkL9QhmBo4EEwPBAVMAlv4u/QD80vqr+V/4Mvc79vT0f/Pq8TXwlO4V7TnsP+wY7ePuC/Fa8+v1D/jE+QD7a/u8+9374fs2/B788fvd+wz8Y/1z/7MAQwCL/UX5NPVZ8QDvYe4w7pTuyu5C7iHuyu0a7tDyxfzpC78czylKMr42JTgpODc26DIVLzopDCI9G6sWHRY8F60WNxMTDRAGR/8m+IHxs+vn5t3j9eEy4vnkZOh+693sx+wc7aLtJe667m3vUPFa9Cb4CP2iAmMIUg10EFYShRP/E9MTIhJeD6AMGgpeCJwGfwSAAl4AOf53/G37wvvm/HP94vwf+0P5GPgE90b2zPV39Ur1IPQ88pzw4e908MLxOPNz9TP4APtG/fL9df0Z/FX66fjI9yz3g/fg93b4Uvmw+QD6tPl/+Bz3VPUm83LxEPDp7ybxqvIk9KP0MvQ29En2of1wCiAaEinfMnk3zDjnNyk2LTMiLgYoeCDhGBoUTRLpEj0TKBCdCv0DGf3t9uXwcOt/53fkkeIw4p/j5eZP6n7see3l7ePu+e+K8PHwXPEk87T2WfspAUcHmwyqEN8S9BO/FOUUdxTVEvEPtgx+CRcHuQWJBFgDwwEbADn/pv5Y/vT96vzm+wz7W/pF+gf6Lfm696j1sfNi8sDx/PG78ujzOfV89sH3dPj5+F75u/n5+Zn5jvh29+32GPei9wT4Uviu+CP5iPld+Zn4QPfe9PzxkO8q7p7uTPC38fjyRPPC8gDzF/WK+/MGSRQzIRIrxjAgNLs0ZDNvMcktBikyI50cYBiHFm8VYRT+EBoMZAcTAiL9HPh38q3tnOmy5rHlq+W45t/nTOj+6Njpauv57VfwDvPF9SP4EvvQ/ckAKATIBmkJxQt1DUAPFBA8EEoQjg8QD2IODQ15C7MIUgVNAmP/5P1f/S798f0I/sP9i/3r/OT8hvz1+gT5dfZn9EHzjfLY8mLz+vPM9Fj1BPa29uD27fZ+9iD2Xfbc9vv3Ovmy+W/5ZviS9+v3DflO+vr6XPrW+Iz2dPMH8Y7vZO928LnxwvKE81fzrPIJ81T24P51C6kY6yPCK+sw5jT7Nuk2gjRdL8oo2iErHDMZBBigFjQTuQ0VCDsDev84/Gr4XvQN8Ibr8+et5ZLkI+Rf49fikOPi5bPpjO2p8FXz+PVZ+fj8YQCkA0cGkwibClAMhQ7zENIS8BO2E6MSkRFBELQOZAz8CB0FDgE4/VL6hfgE+P34rPp3/Eb9JP1p/A77l/m290v1x/JZ8EnuFe2m7DLt4O4F8S3zw/SC9f/1fPYY90P40/lt+8P8B/2q/Fr8nfz4/HT82vp8+KD2xfWS9Z31aPXO9Fj05PM4843yZvEf8LDvZvHY97ECnA8cHLglziy5Mp826TibOMA0Ki/BJzog4RovF7EU8RFmDX0IAAQiACD9Rfn09MLwkOx46UDn3OUT5dnjmOIm4k3jnubk6truU/L29Kf3nvqG/eYACAS7BlgJTQuMDSAQWBLBFMoVMBWWE8AQuw3FCsQHDQV6Aj0AKf8e/w4ASgG4ATABvP+o/X/7OPn29tv07fJS8WTwMfC78K7xivIm82PzY/N9877zCvSs9HX19vYJ+Sb7CP07/sX+3P6O/p/9wPwM/N/7HvyS/EL9XP21/B372vi69tf0d/Nc8krxlfDf8MDygffk/owHXhC3F+QdjyMUKH8rEC07LMQpYyUaIP0b4RinFkAULRCQCx0HPgOSAPH9GfuQ+LH1UfOX8QTwyu4u7U3ryen66DjpU+rJ64ztdu+18SX0RPaI+AP7i/2xANMDEgedCm0NYA8xEO4PLw/XDScMhQrECDMH6AWkBM4DGgOHAh4COAEkABb/6f30/Lv7Dvp0+C73qPYh9+z3m/jC+CP4Nfc19mP1//TJ9KH0sfQI9cH10fZC+Kf53/oS/AH9xf0c/i7+0P0u/Y382fuE+1z7Evuc+rf5lfiJ91j2QvW49FH0cvQK9QP2RfgB/C4BsgcvDt0ThBgZHPIe+yALIjMihCEfIIAe0hz/GssYQhXxEGYMWQhtBRUD6wDk/uv8/vpF+bL3VPYr9fbzxPKY8b/w9+8L7yHuN+0B7czteO8F8i71tvhT/Nf/7wLBBf4HbAkQCvEJdAniCFMIBQgJCFMIighMCMcH4wa9BWQEoQLZACP/CP5q/QH9/fwK/Rf9Ff2u/Ln7e/rB+Kv2Z/Tq8Q/wAu/a7oXvnvD88WzzyfQs9sP3YvkD+078vvyU/Dj8FfyY/Er99v1w/mf+av5h/i7+yv3N/FH7Cfrf+C74+ffB98r3PPhd+c37ev9UAxIHdwrwDWkSGhdWG1geuB8QIJMfjB4EHc4aIhgKFeQRaQ+cDUAMrQpZCMsFQAO6AIL+hvx0+nr4NPbt8yTyffD/7oPtDuxn6wXsve1Q8ErzMvYG+Vz7av1f/wUBagI3A4cD6QOSBHgFqwbWB6cI9gijCM0HwAYNBnMFGAW7BEUEAASdAyUDuAIVAjQB2f8B/i/8jfpF+UL4UPeQ9h72uPVE9XL0Y/Ng8rvxz/E88q7yQfPv85b0XPVE9mP3zfg8+p/76vwY/jD/9P9BAL3/E/9C/rj9mP1V/dD8zfuV+kP5Ovie96v33/hc+9n+zALRBtUK7g7MEhgWVxh4GY8ZMxmuGIoY+hj8GDMYeBbwE2URQw9ZDUQL7AhKBvYDAwJaAPv+jf0S/E76a/jV9l31L/Tk8oHxVPCK74XvI/B08Sbz7fS29jf4q/lD+9b8Vv7p/yUBGgK4AicDzANiBM0E6QTYBPkEfAU4BrUGyQZ7BtEF4ATXA8ECjQETAGj+5Pzi+3T7Zfs9+8v6TPqy+QL5MPj79pn18fNt8nbxIvHE8XXzZ/VA95v4VflH+l77dPwI/fP8qvys/Hf9jf5h/63/Pv9s/rH9Mv3S/Fr88/uu+8f7Ufwk/Tn+df8uAYkDRQZnCYMMsg/gEr8VDxjkGQobdxtRG7Ea8xkWGakXehXLEs0P8AxKCm0HuwQOApX/cP2C+wv68PgC+E33dfZ59Vb0IvMH8ijxvfCu8OrwafE98lrzy/RW9v33z/mN+wP9Cv7S/nf/HQDHAMoB5AL2A8oECAXPBDwEVgM7AuAAfv+L/tD9gv2b/e39aP7w/i7/Tf9m/wT/bP5y/Rn8x/qG+V/4mfcf9/L2C/dm99f3Vvj9+Of57Prv+9/8x/3M/rb/YQDAAOgA6ACuAEMApP/2/kT+j/3Q/BL8ffsd+9L6z/rq+iL7jfsg/Lr8Tf3//Sf/HgGMA48GyQncDOEPmhIRFQQXbRjUGIMYnhdLFrgU/xIiERQP4AxeCtgHdgV3A+kBiABU/zT+S/17/PP7dPu1+pn5Gvig9nD1o/Qw9NDzifOm80L0XPWJ9rb31fjN+cf6sPt1/E/9VP5W/1cAVgElAnACMAJwAZQA0/8g/4n+LP7t/eD9Gv6E/h7/w/9jAMMA6gD8AMwAeQDp/xz/MP5R/YT80PtR++j6wPrJ+tT6APsL+xL7Rftw+5r7mvtp+077U/t/+5j7bfsU+8L6gfp7+pP6wPob+6X7RPzq/Jv9Hv6U/gT/N/+v/14AcAHlApAEuwb2CDsLig2BD1UR3xIIFOsUWBVfFQ8VTxQ7E+ERZxDGDjANjQvmCS0IVAaOBAoDiwEmAK/+Ff23+3/6g/nE+Aj4Fvcu9lP1rvSd9NX0SvW19QH2QPa09nj3V/gk+cT5bfod++b7sfx3/Tf+rf4+/8z/HQA9APv/i/8n/9D+lv5J/vr91P37/Vz+8P53/8z/BQAAAM7/qf9f/9P+Nv53/dL8OPzd++37Mvx9/NL89vzQ/K/8J/yY+wP7lvqK+rT6L/vC+2H85Pzd/H/8/vuY+2n7XPta+6r7afyC/dv+RgC6AQQDHAQlBTUGXge5CEYK+QugDUcP0BAcEjIT1xMKFNsTZxOREn0R2A/3Dc4Lrgm1B+UFRASXAhABhf98/tv9cv1l/VH9P/3r/G78n/up+t/5Gvk++EX3TfZq9Qb1O/Xv9cz2ifdL+CH52vl9+uj63/qg+k76OvqY+lP7/vuc/A79WP2W/cf9//0y/jb+LP4e/iL+P/6h/l//EgCzACsBHgGjAAkAav+v/gb+Z/38/MP82fz9/P/8w/w7/Mv7qvvY+yn8Zfxp/ID84vxV/dT9Tf5w/kb+4v2N/Yf9rP3i/fb9Bv5R/tL+b/8pAMMASgHAAWwCgQM3BVAHkQnIC88Njg8QEUgSPxPeE/IT3ROAE/0SrxL+Ef4QcQ/VDTkMZwp9CBIGhQNEAVL/qv07/Pf6y/my+MP3+faA9hj2qvUw9cf0nfSb9Mf06/QT9U31v/Vd9j73UPhe+Wn6Wfs//AX9kP3X/fH9E/4P/jL+Sf5d/nf+l/7e/i7/X/9d/xX/xf7D/uf+Xf/a/wEA7f+y/2T/Cv++/l/+7/1R/eD8j/wp/IL76vpr+kj6kfrs+lP7ofvQ+9D7/PsX/Er8wPw//QP+0v6F/0EAywA2AZYBbAEcAdYAjQBnAFMALwBIALoAmAG6AhgEfwXhBlcI6wmdC20N3w4DEAkR6BGAEgYTaBN7Ey0TeRJsESoQyA46DXELewl7B3EFdwOjAff/ef4X/cD7Svrh+JL3QPYi9Rz0SPOj8h/y/PEA8jrysvJ18yD0xfRz9SP27vbO98j4q/mN+ln7HfzQ/HX9Cv6L/v/+ZP/I/wcASAB0AJEAlACCAIIAdwBGAAwA2v+x/5T/g/9J/97+Vv7o/aH9Lv17/I/7ofoC+pn5Xvlt+b35IfqK+tv6Tvvz+4b8Ff3Q/ar+i/9cAMkABQE0AUQBMAEiAT0BSwFnAVoBRgE2AVwBRgEHAcsAkgDDAGUBkAIlBO4F5AfMCdALjg0HDxcQtxAiESgR7xCaEDwQ9Q+gDzoPvw4dDlYNhQxwCzIKzgghB2QFrQPQAQwAOf5j/Ir6wfhS9wH21PS688byA/J48TXxHfFJ8YPx6vGL8jLzAfTy9Of10/aH9zX44/iP+VX6L/se/P/88f35/uD/mgA2AZQB4gEOAvgB6wHSAZABSgHgAGMAOAASAAoA7f+F/8H++P07/Xn8wvvu+lP66PmR+Uz5KPlD+WL56Pmw+nv7a/wg/dT9hf4w/9z/VQCzACkBmAHoARwCHAIIAgUC9gHBAccByQHbATACswJzA1kEXQWpBv4HUQmvCvQLCw1ODlAPThAmEeQRkhL/Ek8TNxPVEhwS1BBTD6ANxwvtCd8H9wV6BEsDLgLZAEn/kP3N+/z5IfhG9k/0efId8Qnwhe9i73/vuO/971XwyPBZ8frxt/J982X0gPXy9qX4U/om/I39rf64/4QALgHDAU0CvwJSAwIEtgQxBXgFgQUmBZUEzAPgAtkB4AAOAED/Gv7r/Kr7bfqV+bb48Pdv9xT3Avdd9+X3avju+Gj5Bfqg+kX72/tX/Aj9vP2q/sj/xQCqAS4CcQJoAiwCzAFIAcwAiwA0APn/3v8JAKwAqAEGA3oE6gUxB0EISAlICmgLbgwzDb8NTA7YDngP9Q9OEI8QqhC3EOQQFxEmEe0QTBBJD9UN0AtsCZMGbgM/AA79EPqD93D14vPJ8vnxk/Fw8V7xnvG58cnxvfHb8RLyWvLj8lHz8fPL9NP10/a/94H4Q/n6+az6TPvi+438Sv1P/mz/rwDmASUDRQQRBbQFGwY4Bh0G0QVgBbIE6QPvAs4BoQBH/+394vzx+0P70vpp+lX6U/qI+vH6d/sT/Jz8Mv2v/Vj+3v41/1v/aP9v/1b/J//5/rr+cP47/gz+Af7//fH9m/0R/WX8x/uN++L7yfw0/iQASQKeBAAHtQkfDCwOkw9KEIwQexBQEBIQ2A+ED04PNg9pDw4QihDAEM8QbhDaDwcPgw2dC1EJqwbiA/0A6P3L+qb3vPQL8pvvou0e7Cnrn+qT6v/qvOvJ7Cjuku/W8A7yZfP69Gz2KvjY+Xb7IP2A/sr/+gAcAgwD4gPDBHwFJAbABiYHXAczB8kGEgYxBTkEMgM7AhsBLQAs/yL+Lv1K/Er7UPo4+S74h/cI99H20/b/9jX3rfd4+Hb5ePpX+1f8Jf0l/kv/YwBzAV8CDQNkA4wDlwOdA5QDPgOoAggCPwFuAG7/Ff7Q/MX7P/sx+7D7A/3t/mUBeAS3BysLeA5VEZATXRW4FkwXNxdXFgYVixPmEVMQHQ/7DdkM0QudClcJAwiTBsME0AK+AJf+lPyn+r/43vbi9Ory2PDw7jXtlutp6qXpgenW6cvqWuxm7sDwHfOC9cj3z/ma+xf9IP7i/oz/MAAHAQECAwM5BG0FngasB2IIxQjOCKgILQh4B7cGywXaBOIDDQMPAvQA1f+O/kL99fu1+oX5avhj95b2/fWd9ZT1vPXw9U/25/a297L4rPnJ+u/76/zS/Zv+QP/X/3AA5gA5AawB9AE9Al8COQLJAQgBGwA7/zf+HP1O/ND7rPsX/Fj9ev83Aq0FjQmODcQRcRXEGH0bIB37HasdtRxgG20ZPBfOFBMSow9iDSILzgh4BiEE4gG8/6r9u/uM+X73i/Wj8+bxH/Bq7qLsNuvY6eboduhO6N/o0Okg69vs4+4z8YTz5/VF+I/61/zQ/pIAWAIPBJAFzwbNB5oIHglpCZoJiQlVCQwJ4gisCHQIPwjdByYHHwbgBGYD6QFeAMr+T/3J+2v6IfnK95L2gPVj9HTz1PJM8kXyo/Je82H0r/Uj95X4G/p5+9L8I/51/4AAagEcApkC+QL0Ap8C4gHxAAkAUf+J/vb9mP30/ID8MPzU+437ivvs+5j9bgBFBB4Jhg53FIIaGCC8JOAnZik6KW0naSS2IJ8cLxiLE9MOgAoDB+MDIAGx/lH8IvoI+Nn1tfOT8Sbvrewy6r/nqeXb42HiaeHd4Pjgx+Fa46/lp+h17N/ws/W9+sP/kwSoCNALQg7wD/UQfRGAEUgR6BBZEOEPIQ9zDoUNLgySCqoIbQYGBKoBT/8k/Tr7rPlH+Av3DfYa9Uj0afNw8q7xFPGl8FnwI/AL8Djw1vDY8Qfzd/T79aD3ZPk0+yT9D//8ANUCcwS9BckGZwfEB4IHhQY6BbIDHAKvABj/X/3d+y36wfiO91j2mPXx9J/04vSo9ob6bgD6Bz4Q3xh9IUopGDDUNEg3pDdeNR8xjytCJbEejhfYD3YInwHW+wH3svJz76/sK+oC6DnmseQk4zjhFt8a3arbJdui2/3cON+G4s/mEOz88Qb43v2AA04IoAyyEOsT0RbIGKoZ4RkSGWkXLhU7EuUOaAu9B0kESAHH/q782/o++cT3ZfZA9XD0pfOJ8+HzrvTc9T73svjw+ez6x/tE/FP8TvwZ/AH87PvL+9j7NPx9/NL83fy1/Jz8kvzS/Ej9uv3e/cn9Vv3H/C38pfsC+1X6nvm/+Dz40/dt9yH3tvZH9gP2uvWv9Sn2rfam9/n4sPs9ATIJ0hJmHZ4nijF9OhhBWkWIRl1EFz/VNictLyNIGXYPVAV7+7zyGeut5Ijfg9v+2AfYFNhy2cHbV9694FriauNW5JflW+e+6Rzta/GD9jT8RgL1BxoNKRHQE9UVDRd9F6sXBxfjFSAUpREHD/ILOAgKBE//nPpb9pby++8q7vTs5uxY7cjuFvFr80T29/gi+zb9w/5BAK8BhAIuA4sDfAMgAwUCpgAa/zL9qPsJ+pv44Pd496L36/c1+Lv4LfmG+az5fflQ+QD5wvjf+Ab5ffnc+dr53/kA+m362PrU+sv6CftZ+wn8Iv16/qb/6f91/1cA1QSJDc0YaiS0LpI3yT5FQ1FFYkQPQNU4Dy6XIQQWXwudAVj3XOyx4hjbYNZW1KTU3Nao2Vbc+d4Z4pLlhOiz6mHsGu5/8BH0MPi1/AoBvQQ4CEgLmg4tEgIVzxZkF/kWMxa/FEgSDQ/HCq0FiwCq+033zvPC8ELujeyq61rr6+t37XHvFvLM9L/3Q/vi/nACbQX4BwEKfAsuDPYL7woTCX8GpgPoABz+f/sC+cr2LPX080TzWvMF9N70S/WE9av1uPX79RX2LPY+9gH2bvYT9yX4xvm3+nT7cvwl/dT96/2H/aH94vw2/IL7gfrW+bb3VPVx96b/FA9cIUIwdjwARGFInkv7ShVJrkRzOhEtVB0LDoUCBPd566zggdad0OjNIs740d7VYNkY3IrdL+FU5ubrJvIV9i/5TPwN/zMDDQd3CtcNlw8gEYISIxNlFBoU/BGED6gLQwhWBa0BuP5X+8T3CPVk8vfwWfB670Dvre4C7m/uYe/W8Tf1q/gy/eYBYgYIC7QOsRHOE+0TrBIJENwMewlrBXkBNv0Y+eT1d/NB8sbxlfFX8erwtvDw8GTx+fEb8sTxffFS8QXykfM99Yn3wPmc+7H9tf4eACMCJwP5A3gDNgLDAZ0AY/+o/mz9/Psk+Uf21PlQBYEXsCq4NxhAPERVRcRG1kauRRZBvTPaIMwMH/sh72rlbtyR1fHPGM3hzWXRQ9h/3ynlo+kw7e/xbfce/J3/9gBVAWUCKgScB3wLNw7lD1UP5w28DDQL2Qm5BzUECQCN+/f3w/Vf9Az0SPRn9Jr0RvTW86zzGfNI8qHxtPEk83715/gi/TABqQV1CRMNeBCPErwTVBOPEe4OtgvGB8MDm/9l+8T3QfSE8Z7vh+6H7uvuiu9J8BbxGfL+8s3zKfQc9Eb0AfVC9ir4lfrQ/C7/ZQGzAm8DcwMjA5YCkQB1/T/60fdJ9s714vXc9mj3T/bi9ff6lAlWHjEyOT94RAVGV0YdRuxFoENZPBcuURmQBPT0lure46TdZ9c70/3QJ9Ef1XPbx+I06XntivH99cT6Xf+6AjkFGwe3CPEKTQ3TDmAPBw7tC7EJGQcjBRYD1gBN/ln77vhP91r2EfYu9uf2//dd+P/3D/e/9fH0ZfRB9Aj1MvYA+M36cP7vAr4HOwwfEJYSrxNcE8ARUg/ZC3AHegIu/TD4EfSr8Izun+1P7fbt2O7j70rxqPJC9Lr1xvaT9+f3N/gv+RT6FPse/HD8Cv2G/Zb97/2z/S39wPxZ+5f5fvc79az05PRH9hb56PpR+7D66vuyBaIXUyw9PeNELUf/R99HFUiyRa4+EDLZHTMHAfXG6C3ijNyt1QPRu85wz8PT7dkw4iTqjO/f84r3f/vB/+cC7AXJCPoKPA2ODooPXBDJD6QObgzbCB8FywCm/Df5wfUX8wXx0+868HbxQ/Nq9Rz3Zvjy+Ij4Lvi/92j3fPen9zj5UfwdAL8EBQnIDPEP5BGlEvMR7g/3DDoJLgVzAcn9a/oy9/7z4fHK8IrwNfHj8ajy1PMj9Xr2BPh6+Yz6F/us+i/6Yvof+4T8pP1n/lT/zP/7/5X/ev5a/cL7y/mm90L10vNs81HzyfTa9lT4yPi5+BX+Yg3WIoM3+UMKRw5Hn0Y0RlxFBEEgN0Imig8E+jvrMuMb3vjX0NH8zVTNn89+1PTb4OS27LXycfcA/AoBIQWzCIkMqQ/JETsSBxHRD28Okgw3CqkGagLH/YX5h/Z+9D/zPPIq8bbwXPEg87/1xPeK+IP4z/dC9yj3fvdg+Cr59/lM+4n9EwEfBT0Jag3kEBcTmROCEngQog30CdgFqgGo/aL5s/Xh8knxy/Ad8Vvx+fHN8mXzSPQI9Yn1KvYu9g/2d/Yu98/45vqS/Dn+VP89AGcBVgEFAVcAl/70/Nr6g/jG9/n2O/Z49rz2hfdL9xf2BPqKBnca3i/tPT9EiEZYR/pIHklgRXk8nCs5Fcb/eO+55n/hU9sZ1jnSJ9HZ0+PXfd5W5mjsoPGQ9f34Gf1IAH4DVwemCpkNDw9KD44PPg9kDq8MQQkRBfn/ffpm9ivzcPHj8HrwU/Fa8w/2XvmB+wH8RvtA+Y73avaL9Ub1CPVq9QT3ivl+/X4CbQcVDEoPARHZEdsQ1g4cDG4IzQQwAYf9R/pU9/z0zfMd883yjfI68oHyAPNj8zD0CvXJ9dn2Y/cj+Ev5FvoX+8L7cvz9/cb/cwFYAtQBGQGIAKj/mf6d/Ff69/gj91j2AfeT94D30vUG+DwFiRpOMBM+pEEoQ+pF5kf/R/VCpDcYJhsOuPfU6YTiC97316bRMNDF0obXZt5E5gbvFfag+Z38VP+PASMDMwMcBPIFewaPBkoGigYbCKgIfQh5B7gEcgHd/Wv6Q/hC9t3zYvIx8u3zDffG+Z/7Ffyy+xD7OPqX+dr4tPcI9xz3nvg7/GcA4ATYCK0LBg4QD+cOCw6ADE8KaweVA5L/1PuD+Aj2QvRP8zbzUfON8/TzZfQF9en10/bP9+z4ZPmG+fn5Wfpn++j8+v1m/4QACgFBARAAkP53/Uz7cfhR9bPyU/Ji8qHyRPRs9XX1WPXl+D8IGiCWNRFCg0Q8RYBJ0UyRTBVHPDrQJgQOxveb62/ms+HO2azRmM+k0k7XaN1I5OjroPEi9P321PoX/i8ADgEpA5MGMgiPCKwITQnVCu8KlgmzB5IE9ABs/Xb6D/n798P2KfZA9sb32vlc+4/8lPyw+0z6Xfjl9tD1FfVw9e32u/mj/VoBQwV3CR8N9w/kEPMP3g2UCtoG0AJx/ln6GvaC8mDwSe9q71/wk/En84n0A/Zx93j4Ovlt+Wb5D/mg+Kv4Vflk+rz7HP30/jIBQgK6AqgChAGv/1H89ffr9APzB/Ik8kjzF/UN9nn1evcPAkIWFS1MPTZEV0WxRvJJ9UtSSlBCBjL9G5EFXPWd7V7olOFg2a3SctHt077XN93b4hboauwj757yKPcF++/+BAMQB+IKSQzbC18LFQvnCrwJcgeKBNcAJf12+kP5yPmI+tL6Qfu7+2z8B/3z/IT8/PoC+Mz0B/Ki8M/whPF98//2NPsdAIMEkwjDDO4P1hG+EckPAg1VCSMFEAG+/MT4U/UC8vXvTe9h76vwOvKo85b1Mvdk+Fv5sPnj+fz59fkh+jX6iPq9+rX6Ivus+xL8G/zQ+0H7Vfq4+H72OfSy8nrx7vC98QDzpvMn9Lb3WAQDGvswfkEjSLhJUEyPTx5R/k3CQ7kyNxw+Bp33h++p6QHidNhw0kbRD9LG1H3Y6dxj4rbmper+7zT1iPodAG8F1wqXDrUPfw/PDuwNugxBCvoGgwPZ/x79j/ti+5b82/3l/h0AAwGtAXsBDABE/v77HfkV9vXydPAu7zPvZ/GW9cT61//9A30Hjwr0DIgOrQ5CDe8KfQczBE8BNv57+6D4mfVP83vxKPC075vvJPCB8R7zy/T79eD2z/eg+EP5VPk++UH5V/kk+n37Yfzi/Kj85vsO/Hv7bfqu+Rr4b/bt9MDzuPRN9S714fhsA5cWjSzYOzpDn0W3RpJJ2Ep3R8U+ZS6nGXQGOPmR81LwEOtN5ELe9NtP3EXdXd9Z4dniQuQa5dbnaOzP8Bj2rPt5AXgH0Ao9DHwNHw7PDiMORAvbB3MDn//J/Rv96/2S/l/+Uv+cAEkC/wOxA4kCawBY/E34c/QS8anv7O6c77ny1/b1++QA9wT1CLwL0wx8DFgKtQfDBGMBZf40+//3HvVF8sTw5fBS8QDyHfJt8bLxrvJB9Iv2Fvi2+Af5Bvlb+Uf6Bfvf+wP9Ef4D/2//Rv+o/kj91vqR+Df3BPen95749fko+x36oPjr/McKwiBXNVM/3EAgQHdBdkWuRi5C9De9JnIS1AG69/rzEvEO6nDieN3727vdo9+z4WjkZOXs5Xzn3+qg8KL1iPlJ/k8DUQj2CzcN3g2SDe0LyQn6Bo4ENgJf/8D9yv0l/34BCgPVA6sEzATPBDEE/QGt/qf5AfQH8MXt1+2F7z7xHPTY9yf8dQF2BqEKkA3sDfkLnAh+BC0BfP7A+8j4LvVa8vnw9/At8nDzfvR19cP1hPU39cH0gPQp9Kbzj/Mp9Gj16/bw+B37y/zA/cr9df0k/bL7b/k59631MvU29XD1N/dB+bn56vma/YAKJh+IMt091T+CPjtAwkNMRrlEGzyoLXIbfgpXAH376fdF8kHpruEx3rLd9d8y4inj2+Oo41zkhuf860zxxfU6+UH9ewHEBQwJTQrnCpYKXAkvCBIG2QMyAmEAdQCOAiUFLQhgCSYJRAlKCGYGUgPb/U74EvNA7uDrKesc7MHu0vEP9lP7fgBtBQEJswoPC5sJ+QYIBK8A1/0A+/f3zPUw9K7zlvSi9ZL2Lvfl9v/2q/dF+M34APjr9YDzjfE/8bzyK/Xj9yL6HfsS+4H6Hfrw+UX5bPcB9XXzJPNC9NP23/i7+Rj6Uf3FCIYb5C3BOFs6mzgoOoc+HUKeQV47ZjDIIe0SNAlXBdMD5f+99qHsC+YQ4/HiuOJp4Yzgot9m3yLh2+R06gbw2/Pu9kf6av56Am8ELAXTBbUGQwg9CbEJiQo7C74LCAyUC/sK6wm3BywFgAL2/3X99fmH9R3x5O3H7CHtNe6M75XwA/JC9Ar3hPoe/gwBgAPVBB8F5wQzBFoDOQKNAGH+9fu/+S74rfdb+K75mvpv+lT5bfic+KP5XPrs+WL4gvbO9YD2+fej+Vz6P/oF+qn5UPkq+YH4yPcW9yX2avYC+Gb5nvpD/FYC+Q/EIUcxCjkxOeY25jX9NQc14TASKV8e0BLzCfMFRQY4B2oEhv039R/uT+ox6Pbl+OOT4ZzgF+Lk5CvqFvBq9Jf3z/ii+eL7MP40AFMBywBuAesDhgcyDFAPvhChEegQXQ/7DBIJDQWCAI37mfd59MnyL/Kj8e/xdvK+8ljzsfOx9LT28veZ+KX4LPgx+Y37r/4cAsUDAASkA+QCMAL9AEb/n/07/Ij7G/up+qr6zfoH+/j6K/pi+cz4EfhW93P2QvbB92T5C/qD+Tz48vd2+Gb4Zvez9ZT0rPSU9fL2D/iB+IT6GwAPC1MaESjjL+UwzC23K+or2yszKnMluh5eGGcS0Q4jDxkRjxFtDR4EPPql8kTts+lJ5gPjruAJ33rf3eI46JvucPNL9Vz1J/Rp8/jz/PTF9kv5UfxPAAgFuQlZDlUSOxX3FrAWqxQrEV8MeAftAmT/r/1C/Vz9fP2U/Cn7Dvo++S35Zvns+Kv3hfXx8nrxZPHG8gj1qPZf9+P3Ofju+B364/rC+/77vvsK/AH8Hfxh/EH8V/y3/KP8Kf2S/jsACgIgA5UD+wMABLgDzAMABA8EbAOLAZv/Rv45/Yb8s/vN+pH6qvoT/Lr/2ASZCi0PMhKWFOUV0xX/FI0TghKLEUwPzwxAC/oKFgwADc8MMww/Ct0GcwJW/Qv5vPVp82fykfI49Nr2I/lM+gf6jvhY96j2UvZd9jL2OfYI96L4U/sK//ACjgaxCHsItwYWBKgBJgAc/6H+h/43/gj+S/4K/4kAAQKqAqgC0gGjAHf/Jf7o/Az8cPta+2D7UfvQ+1H8y/x8/ej9I/6S/lb+Yf3Y+8T5Jfjk9jD2Cvb99f31Kfar9gD45fnP+zT9vv2z/Y39lv3d/UD+Tf5W/nn+s/7//rH+9v04/WH8xfsB/Dv9yv8NAw0GCgnXCw8Ohg/xD+gPQRDWEDYRWhEQEc0QzxAJEcQRdRJBEowQfg3/CbAGRQRPAnUAyP5c/Uz8UPuB+t/5jPkx+Tr4w/ZK9Zj02/Sh9df2avgh+sD79vzD/a/+EABTAQoC4gFeATQBXAGhAZgBSgH4AJgAIABa/27+yv11/Ur9Tf11/Y/9cv3C/Hn7afoO+nD6H/ua+6f7gvs9+8/6lfpw+vP52vj59rX0x/Kg8Q3x6PC78Jrw7PCV8bfyMvTn9Uv4M/tn/scBwQT1Bj8InQidCBIJrgkcCiUKeQkJCVwJlgq4DOMOQxDYEJ4QMxBiED4QfQ8aDnoMzgsYDAYNww3RDQYNkgvHCQkIUgZNBMkB5f4v/Cr6p/ie91b3w/e7+Fv5D/kw+Dv3w/a89hb38vcz+Zj6B/yb/UT/4ADoAUYCRALDAR4BswDMAFoBnQEZARUAMv+//nH+qP1e/OX6dvlz+PD39fdZ+KD4qfhD+M73uveO91T34Pb79V31U/Uw9hj4/Pl5+y38i/sq+sH4kvdZ9+z3Sfgl+Av33vUp9k34O/z8AEIF1gjOCxsOLRDiERMTthNEE4sRlQ+DDtYOAhDxECIRxhDmD4oObAwwCjYI6gWQA+0A1f4V/vT9NP55/pb+w/64/vL99vwX/Fn7zfoF+iT5f/hZ+KD4S/lB+mP7uvyx/Sf+7/13/Wz9w/1h/vL+av+6/yYA3QCLAXcCjgOZBDwFLgWZBMgD5wJCAmcBggB+/0j+Sv2d/Eb86vtB+wT6m/gs9wT2ofXT9TL2Uvb29bP15PVj9u32gffh9+P3uPeX9/T3Yvil+Kn42PiZ+Rv7CP18/s7+Y/4M/hf+5P6mAOUCyAUbCQwMAg8ZEkQVfxiGGtYaiBn9FlIUlBH5DngM/AktCFUHBQcCBwkHOAbNBHUCcf+q/G365fje9w33s/YT98z3uPjT+bX6Svus+6z7/vuS/Ob89Pw//Jz7hPsJ/EL9Cv+LAJkBHAKvARsBuQC3ABMBQgHdADsACgCjAA4CPQPlAxMEpAMPAx4CBwFIAHr/ef5C/dL7kfqF+dH4UvjP9yz3ovY59sX1UfWz9Dv08/Pk8/TzgPQi9ar1S/b/9l34TPq++zT8e/zQ/J39uP6V/5oAvgGvAoADyATWBr4JHwzBDB8MZQtPDMgO/hEnFVQXvhgfGaEYOBdoFJ4QeAyACCgFXwI/AD7/q/7x/QH9tfuB+s359/iv9/L17/Os8lzyMvMl9VD3KvmW+ib7yfvH/Hn9c/4B/yX/I/8M/0b/zv8DAXcCzgNiBGIEkwTRBA8FFgUjBLgCOQHV/zD/CP9h/ykAIgEcAuQC3gJ1AokBQQD4/oL9sfzP+3v6Avmy9+L2kvaA9gr2kPX49HX0bPRR9FX0IvTz88DzofM080ryK/JT80L2U/rA/cX/rwCjAWoDvwUJCKYJkArDCpYKwArHC/0NIhAZEewQ7RAyEusU3xfcGJ4X5BRjEVsO8AvJCaAH/gTeAYf+lPte+Tf4nffy9pL1d/Oh8Y7wcvD88KDxrvL886j1oPfI+eL7d/2Z/gH/1/+QAecDPAYDCN8I9QixCFMIRghBCBcI6geKBzYHFAeOBlQFGgNuAMz9Wvs8+Yn3mfZG9on2N/eQ+JH6XPzV/Rr/RgDWAMb/lP2K+wX7nvtY/I38TPxX/Ez8TPti+aD2jfNF8XrvMO7T7WHtI+0c7lnxc/e2/ioFAQkRCtQJJAllCPcH9Qe7CB4KNww2DxoTfRdrGskawhiiFb4SnhCnDiwMcgkDB2YFDQVdBaAFLAVNA2cA5Pwv+dz1F/Po8EXvWO5h7lvvDfHZ8of05/UW9zn48PiO+RT6cvqR+2n9+f/tAowFuQccCfwJoQo3C44L0Au6CwwLCAomCVoIrgfCBrQESAKM/w79UPtx+Sr3kPS98dPvLO9L71vwrvGY8mnz7fPJ87Xz/vOa9B72+/fn+ST82f2//iH/Cv9o/nf9+vtM+u74TfgU+Aj4BPgh+CT5SvxAAjAKEhLYF/Qa4Bu+G/8aQRlAFhcTjxCyDx4R5hMuFwAZThiSFUYRqwxFCL0D1f75+cf1vvLP8fXxpfJT8x3zFvIQ8WbwR/Bm8CbwEPCT8D/y4vQC+MT64vyO/qb/OwFsA/sFnQhuCg4LLAtJC4MLDwwYDLgLVgvJCi0KmgnCCKwH5wVRA8wAgP76/IL71PmQ+IX38PaX9nP1lvPN8RTwku6C7U/sA+uP6lrrN+3+7y3zxfVh9+P3g/fp9v32+/dk+QX70vyq/oQAswEuAcr/uv2G+9b5OvgN+N/6rgDoCKER7xh2HjMiMCSaJPYiFCBCHIYXChQvEnUS6xSTFiMWXxT4EAYNQwmTBPn/hPv59vzynu9f7crsLO3B7X7u0+4R7/vuNe7e7DvrYOq36hPsu+5a8pn2Z/vT//QDwgfKCswMpg2BDTANjA2nDg0Q7BAeEZEQjg+VDiwNpAvSCUcHfgSHAX7+2/s1+Rz2kfO98f7wp/E88i/yTvES8Drvxu627r/uI+8Y8CbxMfIH86Pzs/SU9r344/pP/PP8yf2h/bP8f/t4+SH4uved93/4QfoZ/PL9hP6U/hsAVgPtCIMPMBUeG/MglCXEKZ8roCqdJ/chfhu9FsMTTRI2EfcOwQwTC9cJdAjTBbcBB/xG9S7vzuq56HToSej85/Pn6Ohz63HupfAM8jHy8/Fe8jHzIvX39y37av5cAV8EigedCggNpw59D8kPeA98DjcNkAtYCpQJ7wiPCPwHxgYUBRoDqAAM/lP7iPg09kj02PLz8VzxEPHu8MvwsvCg8K3wxvBr8XDyhvOf9HP1X/bu9yH68fsy/Zj9Ef0w/fL9pv4l/1/+rPxD+5r5Gvgy9zD2uPWQ9bz0SPQi9IL19flhAHQIBRHCGBsgNCYZKkMsEiyBKXolWSD/GxQarhmyGX8YSRVDEQ8NwghmBLH/ZPoZ9THwF+xw6c/nq+ax5a3ks+Qf5pXojevB7Qvvyu9Q8IrxAfRZ91H7Vv/kAn8GMgrqDewQ6xKiE64SCxEkDwINQAuGCfoHaQcJB9YGTgblBEADQQHv/sv8hPpf+LP22fRn833y8fHm8RnyIvIk8hDyNPLJ8s7zWvX39nr49/kQ+8/7FfxX+6n6XPpn+nT7i/yq/T3/RgCcALb/if0U+5f4QvY99I3yR/F48E7wofLe99X/TwkyEmwaPCFHJi0q8yunK0opASQEHhAZ2hW/FAQUmhLhEG8OtAuYCFIE+f/d+lz1Q/Dd6yTpu+fw5uDmPudD6GDqjeyX7kfwDfHP8S/z/PSi99/68v39APYDsgaYCXwMlw4QENgQzxBQEN4OlwwiCr0HqwXgA4IC9AEFAk8CRgJwARIALv7A+9X4KvZe9KbzrPMw9Hv0VvRE9C30J/T283nzIPNI8wr0U/Xu9tb4FPst/Q7+6f3d/JT7APun+r76a/s9/Nv8Qf0g/aP8u/sC+qn3D/WK8jjwlO5f7trw/fZ3/58JBhRdHQYmTywwL2gviyxJJxshiRqdFWcTqBJYErwRjBBiD78NpgpDBokAQfow9A3v5uuc6kbqLepb6WfooOjP6cXrD+6K7/nw9vIj9ff3qfrm/Kj+w/8wAXEDrAbQCkUOfRD1EQcSSBHYDzENXgrHB5UFogRWBKcEoAUxBlQGsgXcA5kBvP6I+5z4r/Vl87XxePBr8N/wM/HC8dLxafFe8UXxofFM8qzyYPOQ9Gz2nPgQ+sD69/ok+9D7T/yf/MD8ifyI/GH8Hvzt+wD7p/lA+IL2bPU49AzzPfNd9er6QgM9DFoVYx0ZJDwqGi7KLxUvhir2I9wcdhZNE80RYBBdD6INPgxCC+oIhwX4AMf6mPTX7hnqN+d65W7kEeS85MPmdOkQ7BHujO8L8afyY/SD9un4n/uv/rgBMwWICBMLVA3qDgsQGRHWEWwSzBKEEmkRaQ+QDMcJPAfjBBgDWgHc/6v+df2G/HD72vkA+LX1vPMZ8hbx4/D78IPxQ/KN8qfywPKh8v7yxfPD9IX2l/iB+jD8B/2Q/bP9Iv2Y/Oz7sPvo++z7Cvy++yD7H/sJ+8L6Kvq0+Cr3BvbU9Mv0WvbT+QkAWwczD4YXyB4XJXYp+CpHKhQnPyJoHIUWtxHpDUALvgnUCGsIcAiWB9EFqwIV/vL4gPN+7pbqo+fw5W/lFuYi6P7qGO508Nrx3fKh8+T0uPan+N/6Hv13/24CuQXLCI0LiQ2lDmAPyQ8XEE4QGxB7D4wOOQ2hC/0JeQjmBh8F+QKhAFH+MPxn+uX42vc+98b2h/ZA9jD2CvZq9Xn0+PKy8R/xGfHv8WLzDPUT97b4uflZ+i36y/lU+f34OPmg+dr5B/oW+hL6OPot+ij6Gfqe+SP5aPiA99H24PXm9Nv1gfhf/XwE/wtAFGMcPSPfKEws6ixTK8MmrSDXGqQVKRKjD28NFgw5C34KkQl0B0IE+//m+rz1y/Dk7Drqhujc5xDo8eh/6lPs2u0U7+fvsvDx8aPzmfXR91D6Jf1nACEE0AcjCwcO/g9lEVwSsxLVEhwSdBB0DmEM4goBCisJnwjxB8YGawWHA2EB8v7++1L58vYl9SD0RvPf8uzyufJT8nvxVPC270TvMe/T78TwgfJy9C725/ch+bf5ovnW+On3CvdA9jL2hfZj9wb5lvrv+zL9lv1G/Sv8vfky97f0JPN58/v1/vopApQKTROCG+YiGil8LTsvUS7mKu8loiA4G3YWTBK2DvsLCArzCFEIQQcsBQ8Ctf20+HTzN+4A6sjmceRo43zjuuTT5g7p+urZ7JLuQfAx8g70W/YJ+cD77f64AgIHNAvRDmMR6xKfE8MTnxM9E6MSXBGrD9gNTwxqC8AKHAr6CEgHWQU7A/gAsf5P/Oj5ivdh9ZbzUfJO8UDwJu9A7rztzu1U7gTvJvDN8Z/zcPUE9wv4yvgP+fP4tvh8+Jz4Hfk6+tv75P0AAMkBugLSAuYBFQAY/tL7OvnO9pb0NPOJ81z1+fhf/sMEPgz6EzAbtSGFJiopkSlbJ40jOR9/GlYWvhKhD4oN4AtjCgoJFwcRBAAA9/r79dTxOe5h6xvpI+c35nbmkOcq6ajqzuv77GHuPvBr8ub0ePcU+gX9EgBSA38GIglYC+kM8g2iDvMOLA9vD38Pcg9AD80OTg5tDR4MdQpyCGYGYQRzAtQAcf9J/in9yftM+pH4tPYO9ZHzFvLu8Pvvc+9H71nv0++F8HbxafI/8yf0NPVA9kL3HPgJ+Tb6hPv8/C7+Ef+k/8P/fv8a/1r+Vf0t/Mb6oPlX+Mr2s/XF9Az1I/eq+hUAeAYuDTUUdRqyH74j5iVYJugklyGAHTQZeBW8EoYQsA4oDbQLXwrJCKkG4gMtABf8Dfg09Dzxr+7J7PTrmuuL64nraety63PrmutE7Lbt8O+a8m71oPgV/J3/CAOuBbUHJgklCmML2gx/DjgQiBEmEi8SlhFrEPAOMA1fC5YJ5AeVBnwFjgSLAy4CVwAM/nv70fgn9vzz8/FA8OzuAe6Z7YXtuO357ZLuVu9f8I/x6PJl9Aj2rfch+Yb6mvuA/Dv9s/0Y/jf+GP77/d79XP1//IT7afqK+aT4tPcI96j20fbe9+P5Hv1jAasGaAxREhkYIx3+IEYjESSaIwMioB/pHGIaMxgLFtkTsRFxD94M7Ql7BtICR/+z+2/4vPWR84zxxu/97Uvszupw6Yjo8efE5wLorugX6o7sxO9Y8/L2V/p+/UEA2wImBWkHhAmSC3MN0Q4QEAURwhEmEtgRBREmEBkP8g3nDHEL6QkfCBQGDQTOAW7/uvy0+fT2j/R08sTwWe877nrtBu3t7ETtw+1f7hjv3O/38Fzy5vNw9b329PdF+aP6Cvxp/Y3+kP+EACABcwGZAYkBSgHSAPv/Uf+2/v/9Hv0M/Bn7g/q++hD8hP4cApgGwwtDEa0WvBu2HxAiySLGIVAfKxzRGAAWmRMyEfMO4wxJC+IJOggSBrEDAQEe/lX7nvgN9rnzYPEj7yXtVevb6Xjohedb59rn5uio6gbt3O8282/2svnS/KT/WAKiBJ4GZQgICq8LGg1rDqwPsxB9EaURKRFOEBkPeA1oCz8JLQcsBSkDCgHI/lf8C/oW+IP2P/Un9D3zU/K08T/x9/DK8HLw8+947zzvk++D8ObxnPOL9Zn3o/me+xz9Y/45/5v/0f/n/zYAgAABATYBLQEVAckAIAAa/7X9Evx7+uX4tPco97H3u/k7/ekBkweQDS0TPxheHFAfwiBMIFAemxuXGHUVkhI/EM0OFA7IDb8NiQ0NDaQLPwkPBmMChP6D+pD23fK07w/t4epB6UPo0efu57Lo6Omu6+LtTvD88p31C/gr+gz8wP1+/1UBMgMaBeYGpwhPCucLOQ0mDooObw4PDpUN7gweDBUL/QkgCTwIMwfTBTUEWgIvAAj+Bfxy+iT5C/io9gr1hPPP8Ufw4+7H7e3sfOyk7HftD+8k8Zjz9vXn93r5gfpD+837E/x9/Oj8e/1j/nj/lABuAckBrQEQAfv/pP4g/X/7PvpF+R35KPpI/Kj/1QNaCEANIhKHFlMasRyiHWEdExxDGi0YKhZzFDQTWBLqEZ0RQRGMEB0PxQx9CZcFqgHt/Yb6jvfo9LfyxvAG77rtcewZ6+PpDun36KXp1uqk7OXuM/HD8z32ovgQ+yX9Kv/tAJ0CZAQPBrkHYwnUChoMKA3pDasOWw/aD9wPhg/GDqINWgyWCqcIbQYABHwBw/4D/G35AffS9NTyFvG775vuee1U7HLrK+t36wXs4uzk7T7vzfCC8q708vYq+U77T/0M/4kA1AHIAk0DbAMpA6ECBgJhAa4AGQA+/3z+hv13/Kj7/vrY+kr7s/z7/jsCTgbiCrsPXBReGFEb9hxAHWEcphpvGBgWwBO1EUMQdA9VD5EPjg/5DrsNmwucCPsEDAH4/DH5vPXQ8lDwNe6Z7Grrxepj6kjqmupj66zsce6B8J7ykPQ99on3vfjY+d36/vs0/eX+PwEuBGUHwwq0Df4PlBF7EtQSfhKdEWkQCw+MDf0LSwpjCCgGlwOoAJ/9y/pH+Bz2VvTv8tvxAvEu8HrvyO4l7sPtd+2C7TLub+9K8WnzqvUW+Ff6Pfzg/e3+c/+Q/0L/BP/t/g//VP+v/xAAVwCIAEoAvP8W/1r+fP15/Jr7Cfsv+3/82f42AkEGrApMD7oTshfdGuYczh2JHVMckxqlGMgWUBU0FGwTAxOsEjASOhF0D7wMFwnMBDsAz/uV9/rz+/Ct7vLsoevN6j3qzeli6ePooeil6O7ou+kF6/vsRO/d8bf0kPd5+lH9IADrArYFggg5C7kNJBAiEqYTeRSgFBwU8xJGEQsPvQxPCugHxAW9A/IBSgCX/gf9a/uj+bH3fPUV87bwfO6A7O3q5Oma6RfqSuvi7Nfu1PDS8sf0Zfav96T4afkO+uX69fsr/Zn+QwDJAekCCATMBGYFUgWXBFsDpgHw/yf+d/zz+sD53Pip+JP53/u9//sE6wpKES8X9BtiHzEhoCGeIHoesxv6GJsWBhV8FJIU/xRUFQoV0hNwEYoNRQj/ARn7X/Rv7sfpceaL5LrjwONN5ATl/+Wy5lXnGOjm6E7qZewd72XyD/bC+UL9pgAoBLcH9ArwDZoQGhNEFZkWEheVFhwV5BIdEDkN4gocCeYHQwf3BuwGYgYhBdkCaP9O+6T2EPIf7hLr9+gH6A3op+jC6TjrquwE7l/vj/DY8V7zFfUG9wn59/qd/Pr9Of9OABMB1AF5AscC8ALbAoAC7QEMAff/yv5R/fr7y/qM+av4OvgJ+AL4Gvgw+H35U/wFAckHWw9JF6IehCSyKJYqKyqyJ0gjOR5rGZ4VzBPBE9UUQBatFl0VOBLlDOoFzP0l9RrtdebW4affmt8r4bjjUOZr6NDplurm6jvr2euk7FTu7PBC9E74j/zHAKkE6AeCCs4MlQ4SEHARRBKhEsASjxL6EegQVQ94DYULpgkVCJ4GHwUqA2UAP/14+aT1HfJr7+TtJ+1A7QbuFO8z8CHxWfH58CPwTe/R7g/vLvB58mH1tPhB/Cr/hgHIAhEDrwLxAe0AHQCo/0D/av+F/z7/wf7o/dD8Ufui+e73VPYc9RD0OPMB82PzP/Qg9uH5EgDYCBUTlB0qJyIuPjIvM7gwEiy1JRQfARo4F3EXIhp1HaQfYh9gG74TjwmL/fHx4ec84AHcGNs73SnhuuU06cfqT+of6DflmuK14briEeZz6xfyV/kKALsFBQq9DCoODQ+TD2sQ1BFEE6gUmRV3FV8UghLuDz4NpgotCBgGTQR5AgEAGf3J+Un2SvOn8NfuyO0w7UDtre0l7pTuqe6J7oPur+6n72bxqPNd9vD4Ovtq/RP/ZQBLAawBoQGAAXUBhwHJAesB2QGNAZoA/f4Q/cb6l/iM9q/0iPO58mnyG/OA9Hj2OPm8+/39n/+mAFQD+AdKDyQZMiNYLH8zrTYiNngyxyv6Iw4cWxXJEaURBBR4F/oY3ha7EJoGYPqv7YTixdoi12fXJdsF4U7njuwu787ulOsd50HjhuEl49Pn9O5899X/AweBDPUPjRHhEX0RIhF7EYAS2xMPFVYVXxQnEhkPsQuECK0F3AKYAJb+nPy9+mr4HPaU8+jw4u6D7S7twe3B7j7w4fGI8w/1WPZt9wb47Pe298/3c/jC+Yb7hv2U/60BSwMzBEcEYQOtAU//tfxp+uf4+/cS+Oz48Pkv+/z7AfzZ+6f6q/iz9kb0mvJZ8g7zVPWI+Cv7gP2L/44CYggXEdAbAiewMNA2hzgpNiExVSpGI+kcVxj0FjMYNhupHX4dXBl9ENoD4PVd6Ird9dZE1JfVmNnW3lbkcuhG6urpb+eg5P3ifOOw5j3skfOc+1sDQgrLD8ETdhZSF/0WERZdFO0SZxGyDxEOAgzFCZEHzwQYAg//bfs8+Cf12/LU8WLxmPFB8vzy/PMM9c71cfZ19mb2ovYs97v4t/p3/Mf9SP4G/lr9bvzZ+y/83fzm/cP+Df/4/kn+Hv2s+wX6pfh69xT3sfeI+G357Pl6+UP4r/Yw9RX0jfND8/ryMvP480L1MPcN+er5ufqu/LwCvQ6JHmgvCT1TREpFOUBEN7MtpCTuHSIapRg4GicdpB77HFQVMgiV+G/on9sj1BvRd9JV1kjbEuFQ5pPqRO2r7aTs/+pO6q7rM++S9OH6bgEHCAkOIhP0FpwYGBiyFdARQw6LC7EJ+AhPCIoHowbrBJkCeP9O+wL3FPNH8MzvOPFP9Dr4Mfum/HD8nPpf+BP2K/Q09On1ZPkP/g8C4wSOBYwDYf8q+kv1cvIF8ojzWPaK+bn8yv41/8n9rvr39sLz/vHs8S/zD/Vf9wv5CfqP+gv6yfmc+aL4m/dW9mj1PvbE94P6Cv7CADID8ATxBxkQEx3qK3E5YUAsQMI6CDE8J9Ef0hqVGM8X0xfaGJ4Z3xd/ESgG//fd6ezeJtmA2M7b1OBJ5ezohuuS7Vvvu+/57vbtS+3c7sby1fd5/cMCewfbC1kPrBGEEpQRJg/0Cy0JnAf8BsYGqwVYAwcBuv7g/Jz7tvmb95j1CvS384n0F/bM99j4Uvld+Uz5t/km+sD6rPtB/dH/ugIlBSgGugQXAU78H/eG83DyofNY9pn5DvxB/Xn9NPwQ+oX3+PSq88Xzy/TQ9a/2JfeQ9zn4mfgQ+Zz5SvrP+ub6APrf+Aj4b/dS+DH6tfyb/lj+/f4qBXATVijLPEtJQEu0Qp4ziyTxGP0TPBU1GMUbmx56Hp0bzBI5Azjxpd+C03/PNNEh10ne2ePd6E3tdPFW9sr4TvgB9mDyOvHo80X57wC7COwOgBMuFcwTMRBCCjMEvf+Y/Q//EQP+BqMJUwkxBicC7/0J+u72SPQM8kPx7/Fs9OX4s/1cAWUCzgC+/cv6UPnh+c78QQEWBs4JIAuzCX8Fsf92+Wr0yPG+8fHzGPe9+R372PqV+dr30vWR81vxLvCF8GnyifXs+Az8nf7X/0n/Lf0r+mP3pvUi9ZT1Tffs+YH7cvwK/cP8Afyr+BP18vgUB60eMzkYSpNOlEcyNw8nmBu6FdgWrBieF4cWohTYEQIN1QFI82bl7dkC1PvS99Qt2m3gnOfA8KX5IAG0BFEC8/y49yv1h/cR/aADUwoED5wRGxKBDxULXQVJ/7z7FPvO/BkATwLXArYC0gEMAXAApv7S+yX4HvQS8ojyDvXz+Hn82/4DAMP/cf6q/Bn7Svo9+zv+qwJJBscHXgYDAiX9kPgG9aHzXvPb8970yfUc95n4Wfl4+Zz4lfcq9wj31/fP+R38aP6k/5L/Yf/p/tn9Y/z4+hj63/mM+U74gPft9tn16/Vs9tX2mfZD8+TyWv6FFVE0vk3qVfFPGT/WKTIaFBG5D7EUHRfGF9oYnBccFAoKqfgS6CnbWtOQ0avSdNdk4KHqRvZuAZgIlgroBd/8N/Ww8ZLz9/lcAQ4JLxBUFCMVnBEOCtUB2Pp39oD2zfmU/s4CfAQjBNsCugC+/ZX51fSZ8Aju9u2r8Er1Hfqt/WH/fv/F/qz96vyz/Iv99/+xAy8IwQtWDJoJnQS//i35h/RX8Y/wu/FB9FD3nPkJ+wX7t/lx+JX3yPfE+OX5rvv6/VoAegKFAvMAyv4F/HH5MPdR9U30B/SS8wPzrPOk9D/18PY++Nj4oPcv80b1YAYVJJZFw1nWV+JH8jBTHDIS1hDIFkAe2h70G8kYWBQEDbP+dexz3mnW/9NS1YrYmt+56cDz4vz7Ag0EcADC+CzxVO+S83/7FATSChAQdxPpEksOsAbD/kn5n/Yz92/6zv6tAzwHsAgvCA8Fyv88+UjyzO1h7afwyPbt/MIAWgKQAX7/bP21+7L6TPsr/eX/aAOGBpMIJwlBBzkD+v0c+Pryp++Z7gDw1vII9kX4m/jj93r2T/WO9Wb2Gvic+hz9uv+UAdIBwwAG/rX6BPg+9pb1+fUR9yb4Bvmc+Cr3qfYV9iX16fUh9+v3HPeJ9EX7EBKBMfBMLVWbSSw3kiRVF4kTahYCHpQjjyADG/YVBw98BKj0Y+We3ZbaStkX2pvd4uXW8Kz54v+oAokAL/v69GDxtfPY+eQAywfwDHIQbhEjDgkIWAAQ+RP1fvR+92P9+wKCB+gJ5AjYBWkBZfxF+Jv0JvIo8jL0FPhX/HH/oQEFAokAT/4Q/OX6rPvX/RMBFAVgCAEKZQmaBncCc/3g943yv+537eLuvvHF9Bz3Kvgx+P/39feX+NP5Rfvx/JT+jP8KACQAkP8p/sL7JPmy90D3xvd8+DP4WfcZ9dDyu/F98Pfws/KS89vzKfLH9UgJwih+SJRZCFS2QjkwtCDJGbUakR9zJCYiJBvWFo8SvgnA+vPo4Nxr18PTXNJZ1YfdFumA8xv7+f8eADb75vTv8S30R/lP/gYDtQd1C78M4gr5BnoCyf1e+rf5MfsG/sUA6wL7BNgFxgTAAbP9K/qg9zf25/a/+Pf68fzt/Uf/qACzAPD/D/8I/0YA7QHeA2AGkwiLCWMISQVcAd/8a/jH9Cny1PBM8BDwivD88Ub0uPZW+Pv4OvmV+Y/6Tvz7/fv+/f5W/nv9jfyw+wL7svp9+tT5ivjk9j31wPJ/8L/vJe8b8CTz0PV19yD2bvWWArgfMEGYV7lWhEV4M7wlrx7sHpUh/iMLIqUaHBXJEeIJ4vvt6mbee9mB1qbTVNSC2qblxvFK++0BmwOM/9b5mfbn9/77X//4AvgHqAyGD5wOdwpXBVL/+vlY9yz3Xfm6/D0AWwTwBigG8AI2/kf6BvhN9q31bPYW+BX7x/42AiwEfAOzAID9gvsw/MX+IAKkBe4HEAkXCfkGLANn/j75zPRD8eDuS+7j7jfwJPIO9OT1+/bi9oz2d/bw9sj32Ph0+pb8vv79/2T/df2K+/z6Z/tM+xj6FviC9nX1VvRW9I/0vvMV9AP1cfag9/H0aPdWCngoIEadUz5KvzinKbseqBtYHeseqR6+GCISghEpEUsKcvxT7PPhr9wr2H3WcNpz5MLxAf1YBFcHpgTl/lL6nPmc/GH/kgBzAmAFiwhVCn0IMASq/qL46fQr9BH2NfrK/i4DCwaIBXEC4v1d+Rb3KvYp9mj3/fhc+6L+/wDyAQgBP/6K+3b65PsbAF8F8QmiDJcMlgpZB2YD8P+U/Bv5UfZX8+PwEvBD8NLx1/N+9D30kvM782r0OfZ++H37Mv4yAOYAVQDV/z7/WP5q/fb8wvxg/LL7Lfq5+BP3N/X09Er0yfJp8yL1c/eT987z0/mAESow/0dSSnM6pytVIggdFR0nHhof8B3lFqoROhGpDsIGM/pf7gnofeLO3ODc8uPy70H7PwGZA7MCev4W+ij4Evn4+nL7Cvx1/koBpAOVBAoEnwJd/wX7Efju9gv4OPv0/jID2AXnBWIE6gCu/Or45vVT9SP3pfmf/Mj+df+k/xj/1f41/8z/4gDgAS4DYgXNB58J2QmWB44D+f5M+gz2s/Jp8DDvNe+/7wfwcvD58M3xIPOC9NL12fbg96z5XPws/4gAw/87/lb9kv1W/jv/kP/D/uD8sPnD9h70ZfKs87H1tvc4+t35wffH81bupPXTDgwu1Ea0Sj09gTFQKXcjriFUHjgbUxjAEb8P0BIbEpUMVgJv9zfwQud83v3ch+Ic7Q337/x1AbUCBQAw/VD75vpb+jP4h/gn/D8AmwPwBCwFWwSWAAf8vfgo94j4o/sTAOcFAwlMCOAEJ/9Q+vD3VPfG+PP5XPqP+xv9CP8dAA3/lP2f+4r5rPma++L+5AJvBbkG5gZSBc4Csf/U+/32oPFR7XDrDOym7j/yyvWQ+NP59fkq+n36o/oL+1z7+PvZ/Fr9P/40/1T/qv7k/IH6yPfU9GXycfAY79ztJe5Z8fjzO/X49TL0hPEG7dvq4/o3HRxC+lmhWF1IMzrXLXElLyJCHx8ewxsjF7cXEBnBE98J2/3O8+bqb96w1IXU0dxI6dTzSvuaADsBrf46/E763veG8yrwWvJO+GP+wQK7BH8F0APg/rn6v/jI+KP7bP+rA1sHZQfTBQoE+gDJ/Yj6a/jW+FD5nvm1+rf7vPw4/R79wf21/cn89Pzi/okCBgbaB9IIpwiXBuACvP2R+Aj0KvCx7nrvHfE986/1jPiE++38mPwk/MX77ft3/SQA3ALeApX/z/sS+YX3+/XW80ryM/Ge8OzwnPEr8g7xZPD+8aPzwfVF96T20vXJ8zP4HQ56LnNLbFhzUMhBNDUJKRsiah9lHWcc+ReHExUUCBJGCsj/QvXt7b/lWtvP1fjXSuBN6yD1av2YAZL/nPu4+Cr3X/Wu8Q/w5vJW95z8lAG2BOoFjAOV/xP+0P1L/vT/5AGmBGIG/gXzBYMFRgMbAC38YPlF+Ab3tvZ691b4Xvlw+qz8bv+SAJoA5/+A/z0AuQAIAtwExAa3BocElACo/M34//SV8pzxp/GI8gX0WPbl+OX6n/wr/hz/W/8y//v+gP5n/On4HPYi9QH2uPfc+B/5JvgX9jj0XvO589fzm/Q19uf2mfgD+4T8sf1Q+7v7XwsPJTs9VEmiQoQ2Jy6UJakhjCHsHvYa/RIYC9UL9wxtCFEBPPk28z3sDuL221vdeeSg7s73Df/oAVb+Nfov+Q36mPr39/D1kPeF+Yv8cgAzA7sFMQV3AvsBhAAg/sP9A/4gAD8CfgHmAecCHgJKARX/cvxS+iz25PJr8ifz5PVt+cP8YQDtAdUBnwG+AGcAugBYApwF5ge+CHQIewaFA7/+mfjJ83TwTu+c8FryffRm9rv3v/kO/Pj9E/+X/gz9s/tD+7n7Pfx//Fr8APwe/DL82Pv3+gb52vYG9qL1Afbu94j45fhv+h36oPkw9+/y8foMEecpbD34PgszYiqaImYd/R73HZgaTxVSC2MIygt5CsAGMgHW+rj26+6i5dTiH+WP65D0z/t5ADQAIPxT+sL7m/0B/bb5mfeK97346vuO/wgD6QTXAyEDegIbAAH+Ffzq+/b+yQGJBEgH6Ab0BGoCdf5w+kr1kfDc793xw/Vg+jD+EwK0BOwEPASCAhcA7/6A//oBsATLBVkF6wNEAkb/8fq29mDy1e4a7VTtevAp9Q35G/zb/e3+IAChADQB0AETAUT/A/1i+8n7Lv2Y/RX8PPjk86PxxPL79tb6Mvwr/Nr5zva89WP0qPMz8iHvSfY+DEIn4j3nQyg6HjAnJzEfjhxQGWoVNBJcC6cIZAyFDdwLTgeF//X4uO935GLfZeDh5rDwBvmO/woC6//m/df9r/7S/bD5x/Wz9CP2gfrD/zEEDQf3Bf0C6f9Y/E76k/pI/fgBfwXCBpEGfAStAdL+efu5+CX2A/QT9LP1ovfA+dn7Y/61AI8B6gAV/1P9+Pyz/isCUgU4Bs8EQAKF/5T8rvmZ90f2ofXU9MPzOPTX9nf7FQGpBdAH8AaOA87/m/21/RP/9/+2/4L9APnt80Pwpe8A8nX0SPVE9en0fvQI9R71ifNl8pXxb/Hh8t/yn/bqB1oi+jyBS41Fnzf8K38iCx8qHhkbxhgtE3EMWAz9DCQKvwQ6+77yCOyZ46LeSd9l5J/t//bp/qAECAVlAjYAzP7V/Sn7aPdm9uv3ZfvX/34CZgNnAd/8IvrT+X375P4iAbwCkARLBSwG1AagBaQDawAV/Hr4qvX/9EL3Ivqs/HH+0v4B/1v/gP/2/xkAtv/t/9YAuAHSARcBjwCfABMA6P2W+jP31PSd82fzbvRf9t/4L/xYAC4E+wXgBKQBgv7N/ND7vvoa+YP2Z/NS8YbxNPTe9+f5oPgy9Wvx8u3D7ODtde7N7/rxw/Pi9uz3Qfn1BukfzToLTA9IcTjSLGolmCPrJOogphrvEv8JKQkdDewMUQlVATP3b+5+5IXcptt44L3oAvIN+db8O/0w/Kz8Wv4K/uP5zPRn8oDz3vd3/XMCEgYdBgoD8v/H/X79uv/FAvcF/geTB4UGfwULBEICI//4+gb3qPOB8g70jvb5+M36WPzo/ev+Pv+M/woAyQCEARECtgLVAmUCOwIjAj8BHv8Z/HH5+/f09vj19PUK9wT50vvg/vQBsgSlBZUEFwI2/qX5//XF9Iv24/m5/Ar+Ef55/fP7L/mZ9aDxwe1z61zsne5I8pP3Ovuf/Yn85/df/sUTYy3IQWJDVjZBLRMnDCOJJNghWBwzFiIL9QX8Bw4HygVsA0b+TvnP75/kt98F4N7kquxi81n4Yvkw+H35Mvzx/bn8f/mc+Lv5s/v//rgBwQO0BLED/wIMAtn/6f6f//IBRQS6AwwCtwB1/8r++vzu+cr2TPO98ZzyIvSb9sT4dPqv/If9Pf7MAMMDtwboBzUG3gOAAQcAAQGkAokD9gIJAM38xPmd9sz1UPfW+TD8DP3p/QcAfAIKBNAD6wFc/nv5i/V38/bzD/b19y36ifwu/mP+Q/xi+Nn0bvLP8B3xCvNE9P31l/jN+YH6OviU9HX9SxPxKZM55zeBK0okwh8KHqsgHx43F9QOVwW7BEsK5wuoCmsGcAC3+uHwEucM487jF+pu8nH5bP4M/u370vxE/9QBHgHH/XX8bvw5/j8C/QSRBvUFyAI0Aa//EP3m+4H7OP0wAF4AVv/p/XT8P/3X/Zz84/m49OfwLfG886/33fqA/N7+JwLBBVEJXQtIC+EI1QRyAZ//vf+1AaYDuwQPBBEBGf0v+dz2xvY++KD6Vfwb/Rz+Ff8/AHkBeQGUAM7+lvx0+077Dvue+oX5lfhg+Kn3m/Yw9XvzvvKw8kzzafRd9V33rfhm+Pv4FPmM+C72BPGo9L0Gph1qMHY0OCsmI/oceBisGTgZMhX3DocFIAMBCa0L+AmQBHv9j/ly8yvrC+fD5gjrEvIW+HP9qf8u/5IAZANQBhQHGgTMAaMBbAKHBM8F8wUoBVoC0//7/ST8wPuq+wH86vwK/GP7Ufy1/dP/vABk/0j9Kvrp9yb4e/lI/If/pgKBBpgI/AekBYkBw/2G+6X6T/yd/rr/jwAlAVwClQO4AsAAr/61/K77/Por+878Yf6A/xIA4v+f/zD/9P5s//b/awDQ/xH+Q/zG+W334PV+9Dv0xfRY9b32D/gs+bn5/fie+B/3HPW+9Fb0afRC9LXze/qUCZoZsyWkJx4jfCDIHekbyRtkGCkTiQzMBOsDawY5BboBeftm9nv0rfBl7TXt1+7E8tX1O/cH+VX5k/ph/loCJAbLBiUENwLgAPoA9AI3BAkFdQQPAqUATAAtAbYCSAJf/+H6uPfC+ab/8wWdCQ4JvQeVBsME9gOWAnUA4P5j/Jz7A/3f/ND7wvpD+gf8fP0c/Xn9zP1w/uv/ggCEAR4CmAEFAhYDNwTBBAQDcABn/pH8cvyJ/a3+bgByAUACVgMsAyUCnAC8/n79dfyU+1r7z/rT+dP4g/gG+S/5b/hd9sPzGfJX8Q7ybPRY9nP3LPhb+eT9iQSmCoYP5BFfEwQVghRjE30SAxEdEKkNMAmTBXMBY/38+nb5YvoX/Bn7p/hW9YbyvvI99DD2V/js+HT5FfvS/IT+J/9w/hX+Vv7n/p3/qf/5/3cAZwGMAy4FmgUqAyX9Lfl9+4sDfQ7uFfkX4RcEFmETVRFJDhEK5wPF+yz2RPQg9Mn0VPW89sT5mvtp+9H6S/kl+DX4lfh4+lr8Kf1G/+QBZAM+A6MAs/5N/1cANwJABEUFqwZvB/oHtwkTCi0JLQgzBmEEagKuABcBOwJaAoIBuv8a/n/86Pkf94b0hPL58Xvy9vPg9UX37Pjo+pL8wP1o/jL/+ACdAkID3AITAhgC8ALjAw0E1QLdAPn+1f3D/UD+pv4u/yP/1f2q+yT5HPg8+eP65PvL+yn7U/t3+4v70vue+yT8Wv0Y/on+cP1I/Dj9Bv9hARwD4AJcAZj8jPeN+jUFXBMYH8AhDSHLIS8hOCE1IDoakRGRBpz7qfZo9Ur0ifRW9S73PPlb+Jn1BfOV8cnxx/KA88XzPfRW9or65/6QAVgBS/9C/sH+VwARAwYFLAYhB/4GLwcZCF4I3QggCYgI/AewBigFugRFBMMDWgNeAb7+3fvC+Mb3jvhb+T76yfof+1j8rP2+/rb/7v+U/xb/hf6d/cX7wvn1+Jr5Hfv6+8X7hPuR+6X7M/v8+b34KPg4+Sj7/vu8+1L6D/k8+oj7e/ty+uH3avYP93T4svqN/JD9ov5m/0oAUQCM/x7/hP2G/K78n/tZ+uD2U/TH/G0N0x7bKhQr6ScLKHom4CQJIk4aNBHCBf76PvgC+fD4cfgf95L3pPe8837v5OyA7B/uVu948XL0XfYY+TT8/f5GAU4AP/5z/Y/8Ff3I/vT/KwJWAy4DngSFBd8F4wbsBhsI3wmaCa4J5gluCUEJSAfgA6gAo/xr+lX7Iv0q/2r/A/4n/hH/AACNAUICXQKjAWj/X/2z+0X6tPnJ+YT6Ivug+uP5ZPmD+GT3zPUK9B7zEvOC9NH3afsI/kD/ZP+4/9H/Ef9+/Sv7KPlo+IP5u/s9/VP9RvzC+or5Bvjl9nj35fdS9xH3fPaz9mb3S/gpANMOWx3KJ+opuSg6K2Ut4C0kLDAkIhlJDUQCkP5P/1r+e/zx+dX45fmQ+Jb1GfPR8OHvOe867zHwR/BO8V/04/cO+2f7K/rN+rD7bPxN/R79qP1U/nH+UQDIAvsEgQcDCUQKKwsXCh4J3Qh5CDEIYgZxA9IAMP7x/I397/5jAPf/pv0T/Ln7xfxu/3kBwQIgA40BgP+t/dL7mPqn+fD4sPh4+Cz43vd69wb3UvYl9ebzmvPe9Pv3+Ptk/3wB6wFEAQwAl/70/Mn6I/hx9Y/zhvNq9a33+fgz+OT1BfRK8+3zCPVC9DjzLfO684n1h/YO+uMF+RXvJI8tGC56Lj4xgTJXMwYxfSnNH2oTiAkfB1QGNQREASn9BfsQ+c704/Ev8DrvC+8s7mzube/C7zrxYvN79YH3+fcu+A35a/mK+lX8+v2H/xIAvgChAngEXgb1B6gIjwnxCTcK+gqoCkQJHwemBMECsQAn/lH8Mfu9+lX6OPnP+Nz5O/xL/74BNwOmA24DugI/ARH/PfxL+Wz3i/ZN9oD2i/Zz9rT22fa/9tH28vbB92D5Gft//GH9jf04/Y38p/uT+ur4Dfe49SX2Zvil+mf76Pnk9urzivF48PfwR/HJ8WLz0PQB9974hPuwBG4SWR+OKCsrbiyHMEwzxTRkM9ksWiQJGrsQgQ0sDH4J1gW3ANT95Pwk+uD2MvM57wTtNuwK7bruS+8C8KHxf/Pm9A707fKU80v1TvhG++v8qP4JAIYBmwRgBm0GTgXOAkAC0AN2BXAHcAgtCEMIdgdmBQMDrf9e/EX6c/gl93f2RvbI99b6MP7MAP8BAwJYAY8Al/9P/nD8UPp++JL35/dZ+Jf4pPhD+Dn42vi5+Z76Svs2+1P72/uJ/Iv9RP6A/jf+Mv2s+2f6g/ko+V75QPnR+Br46/a29Qf0NvKD8U7xs/J39TD3D/hs99H3MADeDpIdNSgbKx8rDi41MDExAjH6KyIksBoLEVINUg2NC8UIIQUuApQADv12+Cn1ivKK8ETvFu8J8GjwYPAh8dnynfQr9ITyf/K68zf2tvgk+hX8//2V//EBCwQUBdoEFQMGAvICEgXdB7wJeQqNCgcJfwZAA4n/vPxn+iz45Pai9rL3Ovpa/XsA2wJ6AwwC2v8F/sn8u/up+sD5ivnz+Yb6/Pqq+nb5Kvit90v48vin+B/4QPgd+T/69fpV+wn8kvyC/MX7+flJ+I736fca+XH5gfgY97P1c/Vl9dv0avQg82fy9POJ9UX3Tfgv+WAAAA2uGYIjzCYaJ5wpZyuJLNks9SiaIgAaTxGRDj4P3w4PDKcGzAKoAbz/5Pwq+eb0L/J98GjwvfGV8XjwyO/979/x9vLY8nTzbPRa9iz5NPsQ/ZD+d//qAL4BqgFeAe8ACAJNBIgG6gj4CQEKfgpVCnsJsAemAwT/+PpZ95n1zvUa96D5Z/yE/j0AAwGmAJT/6/3t+wn60/i9+IP5rvq1+8L86P1I/jL9Jvs4+Tn4BPjP90D37fYP96v3+fi3+qj8K/64/oT+1P1e/Vj9df1G/ST8UvpQ+Hf2CvWm8wfzmPNI9Ab1ZfZt94P4+/iK+qoCFBDMHD8kmCTLI34mHSlHKvkoHCQqHlkX2BHAEfQSKBFGDMsFFwLAAET+FPvK94v0yPFh76fuZO9b76DuM+7X7rfwmvHI8e3yafSX9h/57/qf/ND9SP5C/1MAEwHmAa0CRQSKBnIIBQpnCqEJuwh/ByYGcwR1AeT9qfoE+Ef3W/gv+jb8d/2d/ab9hv1P/Uv9HP0B/dv8ofzi/H79fP56/0n/Y/7g/KX63PhS9yf28PXT9Zb1e/Vj9T72Kvg4+vb7wvwM/e39MP+WAE0B7QDj///9pftF+cj2RPWW9K/0e/Wr9Xf1+fV69kf3W/hp+38EFxHgG8shYCI9I8wmMymcKdwmPyEKHFAX3BROFuMWVhRdD0oJygWpA+3/Uft49nDyGPC/7p3uHO8A70/uw+1A7tXvL/Fk8rrzBvWz9uv3L/lw+5/9sf9cAScCQgN8BMgFPAjBCnUMHw32C+0JBwgPBlkEWgJJ/xP8Evnw9mz2ePZN92v4AvmK+Qn6tPq1+8X8yf1Y/jb+Wv0J/BX7g/rE+f74v/d19hX2dfa/94z5pfrS+kr6cfl0+fz5jPoL+yT7kfs9/MD8mv1R/vn+c/+C/vj8SPtX+dz3WPb09Df14PVJ9tD27vbG92D5DvsHANkJhxX0HmkizyHkIikm/iibKKYktiDeHRkcjxtzGxMboBhoE/UNvAlFBmoCw/w591HzNfDl7f/rcOqI6ifrn+tq7Cntou5F8fHzKfZm95v3ZvhQ+gj9DgCoAQ8COwLcAiMFAQglCkYL0AoTCb0GygMIAdP+9PwA/L77vvuK+8b6OvqI+l77B/yK+x36tvgP+K34Svrh+838vPzH+8f67vnz+Oz36/Zh9tP2GPiD+af6TPtt+1n7y/qc+UD41/YP9p32Cfj8+c37Lv21/t7/9v87/7H9j/vz+U34VPeB9yb4TPnL+tv7YfwK/Jj7xf2vA84MAhZKG8ocGB2eHgsiUySsIxQh2R0iHBkcAx14Hl8emht+FtQP6AlmBe0ADvxa9rvwre267PLsie1o7YXtm+7M7w7xBfJD8nTyU/J28qrzofWt+BL8N//ZAXoDagR8BXgGPgfQB6EHHQcPBmQERAOtApsCHAMnA6ECbAFv/6T9V/wi++j5f/hd9x73X/cC+PD45fnu+nn79/qw+c739PWo9Cn0n/SH9en1QPZh9z75rvte/U39WPwi+/n5mvnh+ZP62fsF/Rf+c/+dACUBwwBN/+v97/w//Kz7Ffs0+4v8ov7fAMUClQNHA0gCNAJOBdcKrBDrE8cTyRL6EkIVHRnpG3sccxuCGWYYuRhMGbkZeBiJFBkP/Aj/A1EBr//2/YL7aPjn9e/01PTv9F70RPMQ8tHw4+/77nfuqe5X72bwivFK8xH2NfmP+6P8nfyo/F79RP5x/5wAowHgAhMEcwUbB3AIAwl2CIUGwQMgAVj/uP6N/iz++v3v/Xr+Vv+y/73/Of/t/Zr8Rvsz+sj5b/lJ+W35ePlv+U75Ovka+bT4Hfie97r3QPii+Mj46vhg+Xb68/v6/JT9rf2G/Yf95v1I/ov+gv6h/j3/5f+YAAUBOwFRAfQAIgBk/8r+LP5n/Zj8wPwj/kgAqAKMBO4FKAhqCzYPGRLZEkESvhETEhMT7xP4E0ITLRJ7EcURqhJKEwESpA6QCgkHiQTIAgcBl//i/mH+6f3k/Av76fje9m71vvQ59LPzOPMp89nz1PRq9Zv16/WX9pn3pPi7+Sv7CP3H/tP/PQBnAIIAiwBRAB0A0f+X/4D/wf9wANcA3wBXAMz/9v8vAIAAnQAMAFH/bP7F/Wf9pvye+0X6xviK99X2ZvYY9jv2SfZo9nr2W/aQ9sH29/ZC90T3UPek9yz4D/lB+pz77fz4/Vj+ov4s//L/gACEABkAhf87/z3/WP+x/xIAkQCQAQYDBAWpB58Kmw0XEOIRIBNvFIEV/xUjFh8WpRauFyIYlxdbFv8UAxT0Ek8RIQ9xDKYJ6gZ4BIcCSwF7AJX/Of7x+1L56fbv9JrzufIZ8n3xBfHA8MbwEPHS8c/y8fPr9Kr1eva492v5+voS/ET86PuB+1n74vvq/Mn9RP5x/nX++P7K/4gA3QBlAJX/QP98//L/JgDD/yX/gP4M/uT9i/3k/KP7JPql+GH3Uvar9V/1LvVx9dP1WPb29pn3VPgL+aL5B/ov+kP6nvof++/77fzO/ar+QP+J/+n/TACaALwAbADV/4f/jP8tAJIBjAO/BcsHUQkYCyoNKA8eEbMSSBSiFVYWXxYxFqQWjhcUGGIX+RV5FEYTNBK7EK0OrwzyCjQJHwdfBMMBwf9j/jD9SvsN+SX30PX29Dj0e/Mv8y/zJ/PA8tTx7vCT8A3xG/JX84L0+fXB95X5+vqU+5T7Pfvq+rL68/q5++v8GP41/wUAxQB1AXMB9AAFAD7/Kf+v/1EA5gAyARABuQAeAJX/4P64/Qn8Hfqc+Kv3M/cL9yP3c/cC+Kn4Hfk4+ez4zPjq+CT5dvmV+dr5hPpX+178Sv0T/jX/RgAuAeYBTwKzAqsCLgKZAXAB1QG1AmoDGgRCBdoGJgmiC70NUg9eENQQBRFeEboRBRLSEWsRQxFeEaMR4hGTEa4QRw9/DeQLkgpKCcQH8wUGBEIChADc/mX9F/zJ+jf5hffQ9Yf01vPH89/zuvNP867ydPLC8nnzd/Sb9dH2CPgQ+Zf5H/p5+s36IvtV+5777fth/OL8T/2d/cr96/1I/sr+Of9z/3r/jP/R/xsAMgDu/zf/X/6P/S39K/0X/aj8Hvy8+237OvsA+8f6y/rj+tb6Z/r1+dP5SPpK+xn8f/yf/LH8//xY/b79J/6f/jD/xf+qAMcBwwJNA/YCXQIiAl8C8gLBA5cEhwWOBrsHPQnVCjcM+QzRDCwMqgvQC1gM5QxSDcoNgw5bDwsQUBDzDwkP1Q1qDPQKnwlgCF4HYAYfBbEDGAKLACH/i/3F+935Kvju9mX2KvYj9gP2jfUT9YT0A/S688PzRPT99Mz1cfbp9qT3cfhL+Tj6/vpV+0X7PfuE+yf80vwr/VP9fv3i/XX+7/43/yn/Df8I/yP/O/8s/wT/6f7b/tz+q/5j/hj+if3Z/ND7xPot+vP5NfqV+uP6EPst+0X7Ufs2+xT7Gfsx+1P7U/uC+yn8Sv2//iAAJwG3AQMCEwLoAZYBbAGAAcABEQK2AtADSwUJB+IIYQqACwIM0wuQC3UL0Qt+DBENsA2FDnYPtxDUEYQS7RKJEmkRwA/3DT0MtgpECZwH3gUIBAUCAQD2/RD8XPry+L/3pPbB9Ur1SvV39WP1J/Xy9Pb0MPWd9Sz2wfZo9/33dPi0+Pf4V/nz+b76oft1/BX9qv0M/j/+S/5A/kn+O/72/ZT9Tf1W/cH9XP7B/gH/6f6+/p3+ov55/lP+I/7S/Y39K/3d/IL8O/zo+337JPsM+1f7t/sJ/Bn8Ffw6/Kj8HP1s/Zr9yv02/r7+O//Z/1cAugD6ABwBcwHJAQoCPQJjAqQCCANWA6sDVgQuBTcG/AZgB4wHxgcQCKMIWAkDCqgKNwu4CzIM2QyODRgOSQ7aDdoMoQtlCjoJUQhFBx0G9ASiAzACywCL/4f+sf3g/An8NPuP+iH6z/mg+XT5FPme+Cj4u/d19033PPdA9zv3WffK91D46fiB+QT6tPpe+7z7yfuh+6H72fsi/Gz8pfwg/ev9v/5W/3z/Pv/M/k/+if23/CL87/tE/PT8pP0l/lP+QP4B/rr9X/0O/c78pfy6/Oj8P/2J/bj9x/3Q/fb9Zf4G/4z/+f9PAL4AVQEIAoICmwJlAhgCwQGNAW4BggGxAaQBcgErAT8BuAFjAu0CIANxA8oDTQQbBdwF6AYUCOIIdAl3CW4JiwmsCekJ5gluCb4IJAigBzMH0wYqBjEFAATTAv8BWgHqAH0A7v9b/+n+pP5R/g/+gv38/G78u/sf+6f6iPqs+tL66vrv+gD7Evsg+0z7SPtT+5b7DvyY/P/8Nv1V/XD9hv2Q/W79Lf30/Ov8+PwV/U39c/18/VX9CP3N/Jb8j/zA/BD9Uf2L/Zv9sf3O/cX9pv2Y/Y39fP2x/Q/+m/4e/2T/nf+//zgArAARAS4B8wCuAHIATAAXAOf/ev/y/lP+3v32/ZT+c/9KAOAA8wDoANsAAwFKAXIBXAFEAVMBkgEVAq0CTQO2AwIEJwQKBBoEDQQeBDMEfAS6BOME9ATIBHwEJQTjA6IDnQO/AxoEXwRmBD4E+QPlA9ADrwNoAw0DogJRAgMCmwE/AeAAewDu/z7/vv5o/hr+5v24/VX9B/28/Lz86Pwc/UT9Nv0k/fT8o/xD/Ar84fv++xn8Ivwd/PH75vvH++b78/vQ+7n7o/u8+x78yfyo/Yv+Sf/K/9X/sf9+/3f/r/8SAJQA9ABIAX4BuAEKAlQCswLVApYCCAJLAbkAOwDn/4f/BP+F/kb+CP4p/of+1f5H/4D/WP/r/l/+//0g/kT+jv7p/jn/3P+JAE0BCgKSAusCMwNHAx4DrQIjAusB0gHtARECFwIrAvQBugGEATABDgErAUIBXAE0AfgA5ADDAOYAOAGLAbgB3gHoAdcBwQHFAQoCHgJYAmYCYwJoAnwCoQK/AtACnwKEAj8CCAL7Ad4B0AGZASUBowAMAFv/BP+z/kn++P2E/eL8Wvzm+4L7Rfv4+tT6qvqD+pb6y/oZ+2773/sX/EP8cvzO/HP9Jf7p/pf/5//5/wMA9/8SADAALwBEAPv/0f+k/1L/bP+Q/6b/qP96/xz/zv6v/tz+If9u/4z/h/9J//n+Ff9m//T/ewAQAVUBnQEDAkICpAIIAykDFgP7AqICSwI5AlQCcQJmAkgCwQFGAeIAVwAwAAwAyv+V/0f/zv55/l/+c/6Q/uL+Of+Q/yAAYQCsAMcAugCvALUAswDfACUBjwEMAp0CFQM5A1YDUgNHA0sDMgMjAyUDIQMuAykD7QJIApIBrACp/+v+9P1T/dT8d/xn/GP8gPya/Nb8A/32/DD9Ef3f/CX9kP3Z/Vz+5/47/3r/O//V/uX+E/9L/0f/cf+O/63/5//R/7r/fP8T/+X+7/4B/6r+d/6h/g//Kf+//q/+i/6r/sH+zv4R/8H+WP4F/vb9IAMrC+sKvAOF/qb8Zv/lA+UDOgB1/Er7nPwG/6wALwCQ/Wf7Jvwa/uP/5f+Q/pL9e/3i/vb/Y/89/x0AJwHKAm8DwQNoBDwEDQSVA+sCMwPMA7wDeANLA6sDGgTOA08DFgOtAgwC0AEyAW4BtQLuA+cCPwFKADD+Mv9eABv9hP3c/i/88v1aAIf+T/07/WMAdQHe/T3+vv6v/wwC9AEqA2UClP7Z/hUA0/87/2D88v0uARsBU/7o+X/7if2N+9z/kgQcAtf8m/WW9g//TQK+AQ78IPYW+bj9rwBsAwMAQ/om+yL+Uv9aAbMArvz4/coByAPDA+7/i/0V/58CLgQiAUL+mf5R/1EBVQFP/XX9fQB1AN39DPwi/d7/TwFA//H7EPxj/nr+nf3Q/D/9Cv8a/3r/0ABaATQCGgLJAOsAAQPGBG0FtARqBMoFZwb1BbsFBAUdBTwGFgZkBpcFegR/BW0GXQa9BOUCkAGjAWIEuQYhBScEkAStAyADjAMaAgwCnwMpAS8AIgH6/ZH7p/oiAZUMighp+4bzifPo+7z/APnN8s3ygPel+Eb2Ovh4+Cz2TfXq8grz0/Vh9qr6Df9W/fj9AABgANwCggJq/4kATgQNB0kFLgHQAcoESAhBCekBi/uB+03+CAREA575cPXf+Kv+bAL++ibyavSA/JMF0wQq+VH0/PnbAV8F6f8z+UD50v3SAkYDJwA5/fX74P2+AegHJQ4fD2ULywZWBdsJUw88Dq0KVQqFDdQRrBISD4MNYBBhEgkPcgf5AnEDLAaUCOYG+wN3AisAD/6l+7b4MfjM9z/1z/Lz8A7x2fMV9QX0uvNu83TyrPLb8n30eviq+vH69/pZ+y39Yf/Z/87/lgAKATYB3gFmAlgDrQSTBZ4FpwT0A+QCcQKUA58DhAJ+AWb/2f5z/vP8af17/Hr5BPkH+X74lfie9yf3xvc192T4LPny9jH4l/l0+JH6yft9+ov7T/zL+0v+JAGd/5T8Qv0eAGUCaQFY/QX9EwGvBFYEGwAp/dT9WgGsBm8MNBE4EfcM9AqQDsoTbBWuEhkRyBS8GS8arxZGFcQXARrEFrcOXghMBk4HBQmVB4MDRABK/dj5Ofcg9K3wQu497HLrCuuz6THqbOwo78rwFO/O7BPtPPCL9Ar3v/el+df82f9aAqID5QRyBlUHGwilCBUJzgmWCtsKfgpDCQcHEgUYBKADnQLFAOf+yv3D/Wz9tfue+ZP3UvYP9fTz3fNI8yfzvPO58tTxA/IQ8vHz7fW19MXzBvWi9+/6Nvz8+6H8N/5lAJ0Auv7K/g4BWgNFBNQBdf9yAK0CiQTjA58ARv0V/FcAowpAFLYX9hJsC3oMghSaGuQZeRSLFFEcKiEGH3kaYhg2G18cYRVlC2AFuwTlBj8HBgV3Adb8PPha9Orw3u2I6tPn6uav5r/mMed76Dvr4O2i7uXt6exS7Tbxv/ZQ+hz91/9PAi8FLwdICJoJjwqmCjQLjgvZCxgM2QtfDIAM6wm3BvIEegNbAwoDUwHV/5r9AvsQ+XH3QvaW9JPy+/Cc8JXwZO+V7u7u0+9H8HzwovDE8PXxEfSL9XP2J/dd9+r4cPtz/Xz+1/5m/2kAxQAAACP/Gv+UABUCrQFjAAUAkQDp/xf8NfogAuMQZxvqGKAMDQe9DwMc6CByG0sVrBgQIUIkwCH3HukfZSLBHjwVSAtdBWoFDAh2CIwFkP9F+KPzjPHE7+TtOur/5YvjfuJ34rPjAOZT6QrsqOvY6YHpfOxr8s/40v3qAHoCgQNdBSYJWA3zDh8Ogw1FDqwPKBDWD3sQZxEtEPYLJAfIA8cC8gLwAjkBmP3J+Sf3Ufb09Rv0BfHB7rTtaO1q7brt7u037pXuuO6n7qnum+8H8kL1b/hI+tT5Avm9+XT89//6AYQB4P+Z/1oBkAKEAo0Bd/83/lz9o/s2+8X7k/s9+/z5Nv00CbYVYhoIFbgMfw75GPIfxB9WHMMcjSMoJ9cjGCAPH0wgjh7XFREMegaeBLYFCQaJA8X+8Pdp8Y7tt+pV6FLmUeQg5O7kBuVv5XHmTujk6vjr+usT7MHtJPPs+Uf/DwMABfUFnAdnCQML9Av5C8oMuQ6eEDYR1BABEYgRThApDEoHugRzBFQE7QJaAGz9Pft6+af3O/as9PHyxvB67szs/OtC7Ovsg+1L7iXvr+9/8Kfx5PK19Mr2JviT+Ev4JfiB+WX87f4rAK4AlP+A/rz+xf6b/sf9Z/z1+0H8/Pym/Rz9iPun+TH6PQL5DwEaChp9EaAM+hPsHjsjrR/AGwIg+SZCJ8Qioh/GIC8iCh24EhcK3AUsBmUH0QUDAkT8hPXo8CHuhOsU6VbmVuTV44fjj+M/5PLlMemf6+br8eqJ6kjtGfOX+eX+QAIuBK0F8Ab2CJYL8gxrDbgNsA7bEBUSxBGhEYgRkRD9Da4JUgbcBEUEcQP/AQEANv1V+iH4LvYn9JbyDvG/76Dueu0E7XXtX+6k7qfu4O5v77fwV/Il9Nz1ePdq+CT5NfpG+1P89vww/UH9zP3M/m7/Lv8i/h79T/yT+6H6q/kH+m77Yfxe+xT53/z/CZMXyhxrFkINNg8SGmchdiA+HXgf+yY2KmUmMSK3IWkjfCBrF/4NnAhyB0oIJAiMBQkAivgk8nzuXOx46enlCuRc5HzkpOM345vkq+jm67zrx+lV6UDs5vHY92f8iABGA7IEvQX1BgcJags3DYgO2A+7EGIRtxFeEskSShF1DXQI1QTnA3YERwS8AlMAo/1R+0X5C/eP9FDyHfAE7+vuuu5o7vLt3u1z7knuHO1E7bLuTPFG9E/11fXu9gL4aPma+uz52vlT+4L8yf0y/rj+AADMAD8ABv7j+t35C/tg/Df+zP4n/gr+e/3V/+8JdRUBG8QW7A3MDSYXFCBcIbod5R0TJDwoPSWXH5QdlR8aH14YVQ99CWIIbAkkCbkGpgE4+7/1R/Eu7h7sUenD5rrl7eSN5Krk8uTj5jHpXOpT6nvpO+pZ7kT0b/kT/TT/1AA3AhYEZgbJCMULVA7xD6wQJhCuDkwO8A6nD7cOogt9CH8GyAXCBW8F9wPAATL+8fni9gb12fNc8yDz7PFp8Mju3uxL7JTsHO137Zftg+468HvyGfQG9Tf1X/Xb9av2N/iK+fr6t/x1/oz/qf9v/47/g//e/rz+zv5z/if+s/0p/hMANAG9/xP/5wMQD04ZRxnzECoMwBFCHMQh2h7MHC0hGif/JzQjDx94H5UgnxyLFK8MUwkXCpgK6AhiBEj+Ifnk9FvwBO286rLo0+fV5nPlH+UG5gLoT+oe66bqxunm6WjtKfKJ9uz5DPz//VgAqwKpBLIGigc/CAoJLgrtCxMN2g30DW0NTQxuCvoH8AZQBzQHMwa8A4QBnQAw/w79f/rc91T2hfVK9LDyivG38IbwLvAE7/vtYe1H7vXvafE68mfyXPMR9Sj3q/gt+a75ufoA/HP9ef7O/sX/VwC0/yX/if7x/Sf+Of56/pT+nf5j/1v/WP2e+1b/tQiGEtsUXBA3DTsRVxrcHv0cqhrLG2IgiCMWIkMgpyDoIKIe/BioEfcM8gonCoQJpAVcAMv7MPgR9gDzKO/i60Hp8uYs5UTktOQN52Lppequ6hLqVeqj6zLu0/BK87z2lvrA/ef/0gG/A/wFfQcvCKUJaAv5DMIOSBCoEZ0RUA/cDHAL6Qo5CtIIOgYWBDMDxQHZ/wf9pfmC9in0YPK38Pfv5+9t8KXwsO8l7tLslOyg7SrvzfCR8v7zXfX79pX4sPk4+i36RfoX+zL8+/3w/xEBTwFsAPL+8f3//ar+R/8g/z3/KwAwAfIBUQFfAoQIwBBjFWUTCQ7cDVAV+BtvHWMbdRofHr0huSAEHnkcPRyJG+AWNBCHC7MJJQo3ClUHtgIP/r35tvax823wO+5P7OLqqen15zrnU+j86YfrWOtl6QLpKOqh7A3wufJL9ZH47vqE/GX+TACWArYEUgZwB4AIkQkGC/IM9A30DcYMSwspCi8JBQktCXAI+QbGBDYCggC//ub8NPtV+TD4M/fS9Sn0vvKp8WfxNfGX8Cbwju8L8JjxUfPS9BH2MvbZ9XX2b/f++PX5Kvq3+oT88P6sABMBxwADASsB1ACPANAAgAF6AjkDugPuAycDPwL7AlkHFg0zENMOYQuDC+EP2RQYFkQUARTVFloZ/hg1F2EWYheZF+0UxxAYDVYLgAsXC14JjwaoAsH/pv0J+4P41/Ux85fxxu9j7W7s9uzp7ZvuAu6+7Ersd+xJ7ZvuEvCG8l/18vfs+R/7wPy2/n0AiQFEAlIDVgWaB6UJnQtjDE8MggtRCvYIJgieB2kHiAesBjoFrwOHAjkBSf/q/Az7iPnY96n2s/VE9a/11/Xb9NLzx/L+8UrySvNP9Jr0x/Q79dX2fvhS+db5wPpu/J395P3J/Uj+6f4N/yr/GP8N/6j/NABDAB0ATf/0/mH/Yf/i/qj/AwOCB5IKCAqACPwI9gtQD0EQWRCoERoVSRiPGOEWVhaXF/MXJxZ3Eu4O4w0hDhgOCA2oCsIHBAUpAsz+sPvs+Kj2+PQ683DxUPAd8HrwmfDV72/uVu3p7F3tle4G8HnyP/VA9zf4sPi/+Tz7//xI/jn/VwDtAeID5QSiBV0GBwejB7MH9wYmBl4G3QbCBgcG5wQGBC4DjwHR/6j+O/5x/vj90vyU+5X6Lfqe+Yj4ZPe49qn2FPdN9xT32vYI90T3AfeA9mr2FvcW+P74I/np+Bv5tPmu+qP73fsr/BH9Bf6J/tP+8P4+/wkAawDHAE8BBgKMA2YFnAYDBwMHZActCUsL2QzsDfUOpRAkEqgSuBIKE+YTdRRUFG4TahIMEg4SxBGjEPwONQ1SCwMJWwYoBDkCVwDZ/lr98/t7+t/4lfc99s70e/NQ8gDyUPIg8jHylvL18svzRPRc9Lr0mPXB9uP3zfiX+YP6FPvd++v8t/2A/nz/OADOAAUB/QAXASIBNgE5AVwBggGUAWMBOAEeAfEAfQBj/3H+vv0w/c78qPyo/G78tfue+u75ZPkY+f74yPjV+Pv4Lfkj+aD5GPpX+rn62Pod+6j7U/wX/b79J/5f/nH+pP7r/kb/b/+Q/9X/CgBhAKUAAwGGATACzgIKBE4GUwh1CRUKzgpaDH8OBRCnEJYR6RJfFAYVbxSZE4ITNxQpFJQSQRB4DsgN5wz/Cs0ImAbcBD4DCgGk/nf80fpQ+d73d/Zd9cH0VfTN8+3yvfEN8TPxk/EW8tDyufPo9Lz1DPY99nX2T/eQ+KX5Z/oO+w78Z/2A/uX+9v4n/3r/1/8MACcAowBeAc4BpgEyAaYAfQBKAN7/df8h/9z+ov4//nL9E/3Q/D/8u/sF+4H6SvpZ+nL6Vfpc+mD6XPpT+nn6u/oD+3f77PtX/Gz8Pfwy/I/8Kf2h/fH9Qv6L/v/+bv+M/6T/CQDMAHACWATRBfUG8QctCYQKrQubDKANAA8kEFwRPRLtEqQT5xMBFHkTeRJcEXkQGxC9D9QOkA09DLUK4QjlBukEIAOJAev/Pf5l/AD74/nV+MH3mfZj9Vj0dPOK8hTyJPJn8oHylvKw8ubyO/OU8yv0x/SW9ZL2Qvfj9+n43/m9+pP77/te/Lr8G/34/cf+X/+b/8b/KwB1AKMAdQA6AGMAhgBsACQADgAAAA4A2f+H/x7/tv6H/mH+LP6a/Rf9xfyu/IL8TPw9/Cn8Evzz+677Zfs4+1f7gvvE+/r7MPx5/ID80vwt/aH9Cv6J/s7+Kv/a/8IAYQL9A0IF/gWKBisHDAhTCWUKlwv7DLsOKBDWECIRnxFlErwSWhKfESsROxFZEQcRHRAoDyUOlAysCpMIzQZrBQsEdwKRAID+y/yh+236FPlq97j1WvRE8z3yoPFV8TrxVfEm8fPwyvDT8EnxH/IA827zB/Tt9M71wfaS90P4Cfnh+ZH6H/vJ+5H8fP1h/gb/Xf+r/+L/MAB+AOQARgF5AaQBmAGYAV4B9gCfAFcACgCf/1H/DP/g/p3+MP76/df9qP1n/SX9EP1P/aH9t/24/fb9SP53/mf+Mv4w/lT+vP7t/un+Af8+/3r/oP98/6T/YQA/ATQC0wIRA6sD3ASiBmsIxwnvCg8MRA1/DsYP1BDSEdcShxP9ExUU+xPiE84TdxN9Eh4Rkw8HDp0MzAoeCT4HBgW/AlcANP5R/KX6yPjO9jb1wPOu8urxPPHf8HbwN/Dc737vku/G70Hw1vCs8XTy+PLO85L0GfWU9Q/21/bT96T4Rfnn+bn62PvD/Bf9Z/3Z/Wz+Lv+Z/xcApgAVASQBBQH0ANQA2wDOAL4AxwCPADIA9P+9/6T/Y/8n//D+0v7k/uD+Df///r/+rf6z/rj+w/7S/uf+D/8c/wb/1/6//r7+zP7t/gr/Qv+F/+D/MABuAJ0A2QAwAQUCVgO2BBYGUgc/CCAJKwpNC6kMMw52D3sQLxHvEYISJROvE7YTghPrEjkSSBEkEOMOrQ1GDIAKnwiVBpsE0AL8APD+xfy7+hj51feU9kr1MPRG82nydPGD8MHvju+27xDwWfBd8GLwt/BQ8cLxNPLP8mXz/vPB9KH1lPaK91f4Gvnc+ZH6Pfvo++D8A/4G/7z/LQChABsBZQGkAe0BDwIrAjICNwJIAnECcQI7AsoBVQEFAa8AjwChAMAAwwC5AE8A4P+4/5L/gv9L/0b/Wv9G/wz/+f7r/gj/Kv8W/wP/5P7p/vv+Vv/O/wkAPQB1APMAxwGzAoEDeASaBb8GkwcgCNQI0gkyC5cMtg18DgUPig8CEDgQLxANENwPoA/aDtgNwwziCyMLLgq1CBcHZAWUAwgCcAAN/979qvxu+zj6+/jK98z20/UG9UL05vO+84nzZ/Mx8/jyxvKy8q7ytfLk8jbzo/Ml9LP0S/XT9Tf2gvbQ9lL3BPjf+LD5ffpI+wn8tfxG/Zv9Bf6h/jT/vf82AKwA/wBEAZIB5AG3AZgBjQGGAccB4AHvAc4BxwGbAXABLgHoAMsAywDgAOoAxQClAKgAxQDvANcAnwCUAJwApQCzANIAAQEwAU8BaQFaASsBGwFWAboBEQJNApcCDwOiA1AE8gSFBTUGyAZ5BzEI+gjbCbMKVgvgC00MjgwCDUQNXQ1ADcoMRwyoCxcLTQppCXcIZQc8BuwEmwMuAuIAq/9U/uv8qvu0+tz5Kvlt+Lv3GveM9hP2nfVK9UL1SvVG9TL1HvVa9br1HvZv9rP26fYh91/3kPca+MH4Qfm3+Q36RfqK+sL6CftV+5j7zfsm/I384Pw0/YT93v0j/lj+Zf55/tL+NP+S/8H/6/8TAGEAmgDHABABQgF1AYABjwG4AdUBBQIrAlECbAJqAkACFQL4AdkBqAFjATYBCgHfAKoAbgAdAOv/4//5/yIATACAANYAaQHFASUChQInA+4DzwS7BV0GFAfsB6wIYAnCCREKggrvClILdwuNC7ELuguxC1ELqArtCS0JgAjWBxAHVAZzBW0EXwM2AicBOgBR/2X+Zf1Y/HT7sPr++XL50/hA+LL3LPed9iX24PXZ9dz1rfWA9W71rfUG9lb2ifaM9tz2Mvdv97v3H/jK+Gb56PlZ+s/6Y/vz+3382/wg/Xz98f2Q/if/ev/Q/x0ATwCIAKgAswDOAOIAGQEbAd0A1wDbANcA2wDbAPoA8QDfAK8ApgDHAOAADgE2AWoBrQHFAbMBmwF3AWEBVQFeAVwBZwF7AXwBggGCAYIBeQFqAYsBtwHKARMCdQLtAlIDwQMoBJ0EBAVqBdEFVwbGBh0HoAfzBz8IdwhZCEwIPwgbCAAI4Qe1Bz4HsAYbBo4F/QRbBL0DCANaArUBEAFcAJ//7f5a/q39Ef1h/ND7gvsZ+5r6Uvof+tz5nvk8+fv4wfiu+L/4xPjK+KX4jviT+KX45/gm+Uz5a/mX+eH5C/p2+u/6Wvu8+xD8XvzL/Cf9Wv2W/df9Y/7n/k//kv/O/xMARgBhAHQAowDdACsBXgF5AXkBewF5AXcBTQE/ATgBCgHoANcA0gDWALwAkgBGAAAA5//g//L/5//M/73/tP+g/6D/ov+o/87/EgBEADAAdACjAN0ANAFyAZgBmAGvAekBRgK2AggDGANPA5sD5wMNBEQEkgTNBBQFEgUaBSYFPAVXBWIFWwVFBS4FCwXaBLAEdgQuBOUDXwO4AjACqgFRAQMBnAAkAL//Lv+F/gz+bv0K/bX8VfwX/Lz7dvtF+x378frb+r76vvrY+u/6LftQ+337sPv++2D8kfzF/BP9RP1z/bj9I/6h/vj+N/9b/2z/lf/I/+f/BQApAHUAqACuALoArgCmALoAjQBuAEgABwDp//T/+//u/+L/kv85/wj/7/7Z/rH+qv7S/uL+2/4D//b+Df81/yX/D/8B//n+Qv+d/7T/vP+v/6v/ov+U/47/tv/c/+7/JAAnACkAMABGAHkAlAC3ALoAwADmAP8AGwEwAVwBggGvAZsBtwHbAe0BJwIyAjACBgLmAeIB9AEaAiwCPQI/Ak0CKQL9Ae0B7wEYAkYCagJmAloCXwJWAiwCDgIBAuIBtQF1AT0BEAEHAeIAuQB+AE4AEgDn/+L/sf+g/5v/nf+v/5n/g/+V/5T/r/+//87/zP/M/97/6f///9z/0P+o/4f/Wv9C/yn/9v7p/sP+ov5Y/hX+4v2W/Xz9WP0u/R79CP0H/fH80vyx/JH8hPx0/Gf8Zfx9/Lz8//xC/Xf9bv1K/Ub9Wv2J/cH99v09/n7+qP7I/vb+Cv8R/yX/Jf9W/6v/4P8/AJIA6gAgATgBagFlAXcBjQGhAdQB8QHyAQgC+gHeAb4BjQF1AWwBbAFBATAB/wDmAMMAtQDAANYA8QAXARwBDAE2AUgBcwGQAe0BJQJGAmwCdwKmAtMC2wL5AtICxwLZAp8CkAJhAkkCOQI7Ah4C3QGdAXkBTwE4ARUB6wDAAHIAOAAiAP//2f/X/7H/jP9W/zT/Ff8G//j+9v7k/sf+uP6i/rH+lP6Q/nz+Vv4//iP+Af74/eb9vv2q/Z39hv1q/XP9d/2W/ZL9lv2o/br91f3y/Q7+Mv5U/nH+wf7b/gT/Ff8a/zn/T/9E/2H/kv+y/9P/3v/n/9P/xf+y/5D/c/9u/27/i/+d/6D/jv9m/1j/Rv83/y7/Lv8p/1b/Zv93/5T/sf/i/xAAEAAXAEQAWAChAOoAMAF8Aa8B7QEpAjsCdQJuAosCsQKiAgYD+QInAwoD4gLyAtICvgKrAo4CSwI5AhMC+AHVAa0BnwF7AVwBOAHtAPEA3wDOAM4ApQDLAKwAnACmAJEAmACqAK8A0gCvAKgAkQCEAJ8AfQB3AH0AVQBcAEgAEwAMANn/0/+t/27/Nf/l/rz+nf6Q/mj+Pf4i/uv9mv2U/Xf9X/1P/UH9RP1E/VH9G/0p/WX9mP26/ar9qv2Y/dT9CP4Y/kL+XP56/qj+r/7X/tL+5/4u/9v+0P6Z/u/+W/8G/0//1f4E/6j/g/+i/1T/sv9z/yr/Nf8e/7H/KwCoAOgAxwDHAPoA3wA9ARkBcwGtAeIBZQKvAgoDvgJYA9ICjgJwAUIDvgtcEDEGTvnR+CQATge/BgkAUPvh+5/9eP9hAQP/qvxV+gT5/vs7/yr/rf39/GX8Tf7AAKD/5/5h/Tf/2QKUAgECggD0AAIFIQPtAG8FhwIlAn4E3gQYAyX/ygXzBSIBSwQk/c/7AgfVBBQE1f7B9mb/8Aa5Bnf83vXz+mgEBwiY+lL3Af30//4F1f7O9J77mv2oAs4DQPgi+nP4SgBVCJ77nfMd+uYHIwI8+tj3n/1zBVgAKPhD+7YEB/wP//r9QfsTApcFIfhr+ZUHqP2//uYAIADO/HMC4wNn/Iv7MgiYB8/5vvyNAuEGzgOJ/Kj8egRABdQBWP5m+uQC3Abe//r91/ys+/oG7gVt97/+DgJ5AUoBG/ziAK0CIP5w/q8DMgPV/xwBTwHm/f4EqwZc/r3/JwK0BDkCUwDTAygEwADM/wAEOgVAApT+rgDDBEsFLQDM/pX/gQQmBen/8P5xA6cE+f9eAJwA3gG6A7UBP/1lAdwC0AKM/3f+1f+W/qQE8AT7+J77lgH/A+n+OfVjAZUF+vra+EL/jfx6BBn6qPQpAt4CAfcw+CkCxf2N/k/2x/uU/3D70AAd+0n5lwKL/4z5QPmqAikDvPz6+4L8pP+mAoQAif0T/wb+rgZK/Rn6hQLlBBv98/lJA4kCUgXH/YL2KAQSCCD+xf+L/loAQgFVAQgBCP6vA14Aq/4eAeoApQB0AO/9GAJABKn/sf4n/wYCWgG/ApsB+//IA4UEaQDHAUAD/QKRBVQEyQDHAQkFXwVXBlQESAKXA6cEuANOBOUE8gKTBDUDAQLSAbUBsgWdAYv8O/8KBNIAn//9/2r9tP89ANL+u/ti++r7Jf4HAfz6yPdx9sD7bAPSARD09u2dAHMDY/x39FX9UQDz+H37dfyk/5D+APsm+O0DTQTe9Z76n/8J/HoDnwF5/MH3xvoIApsEkfuT+UsEzP7998f86vyIAGQGf/rh+mUAP/z2/qYDj/pT/kkDPAY8+8j2EAjaBbgBcgCGAUMA0P2UAvwGOQLy/en/FQizB1j/AfwtAQMJXQuZBMH/yAWICMYHvwYoB/EITQpuCXMKXgiNBw8L4gv4B18F4QU3Bp4HsgW/BCEEJAYxBnkCQv6E+9L7Z/zt+x35yfkm+qf64vsS+Aj2yfUT9d725fbe9Q/3LPnz+FX7j/vE+cT5Ifql/FH8B/29/9QBWgAwAtQBQAK2AsMBRAMRAu0CJwCaALoD1wO//87//QJlAtb6Xvk5/jD/8P/n96T3qv2t/ur5Cvdx9oz4ggEo97vumfc0/yD9xvd0+a74dvuV/77+yfrQ9dL6CwZcCMn9UvfC+ccJew9v/3v9TACJBFwIAAXDA3gEZAXLBg8GhgfBCtkK+At1CckJ0gm1CKYJMgvcDcQOzA3wDJ4Mdwy/DFILHAr6B20GtAYAB9YF1QV6BnUEwAFP/k75iPh0+ij6ivi29qL28vZx9QfzafMK9Cbz8PB88O3yjPYC94P2ovj8+Sv6YvjT+AP81/5b/zn/ZQKtBH8EJgVsBJkEDgfyBWYEyQYhB1IGoAaOBTEGMQUGAlgA5AFR/mX99P/B/d38svp4+U75OfjP91v3rfdl9mf1yPfD93r5bPSf8on8Fvrl9tH5dvj1+/b+1vwS+yD7uQAy/kr9LgKm/zIAmf5GAAkHbAIi/cf9PQB8BQgFTAU9C8gLqgpXBw0HzAvnDaAM4Q0tEc4SeREmERoV1xVjFDkSpw9JDswMdQv/DDwOcw3QCqkG7QIZAIb9CfwO+k33K/Wa8hbynPE+8L/uhe3D67rqWOot6mDqY+wz7yHxivGO8DbyvPS/9ir5/vr//G7/kv9pAW8EGwfrCZQJdAlPCgwLNQsEDHgNCw5+DSoMFwvrCbEJOgebBKQFkgPCAOL+D/66/E76YPgz+cX23fDN8ub0WPRt8Vnug+7n9hP3/e4N8Cfzn/a2+IX10POc+LX8lPyF+Kj97f9T/XUBkAGvAj4D4ABPA+4HOgfuBMMBCATHCoEOdRLeDksLUg5SDuYQ6hFTD7oShhcmF6kVMhQ1FF4YNhi3EvANWAwIDaIM5AqjCeAJ4gl7BkQAePoU+fn4aPfX8zXxq/Bo75Xui+wB7Grsuepb6OfmKuYE5+TqlO2/7S7uV/EV9CD0NPS89UP6CP6b//0AJQNFB6wJqwtMDiwO4gzwDOoNyw/EEKAPRRA/EGIPXg/dCioHXgeGBn4DWADQ/Qn8Vfza+iX41fUk87fwce988GnxJvBD647s+vFT9CfuJuot82L5r/fx8G3yC/oc/Y398v2I+Y/5SQN0BioDrf/a/xgFFQpIB0kE4ARZBUUGhQb9CSYQ0hKoER0OZA3xD1oS1BHTDuYQrRckGb0VixQPFQ4Z0RhpEeMMAQxLDMoLjwn4CE8J9weyBOT+mvlu9pb0GfMS8OvsFewc7Abs4urv6IznfOcn5qHj8uM55irpBezH7RvwKfIF8/HzlvbY+fr7+/2oALEDiAasCD0Lkw4ZEEcPmQ63D8cQRREkEmMSQxLvEDEPsg2rC/8ILAZ2BWYEAQF6/k/9n/vd+s73IvMb8pbyWfCL7J7woPEY71zxMO9X8Sj3zO9x7vL1PPcT97Pyjvf0/8n8gftF+wj9wQPSAJT8rgC9BOcEEQOQAoMDIQewBoQC5QPhCCgPwRVYEvYMkg1IEUgUJxShEisUchrMHEgZVxfPGHMbFx1zFjwPKA4HDhoO2QvmCIYJ7wg1BO/9fPdT9K7zf/EI7krqH+go6MrnfuZ55OniGePi4hvhvuDo4UvlDuq17NntVO+Y8Sz1EvjW+Vf8gv9zA9oGLwmACrwMdhB9EtsRQxAJEAMRlhLJEuEQBxGCEaIOGAy5CYMGMwbTBNAALv+v/NL7XvzB+Lz1WvUR9NHwku9k8lLxRuwq73D0/vIA8eXvgfHY+Jn4M/AY8YT8ugFv+s73fP3pAo4Ds/17+28DpQVcAugBmABHAxgGgQZXBvYCT/8yA+4HkgpXDvwRBRFbDZUNgQ9nEp0SaREIFLsZ5ht5GaAWaRiJHD8bCxWVDvQLqw3uDvIL4gg2CH0HqwMO/Xj2dPM28o7vo+t45/TlmeYL573l9OPm4pHiP+IX4YzgseI+56/rzO7u7z/x8vSQ+Or6F/wn/2YC8gSnCJAKvAwXENkRhhJ0EnIQaw8bEekS/BFtD1cPsg+SDfQJmAcbBRMDXAE3/gz9KPss+UP6PPib9T315vGY8YHxaPBT8WbvsfSJ97nxqPRb9kD3WvzB9vb24v03+UX74AFP/pD9Uv8u/+IBtwDC+9L+fAOfAXAByQC2/swAgQMiAtn9fP30AMYErAq3D1cOjwqPCmkOaxHSEC0QqBJOF8UaghpSGCEYlhuxHEoYTxODD9EO0Q4uDWYMVAsJCQIGcAFI/BH4vvSI8l/wluwZ6VPo8eh96JnmreRj5FjkpuJ04QziX+VF6cDrCu7N71Py+/W4+O/61vxP/8UCTgX+BjgJWAzUD4sRbRDLDyYQCxDaD4wPeg/oDs4MGgsuC7AIKgb9BOQAVP+C/1v6jPcO+i36Ovif89TwI/ax9rbvju9X80j0VvT+8dny5/li+kz0Y/Xk/Lj9Hfm7+ev9jgI6AH/5ov4ACLIDrvyq/MUChgeoAlH+4//MAeUFwgXk/r7+0gF9AKMBVQadCe4MwwzDCbUI8AuDD6cO+Q36D9kTTRZPFRoUNxYqGc8YgBRtD1ANkg27DfILOQpyCUEIwQX2AGf8S/mk9if08PA+7XDrLete6xXrp+mD6ATo/uao5WPkEeYv6qzsce4d8XXzWvY8+Vn7pv0K/3kAugKrBdAHzAmZDGsNhQ6/D3QODQ3sDF0N9wy6C0QLPQrJCGcImgZfBOkCrwEY/0b9LfyB+tr6lvp4+c/39/F490IBeO946dv8vv6B8kXwxvdK/er6uPgx8rT3KgMS+f/2qP5a/pYAm/6P+7oADP4n/bMBSQJrAFX8D/81BScEWP8N/6gCaATkAOL+JQEtBn4LpA2xDBMLWgrgC3IPqQ8ND54QoRNGFcgUsRRUFYwWrRcIFPANuAvbCnMK+AmwBwAHsAYLBLj/e/tA+PL1cvQQ8a/tRux+62Przutj65zqT+ov6vfpTunH6aHru+4f8hnzrfV2+CT6/fzH/m//mgBAA9YFvwaaBpIJogxWDYENlwytCwwL6wtuC4IJWggfCIwHIQZxBsoEhgFuAYb8Xvu4AYL7uvQz+vn56Plf99LyP/sI9Lvv1/4Y+u/qe/Go/aYBhvtG7cLyIAOZ/z32jfoF/a//HP89/TAA1AGJAY37Mv3NB7YCjfo1/4UG5AqNAYL8NQS1AkoBWQTHAEQD2woGDJgJfwivCWYLtg3hDZ8LpgqJDfUQkRLdEQcSMBS4E9AQiQ3VCy4L1QpnCiAKIAhJBbgF3gVaApr9Avtb+V33pPS08YHwZvB/8QDxFvDl7mPsDOxl7Dbr/+qS7Wjv7vCD8W7zO/fG+N35cPuA/ef+vACqAiMETAXUB2ELrwuMDLMK6wlFDeoNxQybCu0Iwgi6C0gJKgaSAX4BXgnjBB35nvkbBU78jfVT/Pb2uvXt/A/3a/Cn+rzzI/bl+qDv8PhR9rLx5ALW+cjnlP9cB1H14ekc/mUSNvVY9gAFMv7fBp//NvQbBtIKg/8TAI0ArgWwBvkDAgTrAgYGbgPKA/wFmQO3B9cMPwmyBmUKVg3BC6AG6AfEDVQOPQvMCiMO2xC3DxMNnA15C1wH9QcQCOgFWwXYBFIDCgNYAkL/P/s/+kP55/Xq81HyLfNN9L7y1PLY8hLy6vEQ8STxYPEq8TjzJfVu9kv33/jY+8f8WP2q/Vr9TgAiABr+bwWWCCkD9AQBCh0GFgMrCLcHbgJ+BF4HwQVC/y4EewpS/3D9Bwjk/pLzdQD//jn+tv+w79f8CAq08GX0gv+u9Or8z/ui7qX43wWd9JT0I/+L/075f/ic+E3/6AWC9jf2hAJfCsoBQvQSAGoMXwFu+7MBvAqQAvf2IQSvDKsCYf7QAUIF1gk8BiX/w/8BCNsIUAUwBOIBIAi6DCQHTAWvCboL0gnfB04GYAhhClgJnQgZCCsJUQrxB+UFsAZyBoEEcQIVAi0BpP9EANX/i/4H/bD6hvrY+Uf48vet9nD1W/eo9iv17vZY9QX1RPa/9aT2nfeY9Uv4hP5u+0v20vvTBkT+aPVqBG0Hwvy8AMcHVANbBJUFuwYLBk0DrgVcAXEFFgbS+xoFbgkX+3D7MAEdALIHlfHd9IwMbfh2+Vb9BPAW/+gI9emd9WIE+voX9SX31QHs+xX1KvmHArf9XvqX97MB7gYc98/4VgT9Ayz++fkEBQ4AOPvYBMkB2QARAUD/FQELBdACE//u/9sH/gYI/w//QQZTCWcAPf87CXkHkQAGBsgGRgPkCWUHfgNaCAkIywXLBscIyQjjBoAIiwoxCFAGHQZPCawIiQJ4A4EFJQPtAaoBkAEDASr/O/3L/LX73/nP+jH7D/jY99H6hfhb96n6FPqp+LL4Rfgx+qz7Nfj1+lT+r/0Q/Y/8SQLn/y/8HvyDA+kCt/mxAKQB2QD9/94Bxgep9qb3VRAeAvzrmQWiAzr6QQCp9j8I5vw39qn67gWO/hz1Tf56+LwKuP2e7yv8Og3OA+DthPs4B7UGPvpA+E4AUwhBAPz7pAKm9IUL+AjW74MDGgSzAXAAHfvqAN4FLQB/+S79QQnFApL3mQSH/1gAYgQd+3UAtAPG/8z/hAKOAukB1wAeA4YGLgPu/yoFoQguBHoDCQb6B5oJjAeOBUEGWAk3CqcGDQftCXQHtQbFCIcF5QU6B+cD/wJ+A/0A5AA7AgwAr/7S/t/8T/61/UH5EvrN+jb74/ru+Zv2gPwi/AT3D/iJ/Jf+1PLB96z7nfzA++r45faN/IQIWfdT80sCNAH8+7L6XvvTA6QCaO41Bo4Nce85/fcFaAQd+i39dPqdCgAEeu0ABYsDbv9x/ywCjPGwBa4JrfBB+3kKewCf7PYJDggo75IBTwiZ9YkBnQCz+7sGK/qz/uACSABYA5L8FPr0/+wMF/yA9zQCD/6EChAAn/KLANwDUgOy/2P0CANcB+j7lAKDAxH9KwLJBqwA5QKKBLgE0ggPBWYDQQqPCi4E5gaWC0YJMwbWB1YLFwpXB90GAwqzCgoE9gKuBrsFUgTwAqwBvAPdAcH++f/F/tv8Kv+L/An5Svt7/CL7R/iW+9/6wvmL+8D0iPgT/Fb49fjg9bH2/wG2+LPylwOl+PL2jgQr+37u+AL/AgH3Of7x+3T5zwVMBoPufAKAAa/8/wDz+iT64gICBzj0yv49C8f8mfVXCHQIAPMXACwDgQXLBmvvDANwEFsFrumVBToZ5uuD+lAOuAEn9yYGVPhrALUSXPXi7v0DWhQI9vDvlgJxBnABrfcN/5b6pAFMBd35H/nl/+EHDv3y9RMEUQiI+wP9FQOjB+v/wvxhDAgCFf+MB44FZAXyBPUEqgnEBwgEBQrACMcHCwdgBdkKrAnyA/MFYggdCIwGqQPaBBQEugPFA0gBfv9WAVoBSgD9/or6bvzy/8D9Evje9j/81f6I+CP3R/p7+z76+PXb/fr6hvIb+3L9u/kr+3n67fRsAxsBvvIZ+koBzgOu9Jn3WAPg/V792/7E+Kv/5Agf+u73zfvnC34CyPAa/gMLpQXw9TD4ZQm4DAbwbvvbCkYBePrBASX+V/rpC3H+8/GiBd4NFe6Y/MURtfPz/K8E+fdGChAAj+kEDtcL9epNA1UHJP2f/vz59wbHCkLt6fjWF1gDsep3AFwSVv1i+tIB4wZYA0b8IwPIAkkEDwV1/+IC/gczBEADFAZ8AwgE9QbfCB4DKwE/CZQJHAQTBMsHGQapBMgFcwOmAmsFJwRYAa8BlAGlAPAC8gFu+8P+OwBe/HX8XPud/OL8O/zs+gX6RP2f+9X3Kvrz/Ir4kvyH9gT5MQWN9ar7K/0g+/0Be/uz80sENgdt8DD8fwQJBwr3fvXbC0z84P2HASv1dQn0A5/t/wjhB7nwEwQGArz8QQYi8zIAiQrU+lH/V/lHA08DbvtxAkj6Rv58C1325/mkC3L8RfhpAZUEvvyu+UgCWP4M/iMDU/V2Bqb+w/S7DZr7r+1EDVgKk/B/+rUKJQVA918DzgLc/04HzP+m/z0CTAbPB3z9CP/bCD4HFwFLAmMBtAZwCZD/0v5TB5wH7wD6AFIFpwW6ABoEawckAawAWwZrBQMAxQF+BHgE9/9q/8EEmQNyAHP/Pv+VA2wE/PwQ/DABAQKzAFj82vlxBK0BpvYP/gYCiPqE/Jv+rP0c/hj+qPVpAeUE+O1SBKj9tvANEJL2C+g4EusAwe7e/qwGtPq58IcNfAPP51EKuAUb8EMOHfi9+Z4HJABh/w7yuRD8AAHrOA5h/4P3/woz+Gv4UwmFAgD5tvYaBbQE5fnf+W79EwSRBZHz5PtbB6r8uANG+6b2LgWjCjsAqut/CJkTK/NJ/4IKH/tz/5QL/wHH+2P+lgggCt/6VfqmCj0K1vpI/rIDfwVZBqz7WPwZCY0HXvzW/MkJ4AJ6+ZEIUAf1+bz+5gdUBb78lAIRBVT/ugTeBOD8oQCmBNcCswL6/LP9XAftA2v69P4CBWT/IvzO/zgAl//C+6r9OQMF/Ej7jv8sAoD2HP8fBcz1rPzyA9v8w/bPBmf9MPbvAcMChgDf8VgEXgfk9v38GwE2Am78rwS78FoCaBOR60cDO/5U+ccTJPG38xgMGP8A+/L9G/0RA7n6T/2yBGn5bv9o9w4HcwQd6LANVgUk584RtQEh7lQGJf5IB8z3Lfq1Cv/zdAigBz3tOAgiB3f+of5w+qQNHP6c+OgHZwj/9xf+kgsE/5b+s/5MBzkD+fa0AxEM0P1E9l0FvAh1Aa759P4/CuQCSvrrBO0Itfo9/lQLawg/9Yb8UxELBUT3MP2bDFcIDfpz/V0G1gfr/yT7DALyBGwB0gI4/CD+Ighs/wn5UgMhBGn98fwi/N0GGQA3+cr9cPyNCov8yu43BcQFzfug+m/2mAmkA87qjwnfBzD0s/U+BsQNlO7E+lYKYvgGBpQCCO37DuICJvE8B/YC+vlj9qAWu+/j8RMj0uzY8lAHmgdfBZjsl/HUGMUKSuDF/egOewCb98v8E//t/4cDCfxt+hv9YgRsCavt0APTCxXschNfAufmbhAxCIX3I/4TAKELHv5h9fAMlwVR9G8HagTj+bYDUgbN+0H9mwqh+5D9IAq4/+H5NAAZCnf/lvQtCZsJ1PQO/koKUgXG+Hb6gAiNCUj6k/iiBGcI6QIY+Qr/pwdAAyT96PwiB5IBBfosBOUDqP2L/gMBTQEVAwv7IgDHABgEr/5M9DgOKf2H9hIFuv0dBRT69fqVBYL9Bf5gBXn0Wv7lC6H0LP/5+VMKHgHC6OUOugMz8LELavXT98AP0PZK9agJBv4q7zQSo/3I5iwVY/zy74oHdwPD9c/7xgcs+TUF9PWE/gsGWP3cAyjwogO/C1X7zfq8/IoEdAcF/ZT7/ADb/tENKPtJ+P0C8QYSCHn0Af+KCDMHy/lt+GMKPQsg9Ff5ghSN+oX24gy6ACT7owFjAx8GNf+p+G0IbwZN/sD9YABOB9MCVv3s+mcHfQa4/2H8o/tfDGEDcvul/KP8oQoHCG3yHPh/D5ACqvXDAdMCZf16BUX4QP8xDXDy1/ymCtX+NvuU/sEBBfzzBl8BXOweCvQJUvBeBq8A0foGAqX8awUW/4z4KwFYA73/1P1a/osALgNjAaL1fAFnCh/5/PpyAQD81g4e9erzEBDR+oD+dvj7AsAHQu8PBKEC4PRaCS38q/DJCDYHfu8z+6AOJPJS+kUOnPD2AZcC/PNjFIP3GuwRFoUFa/HT/ikJPARV/Tn+7QFeCEoBuvZTEWb/P/FpEpwG4vOxAccIpwTb+wX+iwnn/yT8WAGRBYn/bP2S/r8DfwX4+3z4AAfSB3/4mvtLA9wCRv7JAHQAWvyq/iIHogOA9+L9fAWdA0f/Wvsh/3QFVwWn+Ib7GwfCCBH16vmBDDkCV/qD+CIIpgMd+j8A+gFd9ooIzQeA7pcGjfuPBp8JvuS8CHIIXABK/AbvoxBnAHT73QFY9T0IWgHW+NsIGfMK/AUbS+bR+f4XR/Ds+I8IYwKE9Wr41gdECwfq/f94/2sGEAkI5gb+wwtBCQny4+7JD+8L2+tPA3ABegSh/lz0fhV69pv1/BFP/PH7ZAfq+bUHHQfl92v8+gr9CcPzif2mDboB0flqAqEIDf8y9/gLOQso7gQE4RBB/K/3lwN2DkD/wfZTAPgIlwVD/Gb5CANcCHsAs/2P+34Aqgl5/Iz3jQfpAhj3twA5AQ0Ggv8T70YIWw3Y9yf0fQUFBxv9cfknBB/67wB2Dt3sd/8YDKr7Uu5vDt0K0+zi/FYDJgXOA3z4JPHrEtT9AfWGAHENtPq369sKsQplAUDvXvuRCQ0DpQBsAhTp9/9JHeb9qOTp+FQXxQgr5A8C/wgU83kTK/IW8jcNsAZL9kL4P/6uCK0EU/W5+EYCvgn4/Db90vrB/wMI7QGH9CcDDQY5/sH9XQNz/3UCqQca8HAHUw88+Mj5cQVDBbED/vmZ/3kLRfo5BHwEDfrHAnEDsQim/Pf3+Ah2BaICZ/zE+YUNBgV89zAAiwLaBr/+gfn8BowD7/7z+okAyAu3+vf3OgYHAdn/nQKQ98oExwLHAHn6/PtJC8H4fP30A3T5pgJoA5n1aAwI97X77QtX8Z8L9fce/SIKzO5UDtH4yfrtCr32xf839x4Rnf3+6TYKwwHvALH94PYXAhoEpP4Q/HP4ywiyAwvwfQUN/+cEQ/lT+k4IHvefCNv+he3nDcIFuvOkAvn4jwddBVnxmQIvBmMAEPul+YgI5AHN+aP86wAUB44Cpe8TA3cT4fc/9JYKLAJV+qoHsQN0+M4BnQldAhYDwPk1BQIM0Py6An8HS/0MA80FeAYFAbn84wdoBcj+RACQAyQG+/7s+iIC7gam//H6qvyfAHYHR/pt+4D/lAAV/RX+P/7H/EkCw/dHBLv7ZvdDB1z9z/fiCPb+rvJ/CEIBL/qOA+sAYfeIB5MEE/X3A7ID4v3K/8j+K/xlCYP5Q/mxCF/9kvzx+SEM7/0y9WoE0vtKCRgFq+jB/T0Z0vxX8Kn6zwS/DM78QPWn+XkHhwJEAT/+pu7KBKkHcv2q+lT4owCXBuz37fsOAvoAbgDo8gcBgggmAMv0Cvy4BQoENP7m/Gn7JAFLC6f5ffvIBZIBhgDSAUoA6QFBBksDv/7QAUoHnwFTAAMIQQGEAuADhAFXBs0FMANj/00DWwXuA3z/EwF1ApIBpAT9ADL+N/7jA1MCWv4V/b/+qgHU/VX9sf4jA9sBG/qH/fn+1ABbA677OPpY/9wEwf+1+sj+lQPc/lf8HAIl/mAAiPzS/IMFggF2+0z6CAPKA73/D/n2/MoCnf7DBKX7h/aXBAEB9P32Acn7Hfzo/EL/fwYi+9n2twFYAU//RP1g+sEB2/7++0b/bvt8BDj8yPcnAuX/HgIu/Sj66gDRAz/7lvzyA1/+vP2O/34AQwDm/K//wwP9/9/82f+xAtkB3/yJ/kUFBgS8/VL/HAMvBaICPwEWA/oBAwNsBKICTQGgBWwDLANTAk0EOAb6AeoA9gIvBgYD3QGCAcUC4AN8AV//IgIEAzoA+/8q/z8BagLt/X38ugAnAHD+Wv64/Qb+i/8Z/Vr95f45/YL/r/5//Gj//f66/Zv/fP4Y/j8AEwSD/6777f5PA+0Afv4DA68Bufm+/XIGSwGAAXf7dvkJBvgB1/3J+Wv4xARdBBv7UfN4+qQDkALS+8LzAPtpAJn/Cfoi/Mf7ivs0/lb9ZQCs+XD8OwLS/bz71wKZ/+H78P+H/pQAZgRVAVX9cf8VAIcCSwJhAVL/WgDMARgD4QX3AzcGeQfWB/AGZgWnBrsHAQjFClwJ/getCo0J1AjkCRsJ7AiPCG0FlwOtAgYDBgNfA9cByP5s/sj+NPt4+VD7dfzj+ev1yvYl+JX4PPiT+KD43Pj5+VD55fhw+jv8rvwu/Tn/tv4l/rj/9AERBEsCNAHbAZIDMQQsA+ICZAOKBaADVQFYAk0D2QKmAbT/R/9UAp//9v1P/Z/9RP9Q+p/7hf4++bL6gP46+ED4sPmU/PT90/i297f5hPyN/UL+I/hv+Mf9IP2X/uT8h/gk+Rr/kP/C/Mn7Qf3P+z/8YACZ/on96/y6/wP/t/v2/ioDygH2/ar9fAKNB3UKMw7yC7AISAjWB40L3xFwEjUPJw22DS0SmBPQEDoRoRAcDYQKsAfwBSQGdwN3ArIFBgQFAEr8q/kz+M72uPWs9LXyAPCb7jHw/PH+8I/xFfOM8V3vy/CL8nDzHvTZ9oH56vw0/ab8HAGOAkcEVgUzBhkIfQmRCPQJJQ1kDdQO5w01C1UJPwpcCbkIYgj7BGgE3gMiAdf/Yf6C/Vj8yfks+Mn15vUw9gP2jveL9Hvyh/Qe9HDzKfUY97z1m/UA/Av6APjA+yL8s/wT/Ez8OP1w/Hv90gFlAVP9qv5hAgoC3P+3/Gj+agLgAcr+Xf7G/2wD8AxuESQSjg5nCBUInwq5DSkT8hSHEhIQPRGoE1sVMRYRFbwQ2wrkB+EEsAXXBLoB1gADAQkA7/vY98f0P/FL7q/u2e3H63nrL+sQ7KTtLO7E78TwQ/DT7/3v/PGk9xv6Dvss/msAFASgBRYGMQcVCZYLMguoDDMO4Q9eEJUPWRC3D98OzAuhCQ4IdAfhBoUEogMVA3kCP/5u+zb6dPjm9VHzE/R989by6PH+81H1xvKN82n0DvU59HP1p/e99u73Pvqj+439nf1q/v/8Pfx+/xz/if/fAJf/5f8MAab/T/6d/Qz/0P3//L//+P0R/mr/Uf05/VcAHQj5D/wPQgyzCZMIQgqyDbUQgBTjFTAV2xQNFrYWthXvE4YRVQ9JDMUI8QcxBvsC2QCtAVEC8fxt+Uv23PAR7fHpA+m36qbrdetB64nqS+yC7c7tu+5S70fyTfRW9GT3Ovpc/hoDZAQ2B9IJzgtzDA8LugsdDtwNfg1DDtQOchBHDq4PBQ/yCoQJAgWAAoIBewFeAI/8EvsX+9r4PPgq+VD3I/b/8zjxI/Dh8U7yK/Lc9Sr39Pcw+A34hPo/+hj6x/vx+7f9J/8I/lr/ZQCuADYB6ADd/WX9wP2C/Q/+Ef1j/fT8Tf1B/Er8efyq+9D98gRFDbARARQWD+YKags6DUoSZBZZGK4ZHRprGPIWyxdmF7YUtg5qC5IL4giVBmEDTf9L/Rf9Evoe9qzyse6z7AXpxuZi5tzmfemI6aPnq+jU6mPsyexL7cHulPPw93T6D/6zAOsDngRoBVMIFQudDAcOzw9OD5EQQxL6EWcQThGTEF8MnQvpCUUHFAaJBKIELgOPACr/5vz2+xD5bvSN8grz/PJR8oTxf/Jl9Uj0y/RK9ZL08fRu9Ov2u/iw+jv+Ef8QAOIBrADe/nwB+wHp/x7+QP+H//T+lv3N/GP/Vfzh+lD6BviT+I/5KPmY+8b6gfk9/T0BwggoEG0WQBdTEhIPbw8VEfYUNhkwHssgYCGpIOsejh20F1ESYA8wC5gHPgdABPv/jfzI+Cr3e/NY7nvqTOeH5Kngud6B38PiouXl5qfnEung7MftKe2C7aDw+PSn+KX7nQIDCv0KTwwuDpwPjxGHEn8RlBFBERsOHRBjEn0RexByD2QNkQgoBuUEmAB//B36+fja+FD5Effa9nX3sfWH9T3zhPFv8TPxrPHb80v1Tvht+r35Xvt9/Ov9yfxl+9b83/zo/RP/+P2H/vEAnwHu/5L+hPwr/In8KPsQ/Gf8dvom+nb5c/ht+cD6sPtQ+9v7X/5NAYoHshDaF88Z6RZNFDcUDBPtFMYYJBslHm8hpyJ2IeUfZxvkFKQM+QUABMcCqgDb/dn77vkq9ybz/e7Z7NroVOQ94sbgj98g4Hvii+RC5+7oZ+vr7vXviPHm8gP1N/h0+87/AgWYCaELwQ3cDp8QDhJpEn0SzRFKEv8SXxNpEoIQIw81DbwK+Ad9BQgE+gH2/u38TvsH+Vv3qvVp8vnwrfDp7hrvVfBm8ZXybPMy9Dz3kfiQ9zr4yfkc/Zn+qABIAiADfwXBBVIFpQV1BBYDTwI6AID/I/8e/nf+QP4k/Qn6Jvh4+KD4hfat9Wz3W/e49yP4BPms+YT9ZgIdCAkQzxULGcAXdRZ8FJ8TqhTXFUcYQRtPHpUfwR+DHVEZFxN5C38Elf9z/Q78q/lQ9wz2rfUm8yHvyetU5/vjKOEh31zhweTe5dHmhunm7M7uJe+M8WH06/Vv+BP8swHjBPoHAQxHDlsQ+hFqE8cTkhNoE0gSdBBXD/INlwwNDE0LLAsTCcgFCgKJ/Rf7uPiC9VPzcvID85v0LvWE9ev1//Vo9QHzxPDv8U30kvVX+DD8lf9TAZIBEwIXAgoB9v+X/3z/7v+dAFgAOwIjA3sBagE2AXsAI/8F/UX7+vnC+Qv5h/f29nz4Avho99b4dPnL+UH6t/2vAeoI9RBoFA8WyBYNF7QViRUuFQsWRRjzGPIbjB9RIoQhvBznFe4NowemAR38GPgN97/2g/ax9Zr0hvQb8AzqxeOn3l3dW9w+3QXgX+SP6TPuqvEr9Bz20PZ293r4J/wmAPIDKAhjDPYRTxQwFWEWihXiE48StxCiDk4N1Qz0DDcM5AqsCKUFYQLi/Qv7+fjD9VH0EPT287Py3/Gl8l7xGPFD8mvys/K58gz05Pan+Kz6tfzd/f0A1QGxAYEEVAX8BbcHgAjfBwwInwkTCWsHfQWOA6ICTQGO/nn8Xvuc+gn6gPcR9n30V/Of8vPxuvQn9nf1A/Wz9Wz3DfnX/QEIHw9BEhoWThhrGmManhgfGCoXihZJFwsZTxxxHsgdARq9FA0QiQkGA+b8uPbA83DxLO5W7qfv7u4j7Z3qdOjB5JThquCC4O/il+bY6YDusPOH+HX8Mv4e/wwAIgF1At4DAgdTCmgN+hD8EnEVBxf5FAwToRBFDXoLfQkACPUGxgRSBIMDRAFE/678C/px9v7z5vN78jzyYvLb8aP0s/ZE95D4iPgb+RD6SPrv+zT+BwBNATYB0AHMAmwDqwRABBwE4wQ8BNMCswFyASQA2f3N+xj6H/mj+aD5o/mn+Ov28vi79zv01PSQ9O/y7/ED82r1Fvhn+6L/sAXCDuIVJBhPGtka7BnlF2QVdxWZFeUW1BlCHFsg9iLAIFocBBUEDI4Dx/u49uvzffKP8kHzKfTU8+7x8O1O6IDjON8h3eHdNt8p49LoLu8r9WD4P/sF/ab84vz//ZYApAQdCAQMUBDeE6kV0RQKFEMS9w5dDdEMuAtNC+0JewhHB0cF3gOfARz/2fwH+v/3RvZl9Bv0afRI9GP0ffQK9UT1DPXX9Sr2+PVJ9vn2W/jj+t79uP/rAHABNgJNBEIECALvAvYDTQMaBBYFdgX5BP0DVAN1AhABfP4e/Bf7H/oC+db4YvhS+EP4qfZc9fL06fXB9g/3h/ie+qX8MgBxBsUM2BE3FakXpxmeGOIVMBQKExISwBG3EkcWMhoKGyAawRZlERwLrAGx92nw4uvU6bfpbuz+8GH08PXU9DjxfOy55vPhXt/W3g7jDuoo8dj4O/+7BEwI3QffBU8DnQC2/4P/9gFGCJkObhLkFEsXlxf4Ex0PswqrBgoExwHHAKQCNQTQA7MCrwE7/+b7EPlb9tn01/RL9br0hPQl9RP2X/YP9s727vc3+SL6Hfuh/D3+HP/g/74APwGSAq8DkATKBFgEcwSOBHcDVgFKALH/m/7Z/YD9lPw7/FX89ftQ+9360vrn+Jf3Ifcn9mj2cfaD9yv7eP+VBBcKxg5oFPkWMRbTFo4WohU/E2IQxhAHEnkTWBVtF80Yrhc5FIQPDglqAY/6QfTy76DtI+7u7+jwJPP287DybfBU7djpg+bX5PLkz+aY6R/u4fPe+Or8zv8gAS0Amf/i/6UAVAIfBagIbwxgEPoS5BRvFfgTzRHqDuALaQkgCB0HhwWyBKIDnwEKAOT+Rv02+mr3b/Yt9HbyofNK84byTvMg9I31xfX79af3/vi0+kj7T/yx/pf+i/2x/tH/DgDrADkCbwNzBNEEaASQBAIE4AIOAkQAif9f/zv+f/yu+ln64foo+SH3ovYG94H3qfY891D43PhX+939LAIRCsQP2RJ1FfkWfRekFU0SRxD5DZ0LvAwyER8WxxkSGzYZHhWuDtEG6f6F+FjzUO8Y72Xycfbw+Qn70/mm9x3z4O3u6AHl5uOg5Enou+6A9BT5cv2y/zAAAwDX/9z/1/+CAYAD5wWGCQgMBA5HD8QOIw4IDccKxwn8CEEIEAh2B/oGxAX9A+kBN/9l/Fv6mfiB9xz3QvYG9gH2WvaH9k32VvZ49sX2/faF9674jfpD/Hv9vP5wAAwChQITA18D8gJ1AlMBPQCV/6n/FwBm/zT+gP3d/Er8afpN+Mz3b/aS9MXzSvQR9uz3u/hn+jT+zALlBu0LBxDtEvUW5ReKFoUWrRVqE+wQlw/HEdAUpBaeF3gXVRfOFDUOQQfAADP6WvP47UvtyO6I8WP0fvUe9vH01vFt7iLqgeYy5aTktOYb63LwVvaE+qP9nf80ADgAyP8ZAJQBlANkBoYJJw28EBMTDhTOE5gSZRDsDbYLownxB2AGsATKA/YCrQErADf+Dv2P+xr59ffF9sX0hvNu8j/ynvLx8jL02/VH9/74JPq9+gf7t/o6+5772fvg/N39O/9lAE8B7QK2BIEFgwX3BBQEiwO3AZf/kP5L/Tv8qPvu+gv6mvne+ED4HfjT+Dr6x/u8/tUB8ASECFELZg4JEWIRARGJEdIRDBKuEmcTVBTnFPgUkBSvExwS3A4rCgQGiQLX/nf7oPjV9i72jfQH82vyb/HB7xft6OoH6nnpsOhO6ajrqe768fz0Ofj6+q78+/09/2cAygG8A0kF/gYSCesKWAwIDWENOQ2BDPgLqgsuCzQKiQl7CKsG8AQGAwUBEf8c/XL7cvrw+FT3R/br9HD0TfRW9N30RPUV9if3IfgY+ez5cPuE/cX+TgA2AlEDvwOfAxwDoQIYAlwBJgC+/kL+5P2f/cr9Rv6J/gP+WvxM+v340/dz9on1bvWC9uf4qPuC/1QEdwh3C4EN6g7lD/wP6g6ODQgNFg2rDUwPLRHpElIUfhR1EzISdg8uC/AFNAA0/Kf5vfdz92L4R/lX+mT6e/l493vzYu+j64zoo+eD6NLq5e4i87/36vsg/pv/nf+f/jT+qv2N/v0AqQMLB4QKgQ25D/cQrhAhDzUNbAviCXYIzwdkB2kGPAVOBC4D6QF9AFP+afzb+m354Pcu9sz0TvML8lDxPvG+8ezyE/Qp9Z32kfhO+lX7cvyj/eT+2f++ABMCVgNfBOcEEgVFBZMEiwOhAsABLgEkAL/+zv0O/R/7WfkG+Nr2HvZn9Wz2ePmW/EYAOgV3CYwMOA6gDtMOgw3QChsIqwaMB7cJyAynEAgUQBZ1Fu0TTBDeC5kFc//n+Vj2Bvby9sz4svsK/oT+NP2K+ir3MfP57t/rsOoV7PnuZPIP9zz7CP6Z/ysAvgC5AAMAAADrAJkCbwUVCJsK0QwNDrAOVg4wDSMM8QoFCQ4HZgX0A+0CewFk/2X9wvtv+r34Y/eD9gz1Y/M28mvx1PDl8Hbxk/IT9Nn1TvgZ+iv7vvzo/Zv+LP+9/8kAFwIjA4UE4wUUBrIFCAXyA5ACJQFyANn/oP/j/6n/gv87/0T+1PxV+2T6zfr2+3P+8QGDBZEJzAuoDCoNCAx9CZwGSQSpA2EE/gW3CcQNgRBTEgESxA8nDB0HpgGU/AL5c/dJ9zr4z/l0+678Ef2n+w/5avaA88Dwiu4c7jnviPE59E33KfvQ/osBEQMxBKsEfwTMA/sD8gT5BYIHEwmWChEMwwzTDJ4MsQswCi8I5wWoA8wBAwB3/t38WvtM+lX55fhC+Ef30/Z+9k/10vSP9BH0RPQQ9F70ovXc9k74+fkp+0r86/2L/xcB8QH5AnYEcQVMBq4GjAYsBvAEhQMDAjsABv/m/fb7mvrn+TP5wfh/+D/6cv1lAN4D0AcMC7sN2A75DRMNoQthCZ4H6gZrCLELsg6wEbYTfhShE0MPlAliBMH+R/mF9Vr0J/a5+Mf64vwa/g7+i/tN9wnz+e4G7G7q6upZ7kzzUvh9/L//NgIhA7UC4gHzAOX/if9VAAoCRAQNBzYJoQrRC+ILcQusCn0JUwj5BmYFHgSHAwgDwQFTAFT/hP7t/Bv7zfnP+Ar36/Ss86jy8/Ft8W/xTPK682H14PYs+GD5Fvo4+q76L/tZ+4j7wvxL/vL/SAKMA9wDDQSOA4cCwQHJAJX/b/9u/1L/J/+4/h7+wf0R/rb/+wKXBsAJ4Az6D5YRIBEAD8ULKAg6BccCvwJ6BhcL8A8pFAcXkxipFr4QBwkwARL6e/Rg8Qfyh/XE+TL+ZwH9AtUBt/0N+GnxwOtp6NjnV+px77H1vPt3AOsDVwVbBF0CfP8Q/Sv85Pyx/4ADBQe4CvQM1Q1JDvQMbAobBzcEnwGk/yX/pP5w/v3+1f7Q/g//Dv7Q/Mn6v/hd97P1jfSR8yvz8/Om9B72CPin+XL7pvxV/TT9ffxM/O/7SPuL+yL8e/0w/y8A8gFAA6QDKATgA84CSAH7/nT8wvpD+VT38vYA+TD9xQEJB5IM1BCWE4kTQxGGDjsLEgf5A6YDWwbMCvwP3hRkGD8ZJBcvEgwLxQOv/NX2s/Ne9Gj3Rfv2/isBWAFd/0P7qvXP8LjsL+oM6j/s4fA59aT4CvwY/k3+cP0n/B784vxa/Vr/ZgJHBYgHJwlVCmUKMgqACXkI9gh0CQEJ2AjjB38GzAQIAov/of36+9L62vna+UH6Dfqi+b/4g/cX9qz0//PF89Tz+vRv9t73j/nd+s37XPzF/Cn9Mv3v/Rb/4//kAN4BqgIaAxgDQgJyAU4A8v43/nn91/wV/eT9/f4bAcEDPgZaCPgJ/QosC14KPQlaCAsH9wUvBlIHHgkGC6IMVA4xDxIO8AvkCBoFIgH4/Gb6+fmD+vr7IP5OABoCJwJhAGH9W/lP9bDxUu9272nx5PSV+Sz+zAFmBDEFlwMTAWz+T/wF+wD7nfw9/5cC4QXWB4gILwgvBowD2wBW/gr94vyN/en+WgBwATsCqAEFAJ3+5vyP+5X6H/pg+pz62/qI+sD5B/kd+Bb3zvYh98r30/j8+U77afyf/Bn8ofsS+8L6k/p7+o37A/4RAXEEawgwDIMPbBHdEawRFhB+DWgKfwfCBd8FeAeuCR8MPg6ID0oP8AwXCRQES/4k+ZT1VfRu9e73EvsD/k8ASwGYAHX+wvrB9nXzePF68T3zRvYC+qP9rwAVA2QEUAT/AgMBY/+v/pT+E/9sAGwCfwQoBmIHEgjJB6sGFgU+A7wBbgBN/4D+A/77/Sv+NP4w/gP+Xv1c/AD7qfml+Kn3qPZf9rj2X/dg+IX58foO/Kj8/fwk/Tn9NP1B/V79Bf7y/s7/0gCZASMCMgKmAfYAQQCL/9n+if4B/zIApAHyAhQEbQW9BnsH0Af3B+wHtQdQB+oG6Aa3Bo8GkwZnBqMG2AbYBm0GdgUzBLECHAGQ/zL+Ff17/FP8sfxj/dv9Y/5C/nP9nPyu+9L6EvqF+W35APoQ+5T85v3w/rj/CgAwADsALwAXABMAdAA5AQoCCAMUBK0E6QSOBMwDEQMTAggBOgDO/7z/m/9+/2T/CP96/qb9n/zS+yn73/rb+tj6APso+0b7IPvh+oH6FvrW+Rn6u/q7+9D85P3F/gj/J/+Z/tD98fwH/Jb72fsg/Sz/wwGJBFAHiAnKCh4LdQpBCYgHxAXnBA0FBwaEBysJ9gpYDIcMygv0CYEHzASvARb/Sv1P/Cv8WvzL/IL9Hv4F/mn9Evwt+gD4E/a69D/0IPWS9qX4Mfvg/ScAhAH7AdkBBwEAADv/8P6D/7UAXQIlBA8GeQdRCGUIZAfLBdkDCgKRAL//oP+4/ysAwABBAZIBJAEpANL+Uf0J/Ob68PmZ+b35OPoD++T77fyS/d79wf2G/U/9CP28/KH8Bf2J/T/+Ef/I/z0AZwA/ACYACgDR/4P/bv+X/9D/4//R/6j/jv+t/6D/xv8rAAcBwwFUAt4CRAOMA10D8AK1Ap8CswIVA6kDmwS5BUoGdAZdBq4FzASrA1MCEAErALz/rf///3cAzADQAK8ABQDB/lz95Puy+tH5a/mX+Tb6Ovts/KH9cf70/iH/Hv+d/jD+Gv4n/oX+Of99AMAB1QKoAzsEsAR2BJkD0wLxARABHgBu/0f/Yf9m/2r/rf/T/w4A6f+f/3j//f5z/sr9Vv3m/JT8d/xa/LH8P/2U/bP90P3K/Y/95Pxu/Ob7cvt9+6f7HvzH/Jj9CP+AAPIBwQNrBasGMQdrBysHiAZvBTEEXwM3AyUEYAXdBoIIiwnFCRUJKwfeBIQCLwCJ/rj9yf22/u7/zABIAeoAjP+o/Ur7EPmF9+L2O/cs+NH5s/s2/V/+i/4T/lX9efzP+5z7K/z//D/+qP/zAAUC1QJHAykD3AKOAkgCTwIuAgwCBQLBAdIBowGEAY0BSwH8ALoAmAA4AJD/0v5A/tL9j/2o/Rj+lv4E/0b/bP9z/xr/ev6Q/RX9Gf00/YD9HP7I/lb/w/+t/1r/5f4s/pv9Wv2G/TT+vP6H/0QAfQDDAMsAiwA/ABUAMgB3ANQAmwFUAtkCeAO2A6ADZAMcA9kCdQIOAtIBvAHiAckBmQGvAV4BBQF3AA4AyP9k/yH/9P7p/r/+rf5T/uT9xf2m/XD9if2v/dv9Kf5W/oX+pv62/sr+Af9G/+D/bgAKAbEBXAIDA34DwQPjAzAEUgR4BH4EvQTTBM0EuAQxBKADGAOAAgYCrQFIAfoAlgBBANX/S/98/sf9J/2j/Jb8x/z2/D/9wf3y/f394P1q/e/8bPwX/Dj8qPw//ZT9Bf5U/j3+2/1h/cP8Svzk+337e/uw+3L80vw4/c79Wv6+/vT+J/8N/9P+nf6v/if/2v/vANcCwQR0BgkI1gijCOwHegaVBA0DBgLXASICdwN8BS0HIggyCFAHPAVEAiP/0PyI+w775Ptn/Sn/yQC6AdsBmABY/u/72Pl6+Cb4B/me+rP8+/6RAGoBNAEQAKr+rP3L/KP8cP2v/i0AaQHcAmgDVgO1Am4BVwDZ/7T/8v/fAJgBUQLTAuQCbgITAZX/Pf5C/ZT8lPwk/dX9mf4n/yr/XP5W/U78P/te+hT6UPpV++v8Z/6m/6gADgH/AHkAr/8y/6v+4P5v/2sA9gE+A0cE3gQABZUEogOkAqwBIgH6ABwB/QEGA+0DZgROBNoD+QLpAc4Avf8w/yX/Y//9/58ATQF7AWoBEAE2AKv/O//X/rj+5/49/+3/iQCxAEQBiQGkAawBQgHzAIQATwAFAJ//O/8j/2b/ov+8/4z/if8M/0j+sf0M/Zb8MPwM/Ez8wPxc/QP+ev6h/sH+pv6E/q/+lv6q/uX+D/+M/wMAUwCaAMkA4AChACcA9P/G/3P/d/+f/8P/PwDDAEoBpAEKAg8CyQF8AeQAewDr/2P/Vv+J//v/iADLAAUBRAE/AdAAGwBm//j+vP6L/pf+Hv9d/3H/mf+d/3X/CP+z/kL+J/4g/lT+3P5f/87/BQBGAD8ANAASAL3/6f8OAGsAFQG3AUsCgAKSAmoCLgIMAu8BuAHFAR4CnwIKA0cDdwMqA5cC4AE2AWkA5f+8/4n/jv+i/3X/Wv9E/8j+T/7Z/WP9Cv3z/Pz8Jf1w/Zv91P0K/in+T/55/o3+of7c/k3/sf8MAFoAdACPAKoAiAB5AFoAUQBsAIAA2wAOAU0BjQGUAWUBLgHWAIAATgAJAP3/CgBRAIYAgACJAKYAbgAiAPL/v/+D/0n/VP9x/2//df9+/6v///9KAKwA3wD/AAwBywBMANr/l/9s/37/yP9MALkAUQFqAUoB/QAVAE//mf4I/tT96/00/qr+Mv+i/87/nf8n/43+9v2o/ZD9qv1j/lT/IgAcAb4BDgIPAscBZwHxAPEAAQFlAfYBdQL7Aj4DPgMNA3oCoQERAWwAKwD5/97/FwArAEwAEgDV/4P/Hv+f/kL+//37/Sf+aP6z/u/+Mv80/xz/0/56/iz+MP5A/nn++P54//L/JACJAKYAXADQ/1b/0P6W/q/+4v5H/7T/WADdAP0ABQEOAaYAVwD9/+X/8v8tAHUA5gCdAegBMgJCAjsCDwLHAVoB8QDOAKwAiQB9AHsArACcAIgArACxAIAALQDI/3f/BP+E/nf+aP5N/pD+7f5E/37/lf+H/0f/9v6N/mH+Yf6N/vT+bv8QAI8A2QD9AN0AkgAQAOX/vf98/73/JgBgAKgADAH0ALEAUwAAAJD/Rv8c/xX/Tf98/7H/uv+9/5T/VP8D/8H+s/6z/r7+x/4M/zL/Pf9W/2//d/9o/1j/Zv91/1b/Tf9R/1b/Uf9x/7r/8P8bAHsA1gDMANAAtQBRABIA7v+X/6v/FwCIAOIASAHBAf8B1AFNAREBtQBgABUAHgBDAF4A1gDzABMBKQEpAQ4B9ADfAK8AuQClAHQAWgBBAEwALQBGAH4AggCAAJYArACJAFMABwDi/4X/qf/F/6L/5//i/97/6f/Q/7T/eP9E/zD/1f7B/sj+4P4g/1v/sv/r/x0AHQAdAB0A0P+0/6L/l/+8/9z/DABaAHUAlgCqAKYAiwBjAE4AIgAtADgAQQBRAEgATABPADAAGQDp/7L/l/91/z3/I/9A/yD/If8T/yD/RP83/zf/Qv85//T+4P7t/un+xf7S/v3+1/7//hP/Jf9A/xr/Qv9z/5f/2v8HAFEAkgDHAP8AKwEnAQoBOwFEASkBSAF5AZQBowGsAaQBVgH6AKwAOwC6/6n/lP+F/6//qP/u//b/7v/D/63/mf9W/0D/Jf9S/4P/lf/i/zYAUwBPAGcAiACWAIIAaQCGAIgAnAC3ANkA3wDtAAEBAwERARABEAHLAIIAOwATAPf/vf+4/8r/wf+t/7j/nf9R/zf/v/6C/on+kv7D/gH/LP83/1L/Y/+J/1b/J/8w/0T/Vv9z/8b/EgBTAGUAYwBEACsA+/+0/8b/xv+8/+X/AwD//yQAQQBGAD8AFQD2/87/vf+0/7j/0f/u/ycAgACaALEAvgC8AK4AkgBsADAANgA4AD0AbACCAHsAfQCEAJIAiACYAJEAeQCRAJoAfQCEAJoAiQB0AHUAkgCoAHUAZQByADsAGQAAAA4ABwDp/+P/2f/Q/9X/0f/D/87/v/+9/5D/RP9L/zf/Jf9P/3r/rf8DAAkABQDp/8H/bP9G/1H/I/9o/5T/gv+g/7b/v/+g/4D/d/9v/3z/oP+p/8j/HQBEACIALQAQAPf/KwAeADYATgBXAH4AuQD4ANsAYQDQ/7H/yP/R/5//rf/O/9r/9/+2/7H/ov8g/7/+jf6z/uT+Af87/5D/v//a/9D/w/+4/47/hf93/7H/9P9hAMwAIAFEAVYBUwEcAQwB5gDfAM4A7QAQARwBIAE5ARwBCgHZAIsATAD0/9r/wf/I/+D/6f/K/7j/kv9h/zv/Kv8n/zD/W/9m/5v/rf+M/5//rf+v/5X/fP+o/87/5f/3/0QAYABeAFUAOgAtAAAA4P/n/8H/qP/M/+L//f8/AGkAfQCWAIIAZwA0ABIA8v/e//3/GQA7AEoAcACGAGsAZQA9AOv/uP+x/5D/if/V/+D/5//0/+v/w/+Q/1L/Df8B///+Of+V/8P/4P/t/97/sv+Q/4z/pP+p/9z/RACRALEAywDoAOAAnQBDACAA/f/g//v/JAAvAEEAYAA/ABMA7v/n//f/EABKAC8AQwB1ABUArf98/1H/MP9u/8j/MADMAPgAFwHbAGcAAwCf/zv/BP9d/8X/OwCcAOQA7QDHAHkA4/+i/1v/Bv8s/2j/qf/j/0QAhgBwAGwARAAtANn/df9H/0v/Y/+Q/9n/JgBwAJgAiABEABUApP9L/zf/GP8+/2r/ev/D/xMATgCSAGwAZQAwANf/5f/M/8b/4/8kADsATwBwAKYAmgAiABkAQwAtABkAHQAgAD0AXAA7ABkAGwD5/9D/1f/K/9P/9/8KADsAHQAJADIA9/+8/7b/g/9j/7H/5f8DAC0AMgABAAMAGQDX//f/DADO/+7/PQBKAEoARAAQAAEA5//a/x0AKQD5//f/8v+RAHAAWP83//f/AQB+/7T/2f/l/5//r////6j/lP9U/5T+Zf4B/13/vP+v/7//1f+F/13/df9+/yH/jP/n/yQAiwC+AC0AJABnABUAvP9IANYAkgBjAJgA5gB+AbgBuQDJAFoACQCIAM4AXgCp/zIA+gHZASUB0ACQ/3P/BQDy/zIAGwGPAC7/aP8XAO7/lf+v/1L/2f4B/0L/pP93/yf/Yf8s/8j+yv8JACAAsQAmAO7/VQCGAKoAVwAmAJwAvgDOAA4B8QA9AI7/3P++ALkAlAC8AHUAdAChAE4APwArAFT/7/6i/5T/Nf/5/lH/jv+H/+3//f94/1v/T/+L/pv+MP8Y/97/aQAW/8z+m//2/4YAjwAmAGUADgBJ/5n/GQAiANr/sf9yAPQASACM/2T/O/8a/3z/kQAVAR4Ai/8c/zL+mf42AD0B4AEZAcb/CQAG/+/9AQDdAOIAeQLvAdn/yP9KAEYA7wD4AAoAxf9gAEoAFwCRAGcAev68/WEAJQFh//b+eP90AMcAMv/5/v3/7f+A/13/W/+aABEDmAH4/kYAq/+Z/wMC1ADB/zsAeP+fABEBjP+O/xkBwAGp/y7+Qv9yACUB5//k/vb+nf53AFYBQv5G/jYApgDu/0j+DAABATn/BP9J/sH+xQF1Asj/Af6A/2kA7v+PACMCPQK2/4/9mP1uAboEtAP7/6H7ef1IAZwAPQF7AYgA2v/r/VMB1QGs+zL9ywC+AZ8CKQBc/KP9CgLtAa8AXgGm/+39lv3D/pwANwITA5T/1f+sAQX9lv1RAVEAxQGJAA3/1gCS/bz+RgIDAWwAtv8s/kf/ev/a/y8AYQAlAYf+Yf+zAUL/9v6hAIL/NgHiAAb+UwAyAB0AWgKzAW7+x/wB/gcAEQHoANUB9AA9/8f9GP5cANACDQNXAGH/8/yU/XcBCATcA47/7voJ/HAAagLIBOUC2f1z/on/0v3T/soBVAI9AU//Uf4K/b/+wgBNAWwAqP6i/8sABwG+/Az+MAJjAGb/bAH7/lv/owHJ/br+nQD8AOsCDAGz+/D+bwQPAmf7EPy0A60E6AAk/ez7HP+xAUEAYwMVA6/+Vv93/qEA8P8X/X0APQKv/bz96QHn/+f+6QFrAK/8d/3VAvEBy/y//g3/QP7xAFQCJQKH/Qf8PgNqA6r+rf+//uj9wgDZAUIBXP5eAOsAIgCsACQApgG+AOL9SPuFAiQHhvyu+HEFcQMj/roB//0b+5YC2QOp/7b+Af68/ugAswH6AHf+n/6kAUj+iABvBA8Cdvp9/KoBEwD9AGwEewCu/P/9F/vIAnsHTf3q/FEDEP3m/Br/cwJEA24Asv+t/sz+lv0pAXwCOwEGAqb/i/2sACUBh/5RA60CawAG/i/7+/+L/ZMExQlr/Hb3SgZYBMD5oPoy/4MEcQJjAUr9BwDSAPT8LQCHAXUA0gIO/qD6GAKHAz/+nQH2Asv8cPzxAcMCO/8MAVoAJ/1W/WQDDAJV/bIFKwHM+Hf9/QFsAcP9SQIWBVP9y/oF/DoAOwT4AE0BfQA4/Gv4+P33Bj0JhgDp9iz4lwULBe/9wwNcAZH8G/tL/ikCWQVq/yD9LAI4AHX8KQHKAz7/MP6J/tMD4ABT+uADTQGs/dv8uP0+BtABIgEi/Ov2VAO7CEYBj/tA+CUCmQWD/4YAvvzg/OADiwJ8/kf/j/xPAkUFA/7K/sz/Bv7DAaoCnwCzAfn+Uf80AV3/HP3rARQHsf+e+wMBIf9+AeIDlv3oAMH/uQDC/MX8lwRR/Yn9XQRUBHj/IvwQ+lX7AAgeBCz5bAJDAH/5CANkA/j7if5nAZf+uAM7Awv5FwB1ArT6VgNLBQz8If91/rUBIgJq/uIB4gAT/3H/Wv0f+rQFKgWi/pL+8PmGAAwLP/2P9EQDugFqA2gC5vrj/2wDGv9R/kf/uv9zAj0DOf/r/e3+kP4CBQP/afwuAQMAeP8MAyP/l/jtArgD4P79AHf9SP7JAPT/HAEnArr8Xf5sBCX+pP3vAbYDrwGR/K78CP41A3MF6/+6/U/+1f7xAJb+2f05CpMEvPY++a3/UQmeBKn6Mv2q+w4CfQZW/aYBMAO29zT+8AQ3AokCy/pW+G4DsQvi/732HP8RBUn/Zf74AVgB+/4c/wX+TQEjBOj90P9qAXf+WABJ/nX99ARG/w79bwYe/XD61wCsAHAAvAD9/mP9EgBC/8j/XgDCAHf/O/+CAVv/9v0B/iz/gwQcA6j9LAL///X6HP6QAhYEVv/B/mEBXP2j/TMDE//t/xsFi/7C+U39BwaSAuT+IADy//r5Cft4B9UEc/7h+uL+HAKZAQUClv40/BQEowHZ/CMCS/2lALoC8gFu+yn8+QSJAtIBOQHV+Kv+GwjH+4z/+QJj/d0BcwTr/V79//3gANgH1f0U+fQBvwTA+xX8egQJBnL9Lfow/xoCbgIn/0b+gv6Q/0MAkwSvALf7zADv/jAA1AGh/egAbgFC/loBDP8W+gMBnQnpASX3tf0KAkf/MgPUALH8av/H/qwBoANa/sP+D//9AMkAiQGy/xT7nwIKAhj/XwIZ/c/6Mwb5BA35Fv/iCFX8ofWcBb8EAf/tARH9PPuLAtQBGP9lASL+3P42AjYB0f9D+9f80AIbBaT/RACoACz5+/+8AkgBbAHBAtv9pv33/5b8TgR6BC38Yf8XAnX8ZwFlAGX+rAEOAT/+CAOy/9P5aQF3AZIBbAHe/c78SgBzAVsDNQMo+yz+T/89A5oAg/jFAuEH2/7u+Q4CJQF1At7/b/mN/ngD1QVRAHD8IP2GAcEC8P5o/rgBO/9I/cEEHAGN/b4A9v1o/iwEugLj+h7+WwMPA7n7Ef3mAUgATQKqAmz9s/xJ/l/+pwR3AKv+0QNH/7f6cPsDAR0FFAaQ///3uP3dAJEA2wGTBBwD2fy793z9pQXtCY0BrfgQ/HX/mwPOAtYArvxs/PICYQPb+64ATABP/j0Av//bAhb/vv0KAhL8wf9dBLj9EP0W/1YEiwKj+z/+fP+hAlYDNP11/0n+cAHZApr86/3VAvQCkgSh+6v3ugKcBV8Clf+h/cP9kgFaAOsATwIrAjQAP/5u/mP7/wK5BUMAoQLe/0b0kP3sCIUDOgY4+2z1+PwKBM0ETf0u/kMAIgGRAD39Rfsn/s8F+ABu/D8Cs/77+PkCUAQu/a3/Lv43/2QE0gFV+xMBDAIe/QkAhAKqANr/9v2h/mUBcQOiA+H7T/z/AlMB4Pzw/1wCCQDM/gz/Ff8IBQH/FviX//gA6wKOAyD9VP4cBG78vfoVAEkDLwXIAxz93PdYABAG4gJl/hj/U/4yAwgBbP15AFv/LgPrAaX7Nv6HBcoBsPvF/UcEQgGc+7wANwMQAWEAZf3y/SkA8QAeAgwAMgGx/9T8NgDxALr/J//t/+IADwVIAID31vzyBCAIRAK9+h/6F/7y/1AH8AOJ/VMByftO++UCEQSr/nf+iQAFAXH/HP3j/9YAJwJA/w/+cALS/nv7wQHbAnUALP9g/HwC3AI8+34ChwLP+E8CzgO+/vYCQv6I/Lz+1wDIA9MCMP7Z++D+Zv/X/zADpgFA/hr+Kf9s/xAAiwJ6/6H+IAHy/eAA+wKS/nX/d/+L/i4BYQD4AJL/d/z2A60CF/36/S39lAAjA0kCDgE9/e38wAA4/ScCjAVU/wX7uvy1AicB2/6H/7cBDwKq/gr+c//I/nECjgP2/Kr+DP8q/+AAWAMyAAn7mQETAgb+Wv+HAT0Bi//F/dkBMv/Z/5sD8v0n/jMDlgEn/jb8ZP9VBtYAD/7r/YgAwwJyAFP+rwAy/uv8iQNnAUYAbAGU//v99/+8/9f+hQLQAv//K/xz/Y7/cQNdBRj+zfp7/YIAwgBQBsoDPftt+Mf8lwJXBcABDP2XAvj+A/3X/l/+DAKMA/oArgDn/jz70v5sArwBSwEPAvD+SP3w/qn/mQGxAF3/CgHdAcr/3/xh/moBAQImABr/HgHAAab8d/1fBJsB9P80/+39xv97AQcAfP/yAgkA7/4MAMH9rwBNAxz/OP3p/0MAeQGxAHX+LP43/y8Awf+d/hEB9P+u/FwAQgGN/vT+9gDc/9X9Yf9dAjIB5f+b/z/9I//0AWkBQALD/xD9of72AGMCsv80ANQB6/7T/r7+7/3QAgMD6f8iAEj+D/5j/5n/1QObA+v9sfw5/a3/+QIDAuYAjP9l/Wb/uP9Y/1gDDAPD/X79wADpAWUBKf3g/jMDTwKL/2X9nf4RAfMAtP+uAMsAzAGS/3f8cf+8AG4BSwLF/tX+kAGy/+/+kP/e/zgAxQFGAtf+F/xl/g0DUQL///3/Of51/sIAfP8/AEQCaP9m/6v+d/84AR7+6f+tASsBgACx/Sv+CgGxAeABjwDt/Hf+awCNAN4BDAHu/5f/0/6f/2X+zv8EBD8CE//d/Zj9F/44AQoEhwFs/mj+zv0I/zICnQH4AIz/T/1T/r4AJwA7Ak0BUf4//qz9pgDVAY7/zv5uAff/r/5VAKMAbADn/jD/ZQCCAJgAQP+m/7YC+/8H/VcAggDSALwDxQBN/m7/XP7i/vQClgEiAOkBRADJ/Wj+Rv89AXACTAAa/z3+N/5zAVv/7fz3/xkBsQGC/yX91Pxx/+QCGwHy/Xv9jf4tAZ0B7v8KAGz96P1aATICTQHWAE//MP42AAUCCgFz/x4AugCNAmkBnf5A/0wAhgHgAXH/Bf5wAAEBEACCAET/4v4gANz/UwDzAAH/pfy2/r4BjQGi/4v+gv4vAE0BRv/S/kQA8wDzALcA5/7g/oAAvADCANP/hf+D/6oA8gEeAND9CP9b/2AAXQIIAcH/IP6d/ef+OAGfArUA7/7H/vr98v5sAI0ADAKjAHz9d/4wAeYAmf+d/+n/mgCGAJT/sf+RAGcBLwDV/n7/qgBTAUoAKv/w/1MBqgFYAJ/+5f+oAL//UQC5AJEA3P+8/xIAqf+F/4n/uv7n//oAQgG6AP/9nf0h/z0AFwEtARMBLwDT/gz+LP73/zICVAKuAJT/wP2G/Qz/EwEaAksCPwCv/Kr+4P/n/oL/NgLFAZf+gv0s/v3/3gGJAUoArf/H/q3+VP8FAP0APwLkAG7/r/4a//f/rACoAdkA1f/w/8j+Af/Q/2EAJwKuAE//N/+U/wgBcAHZ/of/wwE2ABABLgHw/7wBwgAiAHAAaP+J/6YAOQHJAA4Bw/+H/uX+FwDkAFwAmf93/1r/3P7e/hX/yv8SADL/mf4G/iX/lgCX/xz/XP5a/vb/+/+d/oT+Df9+AIAAav5T/uP/6gAbAK3/zv6r/xMBv/8MAEwAPv+X/8UADgH8AK3//f5IAKEBAwJBAY7/d/9sAE0B3gGzASQBpQA9Ac4ApQCCAbEB6QG8AXsAEACdANsAYAAyAaMBtP/V//wAVQDB/w4AfP/G/8wAN//c/mUANgCX/z3/bP+X/pD+VwCH/3r+5/+d/5D+jf4r/tX/sv/y/aL+zP7w/jX/m/0Z/Vj+K/5o/m7+df2P/VT+rvwA/Fz+VP4I/WH+Cv6L/P77z/vD/TYA2v+Q/ST8RP0I/mj+lP9m/8z/4P+Z/vn/hgFIAfgApP/Z/2wBVAMWBEUENwOhAqsDOwR8BWsGbQZFB+YGEgZiB+QHFQkHCkMJkQiNCJQIsAheCSsKDgkkCJEHeAZkBp4GBwYIBSwE0AL6AEEAgv8n/8X+cPz4+ib6xvhm+CH4AfcP9un0zvRP9Cf0BfRE887z1vOU88fz/PO69R72qvQ39jP3wfYu+A76/Pot+7T6dPvv/WH/lv4W//T/zAGEAoAA3v/xAdcD9wSwBCsCRgHqAEYB9AI7BCADDgI7Ae0BgAI9Afv/9P4dAJcFewmcCCgEHv4w/2gDrAgaDTUNeQuFCqcIzgh8CvQKJg6CEWsQSQ+DDZwI3whYC2ML2QyxC6kHpwbRBEkDyQFL/zT/A/8g/sP8LfnG9tv1RPTF9PT0ifND84jyXPGX8dbwH/B/8Krxd/NW9Eb0vvPC8631k/ds94P49/ml+rH8qP1+/U3+Wv6N/tYAhALQApkClgLtApsC+wHtAYkCkAOkA4QCswHxAEEAHQAvAAAAyP7r/d798v15/Sf9F/0Z/Tn9rPz1++/72fxC/poAqALjA4IBs/5A/3wCAAiHCy0K5AiNCXcJwAnOClkN5Q8BEloR5w6HDUsNLA2pDt0PZw+kDmoLPQlICZQITAZQBDUDOwPTAosAJP1X+mD5f/hx9632ePYe9tn0YvIN8ZzwdvAE8SvyCvNr8z/za/Lm8hf0fvVo9ij3iPgv+qP7Afw6+0b7YfwF/nP/SADJAAUBSAE/ATAAD/9GAP0BrQJ6AmcBBQAh/6T+6f7I/3j/ev7r/YD9kfx7/F/9EP0t/fv9gPw9+0b7ffqj/SUE/QTOAj0A5PvO/XwEAAj0CkQMxQkSCRAJsAjACukMig6YEYkSrBC/DgoMzArTDOwOYg8oDoALbgmUCOoGXQRGAk8BVALTAqgALv2y+SX3VPa29sb2g/Zx9Wfz4fJ/89TyYPHc8DzxOPPe9XP11/Np83f0RPZv+JX5ePoM/HX84PyN/cn9Y/77/9ABiwPGA6oCvAHvAcwCEQN+AhECqgIWA4IC/AAa/wb+NP6b/q/+i/1R++r5uflH+nL6cvn1+OH43/jN+ZP5Avgz9+D2gfmPAHwE6wLc/8/65vp6A9kI+ApkDm8NWwzTDXcMjAzAEBoUXxZTGYQYdxWzEnAQixHpFGgWhRSqEXgP1w1SC8AINQYeBMoDlAMQAdX97PqQ94f1bvTY8rfxLfEY8JzvfO/u7SLr+ukp62PtV/Ce8Y7wB/CV8FnxqvL880T2YPkm/DD9ofwX/Pr7s/2lAEsDWQSyA+8C3AI9AzADRAIOAtMC9AMsBIsCw//K/YL9S/0I/aH8TPyL+5X6iPlQ+FD3R/dF+Af5SvpX+qT4k/ce91f4Yf2QAgsFogRRAVj/XQItB6EKrQ7NEDgRChJZEVkQShHZEs4U3xfzGYEZxhajEq4Q8xE9E68SshDfDi4NGAtVCM8EVgHa/0b/6P3f/G36PfZi88jxaPD173/vFu6o7Zvt3ewj7Nvr3+vk7MjuivAS8WTxCvP99IP2RPfK9yb5xfs5/ikAnQG+AWwBGgJfA0kELAWKBegFEAdkB/IFqANlAqYCYwPtA0sD7QF0AEv/LP7q/NL7TPq9+cL6Yvsx+lb4ovaN9T72Wfft9sH1mPWA9Ib0tvnH/qwAQwDm+gb3VfvLADwEYwm2DK0N1g+2DRoK2wo6DRIRVxejG78cihmEE4oQjRFwEw8VOxUhFHwUwhL1DT0JXQUzA34DUQOLAiQBe/2e+R/30vSf8gfxiu/17zPxEvGF76vtsezK7BHuD++K74XwBfJ08yP1kvbF9oH3e/k2+4/9if84AN8A7QEsA6YE4wWZBYgFngagB5YHjgaIBWYF8wX7BfUEpAMFAlEAgv+J//v+hP0B/Ef6VPn9+G/3X/Xv9Gj1vvWv9en0BfQn8/byP/Ii8rX0Dfl3/awASACe+2v5i/sn/zEFcwr7DMYPCxGlDmEMSQwTDcQQDRbfGfwbAxpxFcIRJBFgEr4SChK5EScSNhGBDgEKVwUzAxgCOQHJAIv/A/3L+g359/ZL9fbyafCk7+fwrvHC8L/vN+9f74zvc+8N70nvG/EQ8zD1Effe9733CPhZ+Zj63/sX/YX+6gBzA0IEjgNWAyADkgO2BHEFBwZUBpwGuQaBBioFFQPBAXMBugH2AWcBmgBj/6H9Cvy7+pX5avjM9/n3Wfgx+Gz3+/Vc9eD1ovUR9S30uvPK9rn7Wv8kAcf+BfvR+gH92f+4BL4IrwunDzgQUA7jDJALfgtyD90T6RaEGDcWhBMgE64SiREfENYOBQ9nD3QO4AviCAYGlQTMAs4APv+A/Gv6ffkG+Rb48PZV9OjxOPHA8MHvGO/07lLvmfCp8aXxIfHK8K7w3fEF9OT1YfdZ+RX7T/xC/ev9NP/zAI0C1wMIBdUF3AbEBy0ImAhlCC0HMQYqBkcGQwY4Bm0FlwSUA58BgP87/l79UfxB/Bv88fqr+Qj4uPYB99P27fXX9aT1vvUa9nD11/Sv9HfzQvX6+rT/VgJzAXX8hvpp/bH/WAMiCSkMpw4gEQAPvwzQC+sK3AxBEvAWUhhxFw8UaxGIEMQPog5YDRQNPg3TDHoL2AguBccBNACf/hX9i/v1+OD3yvee92/2rPTI8Vfvbe/u78rwgfHR8RvyhPOU9IbzYvJn8gP0GPfL+e76K/ux/LP9hP6r/0n/Bv9jAFMCuAOKBa0FZAXCBmsHzQb8BdcE0APKBPcFAgY3BqQFkATiA4sCiADB/ub9pP3K/lT/uP76/KP6Hfkq+Jf35PbR9jf3vff59573oPYM9frzlvJB85z43v0ZAW4AOvw1+jb8RP6AAPQENgj2C7UPQQ+/DUcNrQuzC9oPHBSgFb8VYxMVElETNBPqEDMOFA2HDHMMfgspCcIGWQU+BHUCEwAb/af51/ex94H33PZU9cfzj/Ko8uHxZvCy7h7uC+/T8Gfy8/Je81P0VPU19mb2E/aM9gD4mvp3/d7/8wDSAT0CvAJoA5kD3AMjBYEHzAkMC4QKEAltBzMGRwX0BNcE0wTYBEIE0gLFAHn+mvzo+yL8o/t9+g/5HPdA9n72jvZq9jX2wfV59Rn14vQM9Vz1pvby95D4+/gs+JL35PuhAaQFAAdqA4L/+AFmBP4FOQpFDZgQaBQyEwUQiA/IDZ4MCw/qEVoUKRUpEWYOkw+lEMsOfgv8B54G7gZfBVEDPwLmAQ4BpP+A/Zz6YfcD9Q70/fSA9ir25vOo8qzytfKP8hTyvfGl8j307fR89Rz2pvbe9+z5mPtE/GD8YPwM/ZL+dwC6Ae8ChwMIBGYEQASrA00DlwNfBGIFygUABcUDIAP7AmECtwFVAcsAoQC+AHQApv8B/yD+6f2J/oT+nf2I/C/8sfwc/dn8Cfzd+p76Ffs0+y/70vrS+qz7T/wZ/KH7H/sz+oP5FPnJ+90AwwQWBk8Dd/+t/sP//wAlAxIGAQmkDCwO/QxxC58JqAg6CdcKlAwCDTIMjQtEDBENagxlChkHhQXlBJ0DLgL9AJoAvgC+APT+7/w8+4H5svie+LT4Tvim9yf3Tfd6+MH4FPh191T32PdZ+Mb43vgU+Tb6k/vD/ID9hP05/XP9pP6b/+7/GwD7/7EA8gEYA2gD8ANhBNoELgUwBAYDUQLVAmoEngWcBQAFIQSzAgUClgCC/lr93/wp/TD+ef5h/X38/Pp0+ZD4uve29un2avjj+QD7/vrA+Z74sPhZ+dP5JPt//OL8fP1c/q391vzi+0r6QP6wBPUIewq1B74CVgJ4A+8CLgUJB/EJdA5/EEAP+Q3cCz0J5AnoCcUJ1AilBrIGdAmpDAgN+woAB0cEoQJ3/zL92PtN/VMAuAI/AtX///yi+Rb4+/a99gH3evep+Ez6BfxM/Hv72/pn+mf69fnY+Hj4tPmR+2P9Qv/M/6D/Hv///XX99P1N/tn+0P9GAf0BEwJNAbcArgDtAOX/t/3i/Lr8Iv1s/l//bv89/2H+rPyE+7T6pfn6+fP6Zfyo/a/9Ff2m/HP96P0r/jT+n/2+/dn9x/1T/vj+fP+8/4IAQQDr/+n+Yf1f/fv9cf7v/Wf+Sf7m/dD9Bv5sAJ0ErAb3BfcEHgSUA60EYgUXB6YK6wzcDZ4Naw2MDHEMmwyODUIOmQxPCrMI0AiACgELhwqECX8IzQVaApX/O/04/Yb9kv11/Xf9jfsW+Xj33PWb9Wz1RPQ99E31bvU/9fb1lPay94z4bfem9lj3S/jq+DH6a/v4/In+Lv8s/+v/xQBpAVYCrwNhBG8EiQSkBEUFHQbhBTUFYAVtBYwEzAOoAuIBmAGCAFj/2f6N/mn9kfyB+6z6afrA+ST5j/nh+ZH5cfnn+L/4e/lZ+aX42PhB+bv5hPq++qf6gvst/HT85Pu8+277GfzV/Rr/R/9P/tb70fp6/1AFiwmhC2EJCQkCDB4LlgjjB5wI2gy3Eq0T/xMnFRUTThHNEP4OJw18CoMGvwZBCoIL1AmlBw8FgQOYANv6X/Yi9Sn1FfZN90L3ovYV9VPyJPGD8ZrwjO+7717xt/OC9V31E/Zf+L36EvxE/Ij8Sv1+/gcAcQIIBQUHnge1B8AHLwjLB2cHDAhqCUgKhgmBB+wFjAUvBi8GtAXYBHUDrAHB//39o/xT/K78t/2U/kb+Zfxc+hT5VPgE+LL33Pfu+Ez6XvuB+yL7Rfrj+XT6IvuP+6X7ofsQ/HD96/6S/5v/cf9C//3+n/49/n7+Uf9lAHUBTQG+AL//7/7n/oL/NP8Y/1L/RP8n/5/+6/0I/84BAgR4BfsFQgW9BGQEWwRZBZwH2QnOCpkLgwvbCnUKAwq6CbUKzArDCaUIcAdmBjwGXQUjBPAD+AJRATD/2/wX+436k/oS+pX5oPg+92P2DfYP9g/2W/Yh9nH2tPaU9mz2CveK+FD6Pfw//ar9+v0I/qv+nf/SACcCjAMLBe4FBwbhBfMF0QXGBZkF/gT0BB8F3AQYBbsENwO+Ab//+/1L/c38Lfyu/IT8i/vf+nT5NfgP+If3c/fs+P75kfoC+336hvok+z37t/qT+in70vyJ/mz/4P9z/5X/+f5o/p3+Ff6d/RH+GP6t/qH++v0VASgHswt0Dv0LRghcCMYHDgciCNkJcwx5EX0SjRIrE1EQRQ2gDFYLDgv9CbkFqAMuBQYGIQZdBZACvADe/r36W/YH9AzyHfKd8670kPWb9dLzkfLY8jTzSPPm8vjyJ/RU9h/4Rfn6+vz8//51ACIBEwGoAJYA2QBxAngE5wVnBg0HzQf4BwMH2gT0AoUC6wJGAzkDTwNkA1QDCgOsAYL/yf11/M/7O/ys/I38j/xO/Nv73fu++wX7EPuw+yb8bvxy/C/8f/xW/Sf+If+r/7b/gP+U/9P/1/9h/wj/Gv8tAOoAJAGPABAApP9k/0b/zP5x/sP9Wv3W/M78rPym/MP8+vzo/BX9ffz+++z7vPxx/qQBMATCBRYGOQWRBZgG8QfZCBEKKwt+DE4NCQ75DvAPJhDlD1kOFg0XC2sI8QYZB/cHMQg+B5IEXwLK/2f8G/nM9oL14vSS9B700PPX8zLznPJp8i3yt/GT8afxRfLA80/1Pvew+dT7EP3v/Zv+lP/0AIkCNwTuBWsH9wcOCGIIDAmzCV8KkgoeCqwJyQghByQGcwXsBIkEzAMPAssAI//x/DH7tvmt+G/4MfiM94X3UPfQ9oP2b/ZC9r324vYe9x/4H/ld+fP5b/pZ+xv94v0p/nH+0v7r/uL+8v51/3z/q/98/6r+Bv76+335wvtlAbkG2Qp+ChUJyQrHCoAINAjNB9sJDw4qD1wQ2xKGEh4RRhFQEBsQgQ50CT4GXQZ/BXEE7wJWAbEBjwGZ/jT7YPhd9YLzxvHu8NTw3PAf8EnwQfFc8sTy6PIp8zn0T/XF9Sn2YfeO+Sn8IP9cAUQDjASXBRgGEgdgB4gHzwdlCBAJDApTCloKYwphClEKPQmGB1AFegOrAhUCbAG8AL3/3v7F/a/8gft0+nH5Dfk4+Rv5qfgP+IX3//fG+Dj5BPpp+qz6Z/us+/r7rvwn/f39Nf/Q/6T/S/+m/sz+Yf+L/5D/d/9U/xj/xf6Z/kv+x/1h/fT8wvzd/Kz8Pfxp/Ej8JPxM/AP8J/zt/L/+hgGBBBIGAwfuBwoJQQpnCgoKmAr0C6INMQ+sD+gPdhB7EAAQjw8GDjkMewrECI8HhgZhBCkCOgCi/kL9UPvC+Jv2efXv9GH0L/PI8cvwcfBx8HjwZvAk8UPyw/NY9YD2Y/eB+K75jfu4/TX/owApAr0D1QVrB0EI/whXCckJRgp+CkQKPQpeCr4KxwrJCW4IHQfVBaIE/QIyAdP/kP5f/Vz8XPtg+jf59fcL9yn2avW89Jr06fSJ9f/1Y/az9hP3nvca+HP47viD+Q76wvpX+z38Qf03/o7+0v74/jD/S/8y/9D+LP8nAFwBfAPnBcIHagl1CkYLsQxCDcYMWgx6DHYN1A6cDpAOMQ+GD4YPfA5xDBULBwpeCKoHBQe/BUIE+gF8/2H+6PzY+l75Jvhd98z2fvXb8wHzgfJF8mDyvvIF84/zhPRf9cH2EfjT+Jz5t/rL+8v8o/02/gj/bACYAa8C7gPaBLgFlQbdBsYGwgZ4BlQGWwZVBjoGHwaVBdgEcQT/A4kD8AIDAhwBLQAI/+b95PwB/Kf7tftw+177B/uE+mD6L/rh+fz5DfoJ+jX6Zvqn+vj6Qftu+8D7Gfxp/Fj8Evy8+6r7rPus+5r7kfu++wD8GfzL+5z7XPuc+xL8hvwQ/a39U/5s/0EBJwO0BBkGbQeECdwLIw1mDVsNzA3uDg0QaxCeEA4RiRFpEeYQ3w9CDqYMwQomCfwH+QVLAykBg/96/n79XPvw+Gb3+/Xb9D/0rvNp80PzlfIi8iLyDvJO8gfzSPRL9ib4SfmG+vX7i/1f/6MATwEGArUCcwN8BJAFkwalB5gIEwl7CXQJ2QgiCJ4HKgfJBkwGMQX7A8gCcgEVAAH/Ff5q/VP9wvyz+5j6QPlA+AD4sfdd90X3CvcG9yP3Nfcq92P3sfch+Of4dPnG+ej5BPo8+or6k/pS+vP50/nn+fH5SPro+kr7Ufzt/d8AyARBCIIKHAygDRAPchCYEBQQZxAHETsRwhF7EToRtxFFEVAQrA/0DZALIAlABjkE+ALqAKv+Lv1p+zb6pfho9sH0w/PH8hTyWfHG8ALxM/GT8Y3yjfPJ9DX2R/fe+Jr6HvzD/Tn/cADSAQwDzAOkBE4F8wXGBlsHggfLB9gH/gdZCE8IDAiVB6IGzwVFBVgEqQPbAsAB1gDF/3z+Y/1T/EP7t/or+rb5hfny+FD4Qvgl+GD4Jvms+XD6cvvb+0H8uvzA/O38Jf3z/Pr8Af2j/In8bPxV/Lr8rvw9/Cv8EvzY+wP8n/tI+3f7Wvsr+4H7Hvxn/WP/+gDKAgsF/AaRCOsJ4gqUC0QMdQx8DOUMGA0zDY4NgQ16DVYN1QwIDHwLzAr8CUgJBwhdBm8ERAL0/8z95Ps1+uf4yveS9mP1ffTN80zzDvMn89Dz0PS+9Wr2Kvdk+Lb5LfuN/Ar+Vv9yABMBrAF6Aj0DCwTGBFsF9QV7BlsG4QWZBaQF1gXNBUIFjgTrAz4DhwKJAY8A6/9W/7r+Rv7B/Tj9pfwJ/Ib7SPv4+pP6Vfo1+ir6OPom+i/6dPrl+nT70PsT/In8s/zW/Bv9X/3H/Rf+Sf5+/uf+DP8I/+3+A/8s/xz/Ef+r/pL+A/9q/5v/EABnABcBIAKkAjIDGgQUBWcGrAeLCHQJPQp5CqMKfAogCqoJRAn6CG0IxAfWBsgF9wQjBAYD7wHxAKj/c/4e/cD7Evte+qv5LPlz+Nj3h/cu9yP3h/fh91n4B/mT+T/6/PqI+3T8Xv1U/mT/ZQCUAQEDSwSaBZ4GNAfYBygIMQhrCG4IDAigB8QGmgW2BJcDhQK8AfEAMgCA/2P+Lf07/B379/kG+TX4uPeA9y73s/Zs9iH2DfY39kb2lPYL92j33Pdf+AL5xvlw+uX6hPsQ/Fz80PwQ/Vz9zP0n/p/+fv/ZAHUCmwSjBkMI2wlmC+MMkQ7GD64QdhHfEQgSixExEMsOqQ1oDIULWgrbCIQH0wU3BNsClgE7ACf/0P19/IT7BfpZ+BH3//Wo9Zb1HPXH9LP03vQr9Wr1qvUn9uv2pvd8+HL5cvrS+6j9c/8ZAVQCIAO0AzwEgQS9BCMFhwU1BugGNgc2BxAH2AaXBpgGSQbVBUcFkwTTA+sC1AGSAGb/Y/6Q/dD8Cvw/+5P6APqB+SP5v/hi+En4V/hk+KD47vhM+d35ePr1+nv7BfxY/ML8O/1y/eD9P/5u/tD+Df8u/3j/nf+V/5n/g/9k/1r/Tf9k/3r/if9o/0T/Wv+6/xUAcADOAFwBTQJoA1IESwVHBmUHwAjMCYsK8Qr4Ch4LMAvtCm4KsQnfCCAIHQfeBWYE5AKzAc4A0//v/jn+i/0I/XD8nvsD+4T6BfrL+Z75nPnh+fn5y/m9+cj55fmN+lD7Hfz0/LX9bv6X/9cAFwJoA0UEFgW0BeMFAAbsBd8FKgZnBkcG3gUfBTMESwNAAu0AzP/X/vL9MP1X/Ez7b/q3+fL4Yvjy93j3UPdE9yf3O/dW9zz3ZPed99f3R/jB+BL5gfn6+W36OvvP+y38r/z8/G791f0i/rX+lP+oAEgCMwQmBi0I9AmfC2IN5w4XENAQGxFREUMR3xAZEAsPBA7VDGELvAkmCHYG2AQNA00Byv9w/kH9Tvxi+3D6pfnM+O73TffQ9hj2ovVT9TD1ZfWk9fL1ifZF9/336vjP+c/6/vsb/TD+av97AJsBsQKgA4wENQV/BbAFywXEBa0FjgVZBSwF2gRbBAYE0AOBA2MDKQPFAmwC1QErAXAApP/i/j3+pP0B/Xf8/Puf+3T7M/vd+rL6k/p9+qP6y/rm+jH7efvJ+yD8gvyl/Pb8X/3U/VH+pP4I/03/h/+g/6n/r/+9/+L/3v/r//L/AQAVABkAEgAkADQAKQAMAA4AJABcAJQAtwDZAP8AJAETAQUB9AD9ADQBWgGNAe0BcwLVAk8DrwMYBK8ESwWrBQIGMwYfBhQG6AW4BZUFRwXaBGQE0QMaA2MClgHCAAMAfv/4/mz+6f1c/df8cvwm/Pj71vvh+w78Vfyc/ND8DP1w/c79Kf5x/rj+O/+0/z8AxwA4AYABwAETAhoCLgI9AhcCFwLZAW4BEQF7AAoAmf8u/9X+Z/4B/oD96Px5/PH7Y/v1+q76a/pM+i/6Hfo++kP6RfpX+kr6Tvpm+l76cPqV+o36tfr1+jb71vty/BD9Hv5m//8AEQMJBd0G1gioCnUMAA4QD7cPGxAtEB0Qmg+3DqcNfgw9C9sJUQijBgQFXQOtATAAyP5l/RX88/pH+sj5DfmD+BH4q/do90T3GvcN9zf3UPeM98/3MPjl+M35yfrY+7P8fv15/mz/VQAwAckBbAIuA44D4gMLBBoERwRhBFkEDwTFA44DVAM7A+QCiQJAAusBfgH/AHkAAQCo/zn/yv5+/vv9bP3m/HT8O/wi/BP8Cvwr/E78lPzf/Az9Nv17/eT9Rv6x/g//ZP/B/yIAfgDXAAUBOQFuAWwBeQF+AVoBSwE9ASQB/QD0AKEAYAApAP//9P/p/97/v/+0/5f/hf9o/1H/S/9S/1L/Rv9E/y7/GP8V//3+5P7p/tn+3P7y/hj/R/+C/9D/TgDAAB4BdQHoAVMCtQIzA5AD2gMsBGgEkAS2BNUEwQSrBHwEMwTlA2oDxwI5AqgBAwFaAJv/7/5h/vL9lP0k/eb8wvy1/NL8DP1B/Zj98f1l/uv+Qv+b/9f/EwA6AC0AOwBhAF4AUQBDAPL/0f+p/4D/fv9U/zD/J//r/sj+lv40/vL9tf13/QH9rPwi/Hn7Ivu0+ob6R/pB+mn6xPo0+4L7Afyl/Gf9Kf7b/pf/hACEAYQCWgMTBMYEYAXjBWcG3AYtB5UHuwfuBzIIYAh2CH0IYAhKCCQIuwdXB9YGKAaBBboE0QPBAosBVwAh/+n9wPyL+336svnz+HH4Mfgh+Cr4f/jq+Gj5APqW+lD7Bfy6/JT9fv47/wwAzgBwAesBVAKiAuUCEQPyAsMCfAIeAsMBWgHSAFoA+f+L/y7/1f6E/lr+Ff74/Qr+8f3v/fj97f0R/if+P/5h/o7+vv7c/hz/Pv9s/5X/qP+8/+3/9////xMAHQAnABsA+f/c/7r/lP+X/4v/if+X/6D/tP/F/9r/3P/V/8r/sv+L/1j/Ef+2/mP++v2o/Uj9/PzF/I38mvy1/OL8JP2a/QH+cf4K/6j/HgCzACsBqAE9Aq8CLgOMA/sDWQS2BP0EVAW4BQIGZwauBvkGJAc0Bz4HMQcJB80GcgblBTwFeASkA8cC1QHrAPT/8v4B/hP9P/yI+/H6a/oE+s/5o/m7+ez5Nvqy+i/7p/tO/Pr8fP0V/p3+MP+4/yYAeQDCABABPwFNAT0BMgH9AOQAnwBKAA4A3P+m/2T/N//7/s7+ov56/lz+Jf4P/gX++P3t/eL9zP28/ab9mv2H/Vr9Vv05/Rz9Iv0R/Qr9Kf1K/Zr97f1Y/sr+QP/c/2MAEQGxAWUCCgO0A34EEgWXBfsFNwZyBnQGYgZKBgcGvwVtBQ8FtgRHBNEDSQO/AjQCmwEKAXQA3P9W/5/+8v1q/dv8cvwd/L77jfuR+4r7vvsF/Fj89Px3/Qb+lv4w/7L/FwB3ALcA6wAFASABJwElAQcB2QDDAHsATgAmAAEA8P/c/+P/+f8AAAUADAAgAEMAaQB3AHcAhABwAFwANgDn/7H/df81//n+zP6r/oL+Wv5R/mX+Yf6S/rr+yv77/if/Vv+A/8H/2f8MAD8AXgCGAJIAowDDAMwA2QDiALoAkQB+AFoAFQDT/5f/bv9G/+3+kv5Y/gH+xf2a/XP9bv1e/Wf9bP2U/a39yf3t/f/9LP5T/of+qv7l/jv/cf/w/04A0ACCATQC9AKyA4MEUAUbBt0GlgcOCIII0gjoCNsIjwg4CLcHCwdABlQFOwQsAx4CEAEVACn/MP5n/br89ftX+8L6Rfrh+Y/5Uvkd+RL5GvlA+Yz56PlT+s/6U/vh+3n8F/21/Vz++f6M/yAAowABAWMBqAHkASICSwJTAjYCFQL7Ac4BmQFPAdcAcAAbAMj/d/8n//3+0P6f/mz+U/5A/in+K/45/kT+Tf5c/l3+cf58/oX+sf7Q/uX+Af8c/yP/S/9q/4v/0f8TAGEAzgATAXwB6QE5ApIC8AJPA4EDyAPuA/IDFgQTBOMDtAOLA1oDIwPZAnkCDgK8AXcBKQHLAIIASAAKAOn/pP9j/zf/A//p/rz+kv5c/kD+NP4g/iL+Gv4I/gH+CP4G/hr+J/45/lj+X/6N/qv+yv7S/tD+zP7H/sj+vv6r/qv+pP6U/o7+jv6i/pv+tv6+/rX+s/6x/r/+tv7Q/uX+E/8q/1b/hf+y/+3/GQA6AHIAewB0AHkAWgBOAD8AKQAdAPD/tP+v/4z/h/+8/9P/KwCWABsBwQFoAg0DtAN/BDUF2AVeBsgGQQeRB6oHkwdtBxAHhQbnBU4FlwTQAwMDSAKGAb4A+f81/4L+4P1G/c38bvwA/Lv7ivtX+yn7Cfvx+t361vrl+vH6F/tB+3/7zfsg/JH8Bf2A/f39gv7i/lT/tP/y/04AlgCxAMAA1gDWANcAzgC+AKwAjwCRAHsAZQA6ABIA6/+//5n/c/9J/wT/3v66/oL+bP5Y/kT+N/42/kb+T/5n/o3+vP7b/gz/R/+D/9P/CgBVAKEA7wAgAVEBiwHKAfEB9gH/Af8B+gHJAa0BkgFqAWMBKQHgAK8AnABsAE8APQAtAD0AQQA/AEEAUQBYAE8AZQByAHsAfgCEAJIAnQCmAKwAtwDCAMIAwADDALUArgCcAIgAiABTAD0AQQA6ACQACgD///L/5f/D/6T/hf+A/3r/Zv9Y/1v/T/9A/0v/RP9N/0D/Pf9N/13/Zv+O/6j/zP8TADsAbACRAKoA0ADUANIAywCjAIAATAAmAOn/pP9f/xP/8P7H/qH+gP5z/l3+Xf5z/nz+jv6O/o3+n/6X/pn+rf6z/r7+2f72/g3/Mv9j/27/ov/i/xUAQwBaAIkAnACdAKUApgCvAJ8AoQCUAH4AhgB9AH0AiwCUAMIA8wAcAU0BiwHJAScCbgKvAvsCLgNxA6YDxQPaA84DzAOgA3UDQAP2AsECXAL9AaYBPQHZAHUAFwDB/2T/BP+8/oL+Mv7x/en9w/2m/Yn9bv1W/Ub9K/0b/Rv9IP07/Ur9Yf1+/Z/9x/32/SX+df62/uf+HP9U/5n/qf/F/9f/2v/2//b/8v/V/8b/pv98/2z/Kv/5/tL+r/6N/nn+aP5n/m7+ev6H/pD+qv61/tf+8v4D/yP/Rv9Y/2r/jP+g/7j/yv/V//n/DgAmAEYAYwCGALMA6wARAVgBmAHyAT0ChwLSAhgDbgOxA8oD9wMRBBMEEQQCBPADzAOfA2YDEwOvAlgC6AGEATQBwgBeAP//qP9A/+v+pP5s/kT+Ef76/eb9x/3J/cP92f3k/e/9Af4G/hf+MP45/kL+X/6C/qT+vP7T/gH/MP9a/5T/qf+6/+X/BwAvAEEAYwBgAGkAgABwAGsAXgA4ABsA///T/7T/m/+L/3j/Zv9R/zf/J/8V/wr/+f4R/yr/Qv9k/4L/sf/a/wEAGQAwAFwAgACjALkAxQDkAAEB+AD6APQA6gDmANcAuQCoAJQAewBuAFcANgAdAB4AEgD9//n/5//i/7//sf+g/5f/qP+i/7L/yv/e/+7/GQApAEMAWgBpAH4AfgCYAKYApgCSAJYAkQCaAKUAqgCaAJgAnQCfAI8AewB9AGsAYwBjAGUAOAAtABMACgATAAcADgD//wwAAQADAP//AQAgACIALQA2ADsASAAkAAcACQD7/97/yP+m/5L/gP9U/z3/J/8B//b+6f7k/tz+5f4B/xj/Mv9H/13/fv+f/6j/vP/Q/8z/0P/D/7T/pP+Q/4P/eP9b/03/Vv9J/1T/Zv9k/2P/aP+D/3P/gP+M/5T/pv+9/9f/1//p//D/AAASAB0AJwAeACcAFQATABMABQAMABcAHQAOAAwAGwA0AEEAVQByAI8AwADqAAUBOAFKAV8BiQGQAa0BxwHJAdUB6wHZAeAB4gHOAa8BpAGUAXIBSwEOAfEA0gCsAHQAOgADAMj/qP9x/0L/GP/5/tX+vP6i/pL+kv6J/oL+i/6k/qv+uv7g/vj+Cv8c/zf/Vv94/5T/l/+4/8b/3P/X/7r/uv+U/4z/kv+M/47/jP+F/4P/fv+C/3z/c/+V/6T/uv/X/9f/2v/V/9X/2f/i/9D/0P/B/7L/r/+i/53/rf/G/9r/8P8DABIAHgAwAEoAYwBlAGkAaQB7AH0AdwBjAEYAQQAmABkAAwDn/9z/3P/Z/+P/6//e/97/2v/O/9P/1/+//7j/v/+0/7j/xf/j/+v//f8VACYARABGAGAAbABsAI8AiwCLAKoAvADDAMMAwADMANIAzgDgAOYA6gD8AOsA3QDDAKwArAChAKgAjQCIAIsAbgBrADoALwAVAPT/7f/g/9D/pP+f/5T/ev9z/2//df+D/3j/c/94/37/kv+o/7L/uP/c//D//f/9/wwAKQA4ADQAQQBDADAAMAAVAAEA9//n/9X/yv/G/6b/mf+J/3f/Xf9b/1r/Qv9N/03/W/9f/1L/Rv9L/0//T/9a/1H/S/9E/1L/WP9k/2z/fv+b/6v/uv/R//3/HgA7AFwAeQCNAK4AswDCAN0A4gDqAOYA4ADZAMwAvACsAKYAnQCJAHAAaQBjAEMASgArABsABwAFAPL/3v/Z/9f/3v/O/9X/xv/O/9X/4P/e/+3/7v8DAA4A9//9//D/+/8KAAwACQAMAAkAEAAXAAoA/f/9/////f///wUA+/8AAAAA+//5/+7/6//n/+X/6f/e/9H/2v/Q/+X/5f/Z/9z/3P/j/9f/8P/9/wMAEgAdABsAHgAkABAAAAAFABIABQAMAAEA+f/r/9D/0f/F/63/m/+X/5X/m/+f/6L/tP+4/8j/vf+//9r/zv/R/+D/3v/p//v/7v/2//T/9v8KAP//8P/2/wAA9//l/8z/1f/a/9D/zP/G/8P/sf+v/5n/kv+O/4z/nf+k/6//wf/I/9H/6//9/yQALwA2AFUAZQCNAJ8ArgC3AKUAqgC5AKwAnQCSAJQAkgB9AHsAcgBlAGsAZQBeAEwAPQAnABIAEwAAAPT/4//l/+P/2v/j/9X/5f/5/+v/9P8KAAcAIAAnADoATwBMAFMAVwBOAEYAWABTAEYAQQA2ACYAHgAeABsAGwAiAB4AIgAnAB0AJwAnACYANgAyAC0AGwD9//T/4P/X/8H/tP+m/4X/c/9W/1H/Pv9C/0n/Qv9H/0D/QP8y/zn/QP9J/0//av+F/5T/tv/G/97///8KAAUACgAVAAwA//8FAAkA9v/9/wAAAQAVABAADgAkACsALwAgAAkACQAQAAwAFQAmABcAHQAVABkAFwAeACcAJwArACIANAAtADQAKQAvAEEAOABOAFEAVQBRAEQASgA6AEEASgBPAE4ASgBXAE8ARgA2AC0AFwAKAP3/4//Z/8j/v/+r/7H/sf+k/6j/lP+k/53/kP+m/47/if+U/5D/ov+4/8z/0f/l/wcABwAkAC0ANgBVAGcAaQBaAFgAXABnAF4AXABXAEQATABEAEMAQwA0AC0AMgApABkADAAAAO7/4v/g/+D/0f/B/7z/sf+4/7r/tP+x/7H/xf+6/87/0P/G/8z/w//T/9n/4v/g/97/w/+r/7L/r/+r/73/zP/Q/9f/3P/l/+f/+//3/wkAFQAdACkAOgBKAE4AWgBaAEYAPwA9ACcAHgAZACIAOgAyADoANAAXACIABwDr//v/7v/n/+L/5f/t/9f/2v/M/9n/0f/D/8r/zv/V/9X/2f/G/+D/6//2//v/AAABAAAA+f/5/xAAEwAVAA4AHgAQABAAFQAQAAUAEAAgABsAEwAJAA4ACgAQABUADAASAA4ADAAHAAMA9//t//T/4//X/+D/9P/w/wEA+f/9/wkACQABAAAAAQAFAAoA8P/y/+3/4v/l/+3/8v/y//b/+f/r/+X/7f/3/wAACQAeAB4AKQA7AE8AWABjAG4AawBnAGEAcABYAFgAVwBKAEwAOwAnAB0AEwD3//T/7f/t/+L/6f/n/9r/4P/X/8j/xv/T/9D/1f/Q/7//2v/c/9z/4//y//T/AAAHAA4AIAAmACsAIgAeAB4AEgAFAAAA9v/X/8r/uv+2/6v/ov+v/6D/tP+6/6v/qf+O/47/lP+b/6L/kv+f/7//xf/e/+n/6f8DACAALQAyAEEARgBKAFMATwBKAEEARgBVAFEAOwAvACsALwAvACAAIAAmACAAJAAnACkANAAnAB0AGwAeACAAJgAXAAAA/f/y//D/4v/V/8j/0//e/+L/9P/7/wkAEgAMABAAHQAQAA4AHgAmACYAKwA6ACYAIAAkACcAIgATACAAFwAKABUAAQDw//L/7f/l/9P/w//K/8z/tv+v/6j/r//D/7H/r/+x/6n/rf+k/7j/tv+t/7j/vP/X/8r/0//g/97/7v/5/wMA/f/9//f/9P/3//L/AwATABMAIgAwACsALQA7AEYAOgAyACcAEwASAA4AHQAkABsAEgAOAAcAAwDr/97/7v/c/9n/zv+//7j/uv+9/7r/yv/Z/87/yv/V/87/2v/l/+f/7f/t//v/BQAVAAoADgAFAAEA+f/t/+f/2v/V/73/v//B/8j/yv/O/9z/7f/w//b/+//9/wkAEwAiACcAJgA0AEQASABPAFUAUQBYAF4ARABPAFMASgBBAEMAOwAyAEgAQwBBADIAMgAyACQAMAA2ADIAMgA4ADQAKQAbACAAIgAQABUAHgAgAC0AMAApABAAAAD2//n/6f/c/+n/6//n//f/7v/i/9z/0f/R/8b/xv/B/7r/vf/B/8z/4P/l/+7/7v/5//v/4P/0/wAAAwAbACYALQAmAB0AIgAdAC0AKwAmACsAMAArACYAHgAbAAwA+f/2/+n/4P/O/73/tP+t/6//qP+d/5T/g/+S/5D/jv+t/5v/r/+0/7//0//l/97/4/8BAPn////3//3/AAADAPv/+/8OABUAIAAkAC8AIgAbABkAFwAgAB0AFwAXABIAIAAiAB0AFQAFAAUA+//u/+7/6f/t/+X/9P/0/+L/8P8HABMADAAZACAAIAAbACAAJwAtADYAJwAiABMAEwAOAAMACQD9/wAAAwAJABIAEgAvADAALQAyABsAEwAeAA4AGwAdAAEA///3////AQDu/+n/9v/9//n/9P/2/+f/4v/Z/9f/0f/T/9f/wf/I/8H/zv/M/8b/0f/T/+P/6f/r//b/9//3/9r/0//a/87/yv/F/87/0//e/+n/9//7//n/AAAAAP3/9P8DAAwAEAAeACIAFwApADYALQAtAC8AHgATAAoAAwAFAPv/BQABAA4AEwAFAP//+//5//3/+////xAAAQABAAAA//8FABIAIAAmADAAOwBGAD8ANgApACcAMAAvACYAFwAMAAMABQAKAAEA9v/5//n/8P/r//b/5//j/+L/5f/t/+3/+//0//L/7v/p/+D/1//O/9D/0f/G/9D/xv+9/7b/uP+8/7L/vP+2/7b/0P+9/9f/7v/u//n/AAATACQAOAA4ADYARgBaAF4AWgBeAGkAbgByAF4ASABOAEwASAA/ADIAFwAFABUACgD7//b/6//3//L/9P/3//T/8P/0/+f/5//w/+L/5f/p//b/+/8JABcAFQAbAA4AHQAgABkAGwAeACYAJgApACYAHQAMAPf/8v/j/9H/4v/Z/9D/v/+0/73/q/+0/7j/vP+2/73/vP/T/+D/7v/2/+n/7v/g/9z/5f/w//D/CgAVABAABwAFAPv/AQADAPT/DgADAP3/+f8BAAUA8v/p/+f/9v/c/8P/wf+0/8P/yP/R/9D/1f/Z/+L/2f/j//T/8P/y//D/+/8DAPv/9v/7//f/AAD0//n/7v/l//L/6//7//3/+f8BABUAHQAZACcAHgAOAAkABQD//w4AJAAgADYAOgAyACkAMgAtAB4ADAAFAAoACQAOAAwAEwASABIAFwATAA4AAwABAAEAAwABAPn/+//5//T/9//2//b/+f/9/wMABQAQAAoADgAKABkAFwAZAC8AJAAeACcAJgATABkAEwAZABkAHQAZAB4AHQAXACAAFwAVACAAKQAQAPn/9P/t//T/6f/c/+L/8v/5//3/AQAFAP//+/8FAAcACgASAAoA+f/j/9n/w/+2/7j/tv+p/53/sv+0/7z/yv+y/6v/pP+m/6n/pP+m/7j/vf/a/+X/4//5/wEAEwAZABAAEAASABIAEwAiACAAKwAtACsAMgA7ACsAFwAOAAUAAQD9//n/+f8DAAwAFQAbACIAGQAdACIAKwAnAB0AFQAKAA4AFQAFAPb/9//n/+n//f////3/AAAFAAEAAQAQABcAEgAXABIAHQAmAAwAIgAiABsAIAAHAAMA9v/g/97/3P/a/+3/+//u/+L/5//r/+D/2f/c/97/3P/j//b/+f/y/wAABQADAA4A//8OABAACgAXABMALwAiACsAKwAyAEYAMAA0ADAAHQASAAwACQAFAAkACgD///f/+f/9//f/7v/2/+n/1//T/9X/2f/g/9r/4P/p/9r/2v/g/9z/0f/M/9H/4P/5/woA///2/wMA9v8FAAoA//8HABMAIgAnAC8AMgA/ADgAMgAvACYAEgABAAAA+/////L/9P/g/9n/zv+8/7r/tv+8/8r/1f/M/97/3v/n//n/8v/r/+f/9/8BAAcACgAOABMAHQAdABcAJwAyAC0AOAAtACYAJwA9AD0APQA9ADsALQAVABcABQD///b/7v/i/+P/2f/g/+L/1f/e/8z/0//Z/9X/0P/Q/9H/2v/i/97/2f/i/+P/5//w//n/8P/u//L/+//9//D/5f/j/97/2f/O/8b/zP+8/9f/4P/T/97/zv/M/8P/3v/r//n/CQAKAAwAEAAeABkAEgAXACAAHQAtADQANAAyACYAJwAeABcAEAAKAAAABQAMAA4AGQAkACsAFQAXACAAFwAdACAAGwAtADQAKwA7ADAANgA/ADYAMgAvADgANgAyABcADgATAAwACgD7//3////3/+v/6f/j/8z/xv/G/8b/xv/G/7b/tP+4/8z/1//O/9X/0f/Z/9z/7f////f/8P/7//v/9//n/97/3P/c/+X/3P/j//D/7f/7////7v/u/+3/9v/5////AwD3/wAAGQAZABAAJAAkABcADgAFAAUAFQAKABAADgAAAAEAAQD9//n/+f/0//T/7f/c/9P/0P/R/9P/1//T/8X/zv/K/9P/7f/7/wAACQAOABMADgD7/wEA/f////v/AAAFAPv/CgAVACIAKQAyAC8AJgAnAB4AFwAJAAkAEAAeADQANgA0ADoANgAkABcAEgD//+n/7f/u/+v/8v/9/wkAAwADAPv/AQAdABUAEgAFAPn/CgAVABUAJAAdABcAIgAeAAoAAQDw/+3/6//w/wMADAAkABUAJAAnACIAIAAZABsABwAJAAEA9v////n/AwD7////CQAVAB0ADgAKAAEA9//0//b/7f/0//b/6f/u/+n/8P/t/+v/9P/j//L/7f/t//D/7v/9/+f/4//i/8r/0P/X/87/1f/a/9r/2f/t/+f/1f/Z/+X/6//i/9X/zP/T/97/6f/t/9z/1//V/+f/9//y//f/BQAFAAcAFQAZABcAEAASABkAFwAdACQAGwAkADQAOAA0ACAAGQAHAAcAAAADABIADAAdAB0AFwATAA4A8v/X/9P/zP/M/9D/0f/K/9D/xf/G/8H/yv/I/8z/0//O/9z/6f/t//n/EAAOAAAA+/8BAAkABwAKABAAHgAgACYAJAASABcABwADAB4AHQApACQAJAAwACQAJgAgACsAKQAiACIAEgAOAAwACQD3/wEA+//9/wEAAADy/+P/0//e//L/7f/y//f/CQAAAAoAHQAiAB4AGwAbACAAJAAgACAAHgAvADQAJwAnABkAGwAdABcAEAD7//T/7f/w/+7/9P/2/wMA+f/0/+7/6//r/9z/xv/M/7//n/+p/6v/sv+6/7j/uv+6/7H/sf+i/5//q/+y/7j/vP/O/9P/4//u////+//5/wEAAQADAAwAGQAQABcAGwASABMAGQAOAAcA///w//n/9v/9//b/9v/w/+7/+f/5//T/9/8DAAAADAAXABcAKQA0ADoAOAA2ADAAQQA2ACcALwAtADYAOAA2AC8AMAArACAAEwD9/+n/3v/p/9f/zP/X/9n/4v/l//f/9//n/+v/7v/l/+7/9v8DABAAJAAkABkAJwAMAAcAAwAAAAoACgAKAAUABwAKAAwACQABAPv/9P/r/+3/+//w//b/9v/l//D/7v/3//////8MABUAGwAnADsAKQAnAC0AJgAtACAAEwAMABcACQD9/wwAFQAeABsAGwATABcAEwAQABkACQD///f/9P/r/+v/7v/V/9H/yP/G/8X/vf/O/9D/0f/t//D/7v/2//n/+//y/+7/7f/w//T/9v/5/wEAAwD2//L/7v/i/9n/2v/R/8j/3P/e/+X/9//5/w4AEgAdABAAEAASABUAEgAFAAkAAwDu//T/+f/l/9z/yP/O/9r/3P/p/+7/6//n/+X/7v/r//b/9//2/wAACQAQAAAADAAKAB4AMAApADYAPQA9AEMANAAwAC8AMAAbAAoABwD///3/9//9//f/8P/p/+X/1f/T/9r/3v/j/+L/8v/y//f////0//f/+//w//L//f/3//n/////////CQATACAAKwA6ADsAPwBIAEEARgBBADgAOgA/ADYAOAA2ADAAPQBDAD8ANAAeAAMA9P/u/+X/0P/V/9n/0f/V/9z/zv+8/7j/v//G/8P/0f/O/8r/0//e/+7/+f8AAAoAFQAZAB0ADgD9//f/5//c/9X/0P/a/97/1//l/+L/3v/Z/9H/1//e/+n/4v/c/97/wf/X/+f/4//5//f/9/8FABAADAAAAP//DgATABcAEgAJABIAGwAZABAAFwAXABkAJAAnABsAEgAeAB4AGwAZAA4AEwAFAP//BwADAAEAAQD9/wEADgAFAAcACQAAAAcADgAdACYAKwAeACIAIgAVABAADAAHAPv/7f/t//T/8v/9/wUAAADt//D/7v/p/+P/4v/0/+7/AQAMABMAFwAZABUAHgAQAAcAAwDu/+7/6//w////9v/p////5f/a/9f/vP+6/7L/vf/D/9r/3P/R/9r/4v/y/9r/0f/X/97/2v/M/9n/3v/u//b/AQAAAAAAAAAJAAcAFQAmACYAIAATABUAFwAZABkAJAAdACAAFwAVABsADgAOAAoABwAJAP3/AQAHAPf/7v/2/+f/2v/a/9X/1f/V/+D/2v/p/+X/2v/i/+n/7v/y//D/5f/l/+3/7v/y/+7/8P/r//b/9P/t/+7/9P8BAAMAAQD//wEA///3////+f/9////AwAQAAwAFQATAB4AIAAiABsAHQAnABsADAAOABUAFQAiACAAJgArACYAIgAgACQAJgAtAB0ADgAXABMACgADAAEAAwAOAAoAAQAKAA4AAwD//wMACQAHAAcAEAAJAAkAAwD3//b/8v/3//f/9P8HAAcADAAZABcAFwATAB0AFQAbABUAFwAgABkADgD5//D/7f/Z/8P/uv+x/6//sv+i/6j/qP+p/7j/v/+8/8r/yP/V/+3/5f/p/+P/4v/2/wMADAAKABMAKwAtADoAPQBDADYAJAAkACYAJAAVAAwABQAOAA4ADgAVABMAGQAbABUAEAAQAAkA/f8AAAcA+f8AAAcA9v/7//3/BQD//+7/8P/0//b/7f/y//T/+f8KAAoADgATABAAEwAJAPv/BQAKAAoACgAKAAoAEAABAAMACQD3//f/8v/7//v/5f/n/97/4//j/+P/+f/3/wcABwADAAMA+//7//3/AwD7////DAAKABAAIAAXABUAIAAnAB0AFwAOAAcAAwD9/w4AEgAOAAEA/f/7//b/7v/0////+f/y/+7/6//p//D/4//a/97/5f/n/9f/1//D/7z/zv+//8X/vf+2/8P/xv/O/9P/0P/Q/8X/zv/T/9H/4P/r//b/AwAQABIAFQAXABsAFwAQAAoADAAXACkALwArACQAJwAmABMAGQAJABMAGwAnACQAIAApACIAJgAkAA4A8P/3//D/6//n/+L/4P/B/8j/0P+//9H/0//g/+3/5//2/wwAEwAgAC8AJAArAC8AJwAkACIAJAAyADIAPQA9ADIALwAwAB4AAwD0/+v/7v/l/9n/0f/G/8b/1f/M/8z/yv+//7j/tP/D/7j/0P/n/+n/BwAVABUADgAHAAwADgAZACkAKQAiABsAEgATAAoACQADAPn//f8BAAMADgAHAAMABwD0//b/9v8KAB0AGwAQABMAHQASACkAIgAmAC8AKwAdABkADgABABIAAQD0/+v/8v/0/+X/8P/5/wcA+//2//f/6//l/+X/8v/y/+n/4//i/+L/5f/j/+P/3P/c/+f/6f/0/+3/7f/w////FQAbAAoA+/8AAAcA+//y//3/AQD2//L////n/+P/6f/p/+L/6f/i/+X/9//3/wwAAQAOABMADgATABcADgAQAAoA/////wMAAAADAAEA//8SABkAEwAOAAoAEgATAAwACgAFAAoADAAKAAwACgAJAAcA/f8FABUAHQAdACcAJgAtADYAKwAwABsAFQAMABIAFQAFABUAGwAnACsALQAgABAAGQAVABMACQAKAAcAAQADAAAA+//9/wMA+//9//n/6f/c/+v/4//T/9P/1f/c/9n/4v/a/+L/9P/r/+n/3v/V/+X/5f/e/+f/3P/Z//L/8v/l/+X/4P/a/9H/1//c/9X/4//g/+3/8v/3//n//f/3//D//f/2//b/9P/w//f/5//u//L//f8FAAAAAQAJAAwACgASAAwAEgAOAAwAEgAOAAwA9v/y//f/8v/5//L/+//5/+3/9v/j/9P/2f/T/9n/5f/u/+f/5f/0/+X/9//w/+n/9P8JAA4AAwAFAAoAFwAdAC8AJgAXABUAGwAdABMAEgAQACIAIAAgACIAJwAnABMADgAQABsAEwAVABAADgAZABkADAAAAPv/7f/w/+f/5//l/+L/6//7/wAA/f8BAPT/7v/9/wUABQAKABMADAAHAAUAEAADAAMAEAATABAAHQAXABAACQAAAAEA+//2/wEACQD7//b/6f/t//f/6f/n/+n/4v/l/9z/3v/c/9r/2v/R/+f/5f/p/+7/5//0//b/8v/r/+n/5f/l/+L/0//i/+f/5//t//v///8BAA4AJgAmACAAHQAXACcAHgApACsAJgAiABsAGQAbAA4ACQAFAPf////t/9X/0P/Q/9r/2f/e/+L/1f/X/9r/2v/g/+X/4//y/+7/9/8AAAcADAAQAAMACgAMAAMABwAFAAMA9v/t/+X/6f/n/+X/6f/u//L/9//w/+f/7v/w//b/9P/5//n///8KABcAFQAZACQAGQAZACQAIAAkADAANAA4ADYAQQBIAEgAQwA2ADgAMAA4ADoAOgA0ADYANAAkABsAEwAHAPv//f/y/+7/8v/t//f/4//a/97/5f/j/+L/7f/r//b/AQADAAMABQAHAAkADgABAPf/9//y/+n/5f/t/+n/3v/e/+n/4v/a/+D/3v/c/+X/4//Z/+L/2f/g/+X/9v/9//b/+f/2//f////9/wMAAwABAA4ACQAJABIABwAJAAMA+//9//f/7v/j/+X/5f/n/+v/3P/p/9r/4P/y//T/+//7/wAA/f8JAP3/9v/2//L/7v/p//D/7v/3//3/+//2//v/AAAAAA4AEAAbAB0AEAAeACAAJgAnAB0AHQAbABMAGwAgABUADgAVABIAAAABAAcAAwD9/wAA///7//b/8v/0//T//f/2//n/9//2//v/+//7/+v/5f/n/+P/5f/l//3/AQAHABAADAAXAB4AFwAkACkAFQAbABUAFQAXAA4ACQAFABIADAAHAAUA9//0/+7/9v/2//v////r//L/7f/0/+n/3P/c/9z/4v/p//T/+/8JABIACQAMABcAEAAKAAUACgABAAoAEwAdABsAGwAkABsAEwAFAAwADAADAAMACQD//wAAAwD3//b/9//y/+n/5f/g/9n/0f/Z/9f/2v/g/+L/3P/c/9D/0P/a/+D/7f/i/97/2f/Z/9P/2f/a/97/5//2/wkACQAKAA4AEgASABUADgAFAP//AwD///f/9v/u/+7/6f/n/+f/7f/r/+L/3P/n/+n/7f/3/+3/9P8BAAcADgAVABsAIAAeACQALwAvAC0AIAAkADIAJAArACkAIAAtAC0AJwATABIABwAJABAAFQAXAAwAGQAbACAAGwAdABkAIAAdABMAEgASABIACQADAO3/5f/a/9P/2f/R/87/1f/K/8z/0f/O/9n/1//a/9r/4//l/+P/4P/Z/97/6//t//L/+f/5/wEABwAVABMAEwAQABsAEgAQACIAHgAbABkAEAAKAAoABwAJAP//9v/r//D/6//u//T/6//w/+X/6//n/+v/7v/y//3/AwAAAAcA///0//3/+f/5/wMABQD9/wcACQADAPv/AAD///f/9//w//f/3P/a/+P/6f/2/+f/3P/w/+7/5f/t/+3/9P8AAAEADgAKAAcAFQATABcAIAAmACYAIAAmABsAGwAkABsAIAAXACAAGQAZABUADAASAAMADAAbABMAGQAeAAwA//8FAPb/6//j/+L/3v/g/+v/5//5//n/9P/r//T/9//w/+3/9/8HAAMACgAMAAkABwABAAkA///u/+f/5f/j/+D/2f/V/9f/zv/M/87/xf/O/9D/0P/T/8b/zv/a/+D/4//t//D/+/8QAAUA+f8HAAwAAwASABAAEgAFAAUAAQABAA4ADAAZAAcAAQAMAAUA+//u//L/8P/0//f/+/8AAAcABwABAAkADgAKABIAFwAMAA4ADgAAAP//+f/7//L/4v8AAAAAAQAMAAoAEAASABcADAABAAEABQD9/wMA/f/0/wAACQATAAwAAwADAAcAAwD9////9v8AAAoA+//u//D/4//e/+L/4P/Z/9P/1f/e/+7/9P/5/wAADgAKABMAHgAnACAAGQAbAB4AJwAmABsAEAAiABkADgASABAADgASAB0AHQAbABkAEwATABkAEwAZABcAAQAKAAcACQAJAPb/9v/r/9r/3P/X/9H/3P/r/+X/3v/g/+f/5f/Z/97/4v/n//T/+////wAAAwAHAAUACgD7/wEAAAD5/wMA8P8FAAcACQAJAA4AGwASACIAKQAkACYAJwAmACcAMAAvACsAHQAXABkAHQAVABAAEAAKAP3/+f8BAP3/9P/2//3/7v/p/97/3P/X/9D/0P/T/+L/5f/j/+X/6f/p//3/8P/n/+7/6//w//T/8v/y//v/AwAFAAEA///7//n/9v/0//n/8v/y/+7/9P/y/+v/8P/l/+7/9v/2//D/7f/j/+L/4v/c/9z/1f/V/97/4//j/+f/7v/9//L/+//7//v/DAAbACAAJwApACsAMAAvADQAJgAkACAAEgASABAAAwADAAMA9//u/+f/3P/i/+P/3v/l/9r/2f/Z/87/zv/X/9f/4P/l/+3/9v///wUADAAHAAMACgASAB0AEwAFAAcAAwADAAkAAQAHAAkAFQAOAAEACgDu/+7/8P/y//3/AQAJAAAA/f///////f8DAAAAAQABAAEAAwAAAAUABwADAP3/+//2//T/7f/y//f/9v///wEACgAJAAkAAwAMABMABwASABkAHgAmACkAHQAnACcAHgAmACYAJgAiAC8AJAAZACAAIgAmABAACQAOAAkABQABAAMA+//2//D/9v/2//L/6f/j/+D/5f/w/+7/9//0//v/AQAFAA4AEgAOAAoABQAJAP3/7f/w//v/+f/y//T/4v/r//D/6//j/+X/3v/R/9X/1f/a/8j/2f/l/+L/4P/a/9f/5f/l/+L/8P/2//D/9//3////AQABAAcAAAD//wUABQADAPn/+/////n/AAABAAMABwAMAAUACQAOABUAFQAQAA4AEwAXAAwAEgAKAAkABQAFAAAA9v8FAAMACgAbABsAHQAZACIAIAApACcAJAAkACQAMAAgABUAGQAOAAkABQD5/+3/5f/t/+3/4//i/97/3v/Z/9X/0f/e/+P/4//t/+D/1//g/+X/6f/y/+P/6f/7//f/9P/2/+v/7v/y/+3/8v/2////8P8BAAcAAwAOAAwAEAAHAAoADgAKAAUAAQAMAAMA+/8AABAAFQAJAA4ADAAHAAoACQD//wcACQAFAAkA/f8BAAEAAQAMAAUAGwAXABkAFwAQABcAAAAAAAUA9v/5//f/6f/u/+f/1//Q/9r/zv+9/7z/yv/Q/8b/vf+6/8X/yv/X/9n/zP/O/9D/5f/u/+n/9v8KABUAFQAbABsAIgAiACsAMAApACcAJwAbABcAHgAeABcAAQAAAPv/+f/2//v////0/wEAAwD///n/+f/t/+X/6f/p/+n/6f/n/+L/4//j/+X/4//0//L//f8JAAkAEgAVABAAEgAbABUAEgAXACAAIAAbABkAHgAkABkAHgAVAAcAEgAFAAAACgAFAAwAAAAAAAMA/f8AAPn/BQAAAAcACQADAAcACQADAPb/AAD//wAACQAMAAwAEwAJABMAFwAJAAUACgAXAA4AGQAZABkAFwAVABcAGwAXABIAEAAMABIACQD///3/9v8AAAAAAQD9//b/9P/p/+X/3v/g/9z/5f/e/+L/5f/p//v/9//y/wEA+f/r/+3/5//p/+v/4//n/+n/5f/n/9z/3v/j/+P/1//O/9H/zv/V/9r/5f/j/+X/6f/r/+7/9v////v/BQAHAAkAEgAbACAAKQAiACIAJwAiACQAFQAXABUAFQAdABkAEwAXAA4ABQAHAPn/8v/3//f/+f/2/+7/6//2/+n/5//r/+3/+f/7//////8OABMAEwAXABIACQAFAAoA+//0//T/8v/3//b/9//u/+X/5//n/97/4P/g/9r/4P/j/+P/3P/n/9z/6f/0//f/BwAJAA4AEwAXACIAIAAdABsAGwAgABsAIgAmABkAIAAVAAMACgABAAEAAQAAAAcACQAHAAwADAADAAcABQAJABcADAADAPv/+f/u/9z/4v/a/+D/3v/V/9P/3P/g/+X/6//i/+X/6//u/+7/9P/5/+7/9//y//b/9v/r//f/9P/w/wAA+//0//n///8FAAcAAQD/////AQD///v////9//f/+f//////+/8AAAEA+f////f/9v/0/+X/7v/u//L/7v/5/wAAAAAAAPb////9//b////9//f//f/2/wEADgAHAA4AEgATABMAGQAgABMAIAAkACcAMAA2ADIAHQAeABIAGwAbAAwADgAQABUAFQAQAAwAEAATAAwAEAAOAAcACgAHAA4ABwAFAAwAEAADAAEADAAKAAMA/f8KAAAA+/////n/9P////f/9v8BAPv/AAAFAAMAAAAAAAEAAQAAAP//+f/9////9P/y/+7/5//p/+7/5f/g/9n/1//Z/+L/5f/p/+v//f//////BQD7//v//f/9//b/9//u//D/9P/5//v/8v////n/8P/3/wMAAQD///3//f/0//n/AwABAAMACgAQAA4AEgAZAB0AGwAXAB4AIAATAAEAAQAFAP//DAD9/+v/+f/t/+v/4v/e/9X/2v/l/+f/6//p/+7/9P8BAP//+f8BAA4AEAAOAA4ADAAMAA4ACgAAAAAA/f///wcAAAD9/wUAAAAFAAAA/f8JAAAA+/////3/+//7//f/8v/0/wAA//8FAAcAAAD///n////9//b/9P///+7/7v/3//L/8v/n/+L/4//g/+P/8P/r/+3/4//l/+f/4//u/+7/8v/l/+v/7v/y//n/AQADAAAAAwAKAAAA9P///wAAAQAKAAoA//8KAAEA/f/2//b/9//y//T/7f/3/97/4P/l/+X/6//c/9f/5f/j/+D/4//e/+f/7v/t//f//f8HABAAEAATABsAHQAbAB0AIgAiACsANgAvADAALQA4ADYALQArACQAJgAbAB4AJwAbACIAKwAbABAAEwAFAP3/9//3//b/+/8BAPv/CQAHAAMA/f8HABAABwAHAA4AFQAOAA4ABwAFAAUABQAHAAAA+f/3//D/6//p/9z/2f/X/9X/0//Q/87/1//X/9H/2f/O/9H/1f/R/9X/4P/l//D////7//3/BwAOAAoAEwASABMAEAAVABUAEgAZABUAHQATABUAIAAiABMACQAJAAcACgADAAEAAQAFAAcAAAABAAcACgAKAAoABwAKAAkAAQAAAO7/6f/g/9P/5//l/+X/5f/j/+n/4//e/9r/1f/c/+P/2f/a/9f/1//X/+D/6//p//L/+f8FAAMA//8QAAoADAATAA4ADAAOAA4ACQAJAA4A///0//f/9P/3//f/+f/3////AQAMABAAFQASAAoAEgAZABMAEgAOAAEABwD7//T/8P/y/+7/6//5//T/8v///////f8JAAcAEAATAAkAGQAVABUAHgAeACIAIAAgAB0AHgAeABsAHgAZABMAIAAdAAwAAwABAAcAAwD//wMA+f/w//v/+f/0//v/8P/9//3/9//2//L//f/p/+7/4P/n//L/6//5//3////7/wAABQAFAAcABQAAAPv/AAAKAAkABQATABAABQAOABIADgAKAAMAAQAJAAoABwAFAAEA8v/j/+n/4P/a/97/0f/Q/9n/0P/R/9D/zv/T/97/3P/T/9f/3P/0//L/8P8AAAkAAQAFAAkADAAOAA4AGwAMABAADAABAAUABQD//wMABQD3/wMAAwAFAAkAAwAAAP//AQD3//L/9P/2/+7/8P/t/+L/6//w//L/9P/r/+v/7v/3//b/9v/7/wMAAAD9/wUA/f//////AQABAAAA9//9//3/+/8AAPb//f/7//T/9//7//v/+//3//L/6//3/////f8BAAkACQAKABUAGwAeAB0AGwAkACYAGQAFAAMABwD9/w4ABQD2/wEA9//2/+7/8P/t/+7/9//9//3/9/////3/AQD//wEABQAMAAwADAAOAAwADgAJAAkAAQD9//v/9//5//L/7f/3//L/6//r/+f/9P/2//T/9v///wEA/f/7//L//f8BAP3///8DAAAAAAAJAAkABQADAAEACgD7////DgAMAAkAAwADAP3///8AAAUAAAD9//b/9//2//f/AQD5//n/8v/0//b/8v/5//3///8DAAUACgABAPb///8FAAEA//8JAAMACQAMAAwAAwASABAADgAOAAkADgDw//n//f/0//D/6//l/+7/6//g/+P/4//j/+v/6f/y//v///8DAAkAEgAZAB0AGwAbACQAJAAnACsAJgAnACcANgAtACYAJAAbABsADAAJABAACQADAAwABwD//wMAAAD2/+3/8v/t/+7/+//7/wEAAQAKAAEACgAOAAoACQASABsACQAFAAMABQAAAAAAAQD7//b/9P/y/+v/5//i/9z/3P/X/9H/0P/O/9X/0//I/9D/zP/F/8j/yv/B/8j/0f/T/9r/1f/T/+L/6f/l/+v/7v/2/+v/9v/3//f/AwABAAkABwATAB0AHQATABAAGQAXABcAEgAXABsAFwAVABAAEAAVABAACgAJAAUACQAFAAAAAwDt/+X/4v/X/+P/4v/l/+n/9v/5//L/8P/y//L/9v/7/+7/8P/t/+7/6f/w//f/9v8BAAcAEwAQAAoAGwAXABcAHgAdABcAFwAZABMADgASAAMA/f8BAAAAAwADAAkABQAHAAoAEgASABMADgAJAAwAEgAJAAcABwADAAkA/f/2//T/+f/y/+3/+f/5//f//f/9//v/BwAFAAkADgAFABUAEgAQABUAEgASAAwACQADAP//9//w//b/7v/n/+7/8P/i/9r/3v/j/+P/4P/n/+P/4v/y//L/8v/5//L///8AAP3//f/7/wMA9v/5/+3/8v/9//T//////wAAAQAFAAUAAQADAAEA/f/7/wEADAAJAAcAFQASAAcADAAMAAwACgADAAUAEAASABMAEAATAA4ABwAMAAUABQAMAAUACQATAAwAEAAOAAkAEAAXABUADgAJAAMAEgAKAAUACgAJAAUAAAD9//b/9//y//b/6f/t/+f/3P/c/9r/2f/c/+D/2v/l/+L/5//r/+3/7f/n/+7/7v/n/+f/8P/y//n/+f/0/wAACgAOABUAEwAZABsAJAAmACYAKwAwAC8AJwAtACAAIgAeABsAFwAQAAcABQD///b/9v/n/+n/6f/g/97/3P/Z/9n/1//R/9H/3P/i/+P/5f/r/+f/8v///wEABQADAAMACQAOAAUA8v/t/+3/4v/w/+3/3P/j/9r/2v/V/9P/0P/Q/9f/3v/c/9z/5f/l/+X/6f/w//L/+/8AAAMACgAKABMAEwATABIAEAAMAA4ADgAJAAwAFwAbABAAEgAQABIAFwASABAAHgAgAB0AHgAVAB0AHQAbABsAGQAZABcAHgAXABIAHQAdABkABwAFAA4ADAAHAAcABwD//wAA/f/9//n/9//y//T/9P/5//3/+f8AAP3/AQABAAMAEAAQABAAGwASABMAEAAKAA4ADgAOAAcADgAMAAwAEwAQAAUABwADAP//9P/r/+3/2f/X/+P/2v/R/9P/0//g/97/0f/a/+P/4v/p/+v/9v/2//T/9P/y//T/8v/3//b/8P/5//f/8v/3//n/+//2//3/9v/0//n/+f/7//b/8v/3//b/6//r/+v/6//l/+P/2v/T/97/3P/a/+f/7v/0////BQAAAAUAAwADAAkADgAeABcAFQAbABkAFwASABIADgAFAAAA/f/5//n/9v/0//L/7f/n/+3/8P/t/+3/6f/i/+X/6f/p/+3/5//0/////////wEA/f8HAAoABQAKABIAGQAMABcAGwAbACkAJwArACkAKwArACYAIgAgACcAIgAeACIAKQAtACcAMAAwAC0ALwAmAB4AHQAXABIAEAAFAAkABQAFAAMA+f8KAAcAAAD2//v////p/+n/7f/j/97/2v/V/9P/1f/T/9X/2v/Q/8r/0P/T/9P/0f/O/87/1f/R/9P/0f/B/8r/0P/X/9n/1//j/+7/8P/0//f/9P/0//f/AQABAAAAAwABAAAAAQAHAAoADAAFAAkABQAKAAcABQAKAAcACgAFAP///f8FAPv/7v/2//n/9P/0//f/8v/0//b/9P/w//f/+f/5//f//f/9/wMACgAOABMAFwAOABAAFwAQABAAEwAbACQAHgAgACQAFwAeABsAEAAVABUAGwAVABMAEwAOABIADAAOAAkAAAD//wAA+//y//D/4v/p/+X/4v/a/9z/0//Q/9H/2v/e/9z/4//j/+3/6//2/wMACQAKACAALwAyADQANgBEAEQAQQBEAEEAQwBEADsANAAtACkAGQASAAMA9//9/wEA+f/3//T/9v/3//T/8v/3//f///////n///////3///8BAAAA9v/w//D/6f/l/+X/4//n/+X/4v/X/9H/0f/V/9H/0f/Q/9H/zP/K/8z/xv/Q/9H/1//a/+D/4P/l//T/8v/3//b//f///wAABwAFAAoAEAAKAAkAFwAVABcAHQAXAB0AHgAeAB4AJgAkACsANgA7AEYAOwA4ADAAJgAkABsAEAAMAAMA9v/y/+n/6f/g/9X/3v/V/9n/2f/Q/87/xf/Q/9D/yP/Z/9X/2f/n/+X/4v/l//L/8v/7//f/9v///wMACQAHAAMA/////wUAAAAAAPn//f////3/9v/p/+n/6f/g/9z/3P/e/97/2f/Z/9X/3P/V/8z/0f/T/9z/5f/0//L/+/8HAA4AGwAmADAAPQA7ADoAPwA9AEEAOgAwADQAMAAkABsAGwAVAA4ACQAQAAoAAQADAP//9P/9//n/+f8AAP3/+f8BAP///f8DAPf/9v/7/wEAAAD9//3/CgD9//f/9//y//L/6//w/+f/5f/i/9P/4v/c/9r/2v/Z/9r/3v/g/9r/6//r//D/AAAOABMAHgAnADQAOgBOAFgAVwBcAFoAZQBhAGEAXgBYAFUAUQBGADAAJAAbAAoAAQDp/97/1//G/7j/mf+X/5v/jP+A/4n/kP+U/5//sv+v/7r/xv/I/9X/5f/0//f/AwAHABMAEgAVABsAGwAgAB4AGwAVABcAGQATAAkAAQABAPv/8v/n/97/3P/V/9H/0//R/8r/zv/M/8b/0//Q/9X/2f/c/+P/5//t//b/CgAJABMAFwAdACYAJAA0ADAAOgA0ACYAJwAmACIAJgAnABsAJAAkABcAIAAtAC0ALQBEAE8AUQBMAEQAQwA6AEEANAAnAC0AJwAZAB0AGwAXACAADgASAAoAAQADAPT/9P/u/+3/9//l/+n/3P/M/87/qf+Z/4L/b/9j/1//Sf8s/yr/Gv8P/wH/5P7H/rH+rf6d/pL+gv5+/nz+c/5z/nX+hf6f/q/+v/7e/vv+Jf8+/1v/jv/F//T/KwByAKYA+ABGAY8B0AEaAmYCswIIA10DrQP5Az4EdgS0BO4EKAVMBW0FjAWQBZAFigV/BWIFMwUABc0EfwQnBNADbAPyAnwC7QFhAdcALQCQ//b+T/63/S79i/z2+3/7A/uT+ir6y/mF+TH57vjB+IX4ZvhW+E34W/hZ+HH4h/i/+P74Jvlk+Zz56PlB+pP62vo4+5P77PtT/LH8/fxe/bX9Bf5J/pL+5P4n/2//q//5/0MAjwDfACcBhAHvAWgC1wJYA+cDeAQWBaQFPgbcBmkH7wdlCN8ITwmmCeQJJQpICk0KSAo5Cv8JugluCf4IhAj4B04HigbPBQQFPgR8A7EC8gEeAV4ApP/t/kD+qP0t/br8Rvzt+6f7gftp+1f7UPtM+0r7SvtZ+2f7gvun+8L71vvk+9v7yfu++5/7gftR+yv79frE+n36OvoQ+tP5p/lt+UP5D/np+NX4uPjB+Mb41fjq+Af5I/li+bb5Avpc+sL6K/uf+yf8ufxW/fv9pv5m/y0AEQEDAg0DJwQ6BU4GXAd2CIsJmQqOC3gMUg35DYoO+Q4+D4EPhA9eDw0PkQ4ADkkNegx3C14KPQkJCNEGoAVsBE0DOwIpARkALv9J/oD91/w//Ln7P/vP+nj6Qfoi+hT6B/oQ+ib6Qfpm+pb6y/r4+h37NvtQ+3D7j/un+7z7sPuY+4T7Wfsb++76svp7+jb68Pmn+WL5JPnl+LL4a/g3+BH49/fu9+f38vcC+Cj4PPhU+J747vhU+b/5Hfqe+hT7pftG/Oj8of16/lj/UQBsAYQCqAPTBBYGYAefCOIJIAs+DE4NRw41DwcQtxBBEZMRzhG+EZYRaREHEY0Qzw/UDrsNgAxEC/EJqAg2B7AFVgTwApkBWgA0/yn+HP0g/EH7jPr++ZX5QPnw+M34xPjG+NX48Pgk+WT5pfnf+Sb6Yvqh+ub6Gfs9+2L7dPt2+3/7efta+zb7B/us+mb6Evqr+UD5yvhi+PX3m/dC9wb30Pav9oL2YfZP9jn2S/Zu9rH2+fZE96f3GPiB+PL4f/kW+s36mvt1/GX9ev6M/8sAKQJsA8YEGwZ2B9gIJQp5C60M4A0JDw0Q6BCqET8SvhIIEwYT4BKNEggSVRGBEH0PaQ4uDc4LUQrUCGsH7gVtBOsCcgEQANz+w/3S/O37C/tH+qv5I/nP+Jn4hfiH+JP4tPje+BL5TPmM+bf57Pkm+lf6g/qw+t367vrs+uX62vq1+rL6j/pc+ib68Pm2+X35V/kH+cj4k/hU+Br44Pex94H3WfdE90L3S/dd92z3nvfV9xL4Vvil+Bb5oPlH+gP74fv6/DT+jv/dAD8CxQNkBSgH0AhNCuULTQ2tDvEP6hAMEvoSqhP9E+8TwRNuEw4TYxJ2EVkQKg/VDV8MxQorCZEH6AU5BH4C/ACr/3n+Vv1O/Fz7efrN+Uv54/il+JH4pPjW+Af5Tvme+e75Vfqy+v76WfvA+zj8jfzH/Oj8/fz6/Or8rvxw/D382ft9+wX7g/r5+Xv5/fhi+NP3PPfF9l/2EfbQ9aL1d/VT9TL1N/Vd9Yn1x/Uh9pn2LvfE92b4FPnE+V76G/sT/Dn9l/4KAIIB1wJJBMgFNgfHCEIKsQsTDUwOgw+zEMURxRJyE+kTERQrFBUUuBNnE8USEBIeEdIPQA6bDPgKPQmCB7AF/QNUAtYAXf/x/bf8mPuq+tj5PvnR+Hz4cfiB+JX4zfgm+X/51vk6+or6wvop+2L7mvvL+9v77fvi+9v7u/t0+yj72vp7+jb6xvlg+er4V/jc92T3//af9lv25vWt9XD1VPU39SL1OfU79VP1efW+9R72Y/bl9mj33vdQ+NH4ovmP+gr8lP0T/68ADwLaA4gFUgc/CdkKugwWDnoP+BBBEsoTiRQzFWgVWxV1FUYVUBXVFHoUqBMyEugQIw9fDaYLugnAB9MF8AM0AqMAMv+1/Wf8Jvv1+ff4QPjc97L3vffu90v4wfg++b35Q/qs+iL7o/sH/Hn83fxP/Xv9h/1z/Sf9wvxj/Oz7Q/ug+gX6VPmn+B/4ZPep9gj2efXr9I/0MPTi87nze/N981PzV/OC867z7/NP9JT09PRq9fn1i/YL9xH48viG+gX8XP0w/4IAegIeBN8F8weSCboLkg0kD8IQ+BGUE5kUbRU1FjoWmRZiFo4WGBZUFfQUXBMVEkwQRw6LDIIKrAiFBpIEqAKaAEL/hv0v/AL7yfka+Tz48PeZ94r38Pfr91L4ufg8+cD5Ifqw+gD7Rfun+wX8Pfxr/Ln8ufy3/Iv8Ovwv/N37ffsO+7v6Xvrx+aP5D/mn+Cj4l/cf9532N/YP9sn1e/Uc9fr0tfTO9BH1AfVh9YT14vUX9qD2gfeg+Cv6cPvJ/CD+i//DAS4DzAToBn0I7wp+DFIOYA+YEBsSmhKZE6wT6xNvFHEUURReE3US2BGuEJoPtg2mC/oJGwiRBt4ETwOEAQUAGP/m/b78E/z3+pj6efpm+gL7OPtc/ID9aP6z/nX+0f87An4ESQQBAtsATQEsAnsBg/9W/hX+Qv3m+jr4qfd4+dn7G/xO+cn1wvLl8VnxX++C7artBO4a7Hbpaeg/6Wfq+Omy5yHnUOmq7ALvG/Ef8hX0avdZ+00B8gV1CU8KJQqrC/AOfhNZF8cZARt1Gzsb8hubHewebx5xHBIYLBQnE+ISQRNTExcR4AwVCOcCm/4m/Ff7/Pnl9+30CvOH9MX2Q/iA9870i/Nl9Eb21fiG+6T+OwLlAyADnQPEBc0HDAiVBWQD6wR0CCULdwotBvkC4AE2AOj9Evq89if2xvak9Mvw+O2k7C/roOgn5dLi9uGV4D7eh91Z4UbkMuNN4griE+P95nLp6Or27HruSfAx+c8O4ydcNjQugBsWGE4oeDxbQyo7QDdLP+BHMUWpORgxXy4WKK4XtQasAbMH0ApaArnx1eWW4Xrff9gw0B/N/s2eznjOg87506neAObT56DnPev085wAgwumE3YZuh0ZItUm4SqELQctbShKInsciBovGs0YOxNlCTf+LPbS8UnvmOtS5ZnejdqC2RTYh9Ss0DHNw8tFzOzNHtJz1b7X39YU1ezV6NhW3Ynksuhu7THyKPeG+gD5j/u5Eeo5YFX8VVY66ycIOFBVdF3NVeBHRU1SW9RVj0QQNGcsiiL1DZ/zjuyw76jz4Osn3OrMHscYwQ+6tLlpu0TBE8gSzQPTf92D58byR/iH/fYDuw98HwwtBzbTOZU63DkBNxk1lzEgLBQnQh8pFbwKvAHN+0/1Duqn3ULUi9FP0NDPGs3Xy47KVcgBx4/IrswB0wXYaNvR3njfaORS5+fsAe3K7XrvWPSr+cIAiwIhA7EB+AI4IoNDT1iVTtcvECOrN5BISU0pSZFFNk5eTEc6NitNJEAd4w+x9cDj+ODo4Zvk5+Sm3O/RssVkvOy88sHGxW3M9df746TuYfWd/REKUxL3FaMYNyB+LHw650PaRNVAwTg9LQMl2xz9E3wMLgSa+jrxrOiV4DvaGtK8ykTHFcfgycrNU9ER1I7UXdTN1XDb2OFH6Nvs1vCI82z19Pbc9mP07/ID9Kn3j/2aAFwAsf3o/L779xYTNytN7kktLOscwy32QZRGuj4bM3Y6Nj7mM3UkthzwE5gIrvIm3zrZFdoN3T/gG9821/HO/sfiyFHPGtRG2QjmK/MM/2cIZg65F7MiBCf/J20pbiy3Nbo9KT2JNR0pJx7WF14PWwS9+Fvu8OVT35bacNdU1DjOc8grxyHLJNFn1xjdt+BE49vis+Pq59HuBvbv+oj8wPoz+vf4fPem9FPz9+8e8xj2Bfp7+SH57/KIBa8u702CWjM7MRnCGsI0K0XmR+k3HTTuO2g3uCjbG10MGv7n7C/Wts2Izj7Umd2d5bvf0dVYy6LKD9XY3zflz+6c/EoIIBMAGd8gCSvnLkItry1uL8QzSTgrNVYuVSQlFpsLvQMN+prwWuVE21jU9tBc0AzR5M9FzI7Kzc1f0/ja+uDB5ePp9+ia6Yvt+PWm/Dj9NfgT9qT16fYO9Sf0/PH88GnxafKq81fyve6Q7f0S9T2jYfRccDOMFUEgVzr9S7hKrzllN/o2gC+hI38Yzwbv9e7deckqwqTDTcpQ2DjhR90B1LjKJsxO2PHjAesB9+0CMQ+UGwMkDC/BOME6yTW8L2QqYS5BNX00Py07HgcPDwXo/MLzv+dc2oLPXcnhyzLQ49N402HQqs+f0kzY7N/r5RXrMe/P8gv3Q/zR/8AAMP2M99jyGfKK8rLyL/PG8Dfwnu6Y6yXl1+La3Vf7ly4wXLptc0k2Gu8SHC3NRr5Rwz+fNeE5YzixLwwlmhGL/aTkSczpwRvEVMnj0w3gm+L03VfVqtEB2gXofu/v9R4AOQoWF6MjNi2dNwE+HTwDNsAsrSVuJnEm2CKlGe4M9AQg/tDz++YB2OLPociWx+7Lws+M1ZjWrNZm20ziEum87VTwS/Dc7zrxW/a8/q0EpAKI+3D1X/CQ7fXptOeX5Grm5+bo6QbnO+R13ATwvCNZVY1z+FhfKLoUjSWWPqpPXkbWOxg7+jXzK/MhyRK4/tzlvcsHv5680L8tyMnXFeKs42Tc7tW62UDmtvC5+50IlhGRG78mhTAMPVtEGkKIPKcz7CihJNYhzB7uF0kMhgHE9wHukeJp11XQU8lZxM3Dvshu0vbYWN344dPlHemh6qzrX+/o8xj4ewD6BoQI0AGV+mH2+/Ub8CTp1+Kq4b7j0+a16Hbn4uJ83ZYCHDZfZlZtu0F7HMgfdTUoShhNmj4OPZs4zytZH1USTwGb773XncdFvtC49re9w4zWquKL5ILhmuGL6on07vgwAXELzBMEIbEtQjr9SHBOR0rnP4ss5xz0FfITihWGEu8Juv+l823mF9muz+jHj8B5v1jCdszz2MLgTOhR7Rju7Om45PLl0e3C+Y8Gag1MELUIWPz486XxDfA377zpLeEc3Hrb4uGo6vbtgeWm/A0o41O4ZOxEeiZILeBAu03OSOk1EzU9N10umiSSFaL/zerg0WbEE79nt4qyNbrwyqHbV+Ju44/pFfMd+on8GQEVClET7h4VKxM5TUjZTvpN20dqONMm+Rj8Dh4M0grCBef+TfQu5svYNNB9yCHBAb+DwevKYtUe2fXd4uSU6sLvVfFe8kL0NPTK9+T9nAUoBugBi/zC+q32nPBb6C/iZeJq5XfrS+2T6Wfgo/p5KwlfD3QsU7QwDi5mObxFw0INMeoytzJ6JjMfLRGfAZ/zO9nmyVPAl7AGqrCxBcV83hbnZuW86cbu+fZ3/W8EsREMGoYgpSk9Nb5FmE+aTR5ICzo1KBUbhA93CfcFT/5h9o7uK+KY1inPEMhFwwi/eLxxwz3PT9mD5JHroO1q7UHpE+uP8qf59AAWBjYKaQkIBQ3/bP2K+075M/Av533in+M86b/sZ+j+5g4IrTbDYzlrIEiFLgAw8Dn5RNk+NzB1MFQoKxxnG6URWAQ68yTXGMrpv+Wv2KzXtoXKOeLA6FPrffKH9ob9agPoCNcSFRrJIcMt5zlSRBVILUXDPucwByNJF2YNeQdpAIn3+O3Q4iTWDc4Ey27I28XawrrB78bPz0HZMebp7iTyu/H47DXtH/G498cCAgzaD3UM0wUmAA798PaN86Duzuxp65zprOnR6MLhauMgCcE5wWTeZIA/5iuANA9AJkW4N2omGikeJREdLh7kFCgI/ff84JvUgsfGsr6sgLmCz4Xlhun66qXx4/dR/qICIAiIDk0VHB+WKyc2bjxuPXA8kjlwLGweERPQCXcCe/q19B3vAuhj2bbNTcqFyXLInMbZxg3Orti339ToFe1v7nzwevFG9Kz0U/R7+rMHtxEFEP4FhP34+074VfPS6kXmJOjb6qDtR+4M6gnpHwW8LllWyV/zQ/QsRC+5OhxCcTsJKooonyZBID0dYxIaBCn0seHY1WnNrr3Bshq30Miw3+PpD+338Ur8PgZwCTcKIw1lExodlShIM389m0EDPvs4tC/WI3QXpQg5/Z74i/Wg8TvrXd7Q04TPGMz5ynzJdci3zrLXUN8S55TrJe638WvzfPV297H2Vflm/3oGPwkUBcf+Sfgk9KfwKO5y6t/qm+7f8pL3k/Ja7c38VSLvRmBYlkeDMUUzkz3cQtU40iV4Hj0jECG4G64Q3QEw9urp39770y/Gh7lLuKHF7dmK5/vtFvHk9U/+1QK7BKwJew/oGUQnZjCmNwg5eTNOMHUtrSj8I8AYDgo6ABj3M/HX7F7js9sO1znSrM8AzszMBNPX2pXgm+Zn6crs1e8S82718PYp9oL1c/iv/agDAwOjAMf6e/Uf8dXtSuxY60fvKO/a8X/vu+6r//AgbD9JTMhApSxdMbs6rz6iNyooDCOvJdohxhabCzf/2vgC8fvm4ttLzKbBd7+EycLYcuK253fr8/Bi+IL9Qv9mBqcOBRk3JsAr2jFGNEoyJjH0LgsrrSaBHs4R6AiIAP75B/JA6MTe/9g31SjP+c01zlbTRtwF4g/nHer56GbogOsP7V7yWvV++Cr/CwRHBUEBgPzQ9mX0RfLx877zLfGV737tUvCe8svyavg7EzQu10GDQlsvECxDNTw8Wj2GMx4jtCE+HdgVqBHgA+z6n/T27ADmrtn0x26/x8GpzJTa1uD85y7wzfiqALMBTgQZCdgPOhqlIpEq4TIaNo82dTYRMWMtoCaLGugR8wcR/x73Luxk4MnZc9Vh1PrW3dZO2Kraytxm343jqebQ6fPv7/Mj+ML5Rflc+iX/cQLvAJr7L/Nh7yPujO+K8C7wz+9E75PvR+/F7SzvzALiHcE2LEK4ODozIzn9Pt0/2TjTKJog3xkxEWQOjQi1AuT8yfQG7J/gIM8zwoC/XsX60N/YVd+g5lDvrfiZ/5EFAQn8CTgO6haBIQcs9y8wMD8zCjUiNdEw+CVTG8IQAgcZAB73Oes24NTX/tXo2W/cb94X4FfgtN+r3nHfwOKt53vsL/L/9xX8svtt+gX7mPzD/W77kvbG8XbvAO/h8I3x7/Kl8j3ycPMQ8Qb4mAp2ISY1nzxYOFs7CEIcQvtApjU8KogizxcPD0gKRAO++8r3bvPa8Zjp0toYztbGXMeXyrLPKtdV4T3r2/P1+q4ANQaSCusReBidHfUgyh/EIaAmICztL2wuJye2HqQWpQ5yB5T8DPI45xbdTtcU1YzXFdya4dLj4uQq5Uvlweaj6BDrBO2Y8bPzIfY6+Nv6AQD/Am8DyP99+2T4NflD+yn9Y/25/LP90vwb+5j0uvXvAcsREiIEKCUmcyh7KzoqOCuUJescuBbtCwQF3gPVArEB0AAh/5X/Tf7/94bxmOse6obr5uzG7kzxHfPS9TH6F/1pAe0DLQYXCukLTQy+CtAItwctCRwLyg2nDuUMaAo8BgYDRv6r+SD12PC87WHs2ey/7m7zZ/TB9GP1DPR+9ID1+PSE9fL3LPjf+dT6t/ui/r4AIAFj/t36YffR9/P5Mfmt+D748vht+9D8qvus+078t/3I/gP+pP5EAMIFJwtDDz8TWxYWGC4XFBYIFJMRUg5PCm8GnAVJBTcEsAWRBm0IxAg8B30FBAMp/5z7+/gh+DX6+Pzy/xkBOwF3AXkCIQNAA9kCNAFjAFcAnwD0AjADFwGC/2f+pvzl+a32w/Te9t35rvqg+W/4Wfj1+JH53vhC+C747PnR+hT7ofq5+PD4nPmE+0j8pvyc/JT8n/wH/EX7f/oL+zb8nf7WAPIBwAE/AWMAx/7K/nX/MgDDACkBiQL+BAwIXgkwCyUMSQwwDPQKeQj3BZAEpAOpBMYF0QYxB0cHdgZOBN4BJ/8r/aP8fv4kAaID5wSKBfoGtQeeB+4FFgQWA6QDRgNRAgMCPwG8AVoAc/3A+av3+fdb+er5a/iz9mj1g/YI+MT4HPgN92P3I/h6+Rr5Evi99y35Ovx6/p///f5T/bL75fpa+yD8A/3F/sz/7QD8ANH/2/7v/hr/JACoAHX/bP8M/mn9av3v/vYBIQUfB4EHnAZsBBgDfAEbAXcBfAG6AicEfQWGBjoHvgeYCNIHEgYGBgsGrgesCMQIIgmJCuILTwuNCpoIAwcvBaEC4AD9AOgBTwLOAZwA5P51/eT9Yf2I/HT7gfeO9vv37fZL9X/z2/J+9fT3LPhJ9hH2vfYB98/3C/fO9yr53vdC9/D4ZPp5+xD63vhy+3v90P7S/Xn8DP+8AVQDNQP0AMX/qgG8A2oFOQVmBdMF8AVvBtoDjwG0/938SPv1+jb6dPtu/Gj++gC3AZ8DkgSgBJUEIwR6BRkI+AmjCnsKVgv0DEsOFg8mD2IO4wxlCtYHtARRAuv/Y/2k/fv9zP3D/r/+uv9lATsBcQJAAkEAyv4J/Kf5KPrs+pr7k/sH+l/41fdL9/b24PeK+Dj5PPlz9xz2Dfbr9k75o/kk+Q/5KPhA+Sv6Cfqm/Ej++P4bAHQArQJ4BfkFpAVzBRsFwQQeBEgCjQATADf/i/5a/TT8iPob+4L7Nvy+/UT+v/51//8AugErAuYBqAJvBEgHJwmdCucLmQuDCwoLRgqfC18L/QpVCmsIVQepBUkEwwIcAtACYQNoAiQBWgFUAqQDwwLy/yf8vvqa+zj7j/tY9w/2Nfgx+fz5wvl0+G34C/nC+Db6M/oq+V754fdq+MT56Ply+wD8E/2A/MT7G/x7/SX+GP9R/8b/OADa/8cA/f++/Z39SP6O/q3/1P3C+yj7JPp8+LT4P/pI/Fj/EwEnAoADJQODA6kE5wUbBxQHbQUABhIHrghjCe8IhgmSCeYJEglTCEkGOgXGBGkGCQjCCGMI0gdjCE8JgAj1BWgEHAPpA6kE7QPFAdAA9v13/a772Pmi90v3Tvhb98n5Jvia+db4M/eF9/34zfnF+6j8gPwc/tj6/fyL/Fr/EAHZATkE0f8bAMMAeP84AHX+z/lb+nT7efsU+lr2fvcA+ff3/fcr9WX0r/a09kv2PfYs+AL75/7tAPQCSwQaBa4GzQcbCdYHcAcNB3sGqQZxBXgFegXaBdoFigXRBTcGFwdBCNsImAhgCUwJ/giRCfUI9QiACeQInwjjBw0HLwZqBecDnwIHAWP/7/xy+nT5+fb79jL2tfR183307/Vq+Az73/lV+z76svpy/XL9Jf8u/xP+NP6U/a39Kv/d/Q//Jf2R+Xj6v/de+n38lvrh+Xr4lfme+SP2F/N/8fDv4fCN8vr0O/z0AWkGOAkyClILKQqfCcUIoQn9CloM5wrFCeoHdAbqB2sGegVxBCEDcQJ5ACAA8wBmAl8FAgfEBxkHrAaeBkUHaQgVCTgIvQfTBr0E9ANrAFT+o/3J/cX+Zv+o/w3/mf8c/uD9XP36+4j7y/pw+6X87/1+/qv+wf5C/pT9Qf3C+7L6UPpb+TP5WfmV9533uPf7+A36nPlg+V34YPjF9hH2N/XF9LP01vNp9LH2t/kd/Jf+4P79/nr/2/6C/ykAuP/4AHwCHAR2B9oH3wcOCnAKeAzgDR8N+wwBDGMLxwr0CmULugopCoIJLQndCSUKoQnSCL8GFAYbBfQCPwEW/9n9lvz8/Kb+A/81/5L+Uf2o/qH+4v/tAPgAiwGC/wr/Of9N/xsBKwKCAH4CEwDy/f/+y/oM+2n6fPjE+/j6m/h4+Wb26vPi9nP0kfPh8ofu/vFY9ArzV/Lz8P7wb/Zp+Vb2vPat9nP4U/2h/dn86vzi/L79df33+uP6SvsJAIUGGwkjDdYPuhNlGfIccx6FHx8fWh0JGgYWDBEYDQYMGA1tD2cP5wwMCFEDrf/0/OX5avcT9RDzXPK08SHx+fDj8dnzC/dD+iL+wgD5AtACBQHZAEQB6QO5BuQHOghkBygHHQerBG4C1f2B+ef4sfdZ93f2XfWJ9lb2Z/Ps8AvvBu/l7oLroueP6F7smezT7cjvBvCl8zv1OfQp9Sz1HvWV+DL97wBTAQP8Rffy9t/51P1aAcAGvQ+KGWAipyfsKVMszStUKXMm/CIhIZAeOxvuF00U+hBUDRoK1gjuBEMAxfxs9nLxj+uC45zf0d6w3yXj8uZR6/vwFfb3+u3/XQSoCHoLfg0fEGUSfBP2EyITsBG+EHoOvwvWBwYC1P1w+mj3LvYb9BnyKvCh7BvqxuhB6EzoqegC6GrmjuYL6PnoSuvt7MfsLO7572vxkfMh9hL4+vnJ+/r6OPkP+Ab3Nfcl94z4ZwD2CuwWjSH5JuAuLjagOHM5qDSmLRQqDyW/IHQfFRx4GCcV6hCiDIYI5wPm/UD5zPRW7bvlkd/z2anWGNZn17HcXuM66bTuT/Mf+JL8kP/BA9kJqQ8dFt0aOR05Hx8f0R1LHPMYTRQYD3cJZgQc/zz5cvMu7j3q7OZL5BPigeA64HHfI9/e3ijef95M4ErjAudI6szsN++I8YDzA/Ti8y/0gvWd96v5u/uG/E78Rvup+RP9VAY2EZkegSlAMbI64j8eQTtAKjufNUcvhSeaIMcaPBaHErkPvw0QCo4EK/3v9EvuFOib4o7dx9ja1ZnT3NJx1KfXXdxX4obphPHA+VMCLQoZEX8XiRzuINkj4iTrJPgj1CLNIPIcOhf4EMEKkwRz/v32+e4J6Lri49+k3v3cn9vB2kTaCNvX2pnahdz339Xkkel37M/u/vCe8o3zYvMJ8wXzwvM59dP3Wfob+2X8o/u+/TwHpQ90Gk8mEy1NOBFDE0dESoZGIj+ZOOAukifAIUQbfBYSEF0LigjwAgH8efK06Gric90c2sDWhdI/0AfPnM8s0kfUY9gr4LXpE/Vf/04HeA/yFjIejyQlKFornS02LiIucCr4IwYdvRTqDZUHsv8C+dLx7+ry5eXf3dqq13/VLNZ/1x7Z6due3SvgHuPD5Kfm9+fW6Mnqsey07rnwnvJo9an3FPlZ+pr77/vN+9b50fZi+7sF1hHsIBks4DXYQZZHWkm+R9lAsDpOM4orjiZgIdscaxdnES4NXgd9APP4tO9X6Irho9oz1sPR0c1Sy4LJpMoFzqbSTdm94FzpJPNR/PwFLw8sF+of4CfyLsQ0iTbtNWkzjS6pKfYimBqLEmMJLgGP+bfw5ehj4efaNNcC1E/SD9Jo0gvVJthC2inc0dwU3vHgPeRg6ITsv/Cu9NH2Cfgf+dz5g/pT+7z7SPsi+6z58Pn0AZUMUBn3JyExGTvbRSNJVEqYRww/HzhbMIwniyKtHYwXcBLRDccJUAYpAcH4ku/Y5gLeeNbdz2PKucfSx8XJ8MxP0J3U5tqh4rrrX/Wd/kwI2REXGvUhLCniLg4z/jR1NW00CTH2K7gkrBy8FBcLRgFb+DHvkee74AjaetUK0V7NoMxHzRvQ8NMH1u3Yb9yM3yXkPujF64rvNvLO9CH32vhB+vP6WvuW/Fz+5/7e/lb94/pN/50INhMSItkssTWTQnVIAkoVSthB9DnYMo4oZyMSIPgamhcXE2kOzgpmBFP7oPEU6HLfx9e30CXL88dDx4TIbctyz5/TlNgf31fmeO5s92wAhAqkFDkdPSWIK+MveTP4NJ81SjXTMWssSiW1HFEUpgrO/xz1UerC4bHbo9aV01XRxc8t0M3QrNGq0sbTntYK2vTdEuL05GLo1ev07n/yavXG9wf62fsR/f3+pgFUA6cEOwNlAHgFJA8XGksozTBtONhEmUmfSTtHPDxgMiIrJiLjHvIdEBoCF5gTYA8BC9UDivkY73PmVN5y1lXQ3srCx03IkMkLzV3S9dZm3RPl2+tl8436OAFaCoATExyUJU0tTDP2N/Q4hTftNLwvQymsIosaeRFlCCP+xfOs6rnhRNoW1bHQR86gzlDPcNBP0d/QE9Ll1GDYvdye4O/jMec26nXtafG19ej5s/09AIQBVgPaBEwF9wXaA0cD/wmqEt4dKiqtMQI7eEXHSOlI80MEOUswPijwIEce9htmGG0VPRHPDIYHrf9J9k/shOP/2zzVwM8Ty7XHDse+yJPMD9Lz14PeKeW+6wXzIfqhArwMpRa0IHQpvC/zNBw4tDitN4Iz5i3MJ3ogjxkgEW0Gofua8BvnXODL2U/UO9AbzXbM6cwOzljQQtJ41ErXftk73DPfK+JC5p3qJe/o85P4xfzn/3cB7wGXA20FJAYLBvkC+AIrC2oVcCLTLqU0FD3CRNJF6kUnQNI1Li4PJlQgHR8pHbAa9RYrEmYNcgas/Zzz4em14kvcnNaS0hnOD8v7yQPKZs3y0SjX99705qTvtPi//80H9w8NF/cfxiftLTQzzjShNcI1hjLbLdMmph52FxsOdQPC+DXtIOSb3GnWWtMc0W7QMtE20cHRodHQ0GjSGNWh2P3c1ODM5WrrnvBu9cz4Lfv6/P39fv54/08BnwKtA70D/AAaAo0JgBOcIcksqTJpO61BjkIVQSE5zC/WKWkjtB+7HgwdTBrcFUYRzgz3Biz/yfSm61vl7N4T2rjVzdAtz43Ons6f0TXUONhg34rm++6m94f+9QZJDx0W+R3vJIorWTLoNcE3NTizNA8v4CaFHMsShggP/hH1IO3R5iDi2t1j2n3XqdSL0jbRctAy0GnQ+9F21Xfaa99q41nn0uv38BX2zfmL+9n7e/uG+j/67/uf/ZT/fgDy/tUBmAqvFZEjcy3oMg07I0BoQO89SjXoLH0o8SN/IRYgBh1cGSkUFg/mCtwFzv8R+K3wfesc5krg+tlG06XOV8xXzCTPNdPJ2FzgQej58Mv5YwGlCUgRFBdRHUMjpCjMLZMw+TEGMtAuNymlIYgZsxFnCMz+OfZf7m3oSuNo3pvbKdnN1rjVndR61ATVgdXA1wPbdt5B4rrltena7cjw1vK68+3zX/Tk9fL4Rvy9/0sCRwP3A6wB0f94BCgNJBq0J44v7zccQDNCrUHcOxgyoysMJSofTx3iG04awBc7EyYPtgqDBBX8RfIJ6jLjMN042HXTo9AK0FfQetKM1SnZ1t475bHrVfMk+/kCzgpnEXoXdR0HI5UnUCoXLEgtSCyKKfskCx7GFoUOzwQ4/Er0vuw453Titt6D3MvZ2Ndg1xLXDtj+2O/Zjtzw3mfhx+M85XbnDOqL7B3wnfNL9vv4u/sB/o8A9gJYA/IC4gDN/MH9lQU/EbQfhCreMZg7LELqQnE/TTbpLb8odyJWHg8dmxtaGiYYCBVeEswNIQXq+cjvPOjo4S7cFtdH013SD9ME1JjWUdrR3lLkCelN7UHyNfcr/QYEtQrZEjIbPSLYKG4tqy92MDItcya4HncVBAx4Axv7e/Xd8tzwz+8h7jjrpec74kfcj9fO037Sw9O71qjbC+Aw4yXm5ugc7C7vk/Hq8771xvbG9yP5JPpt+4L9Y/+JARoCI/8h/yoGmBCXHVknTiydNFU8wz46PRI1vCtSJsQg7h2vHkMfvyDPIGEerxt+FT0Kx/wb8NbmPuD62dPUgNLi04bX/9oE3jTgIOFg4djhn+OB55vsWPNK/KMG1hFpG6EiTSiWK3IsfyveJ3IihBwuFnkQugs4B/ACE//u+r/1ze9D6UHiINwk1/vTw9N01THY9Nuj333iS+QW5T7miuik6ybvofLB9R/4D/m2+Rv7Vfxh/eX+SgBTAg0DSAArAZ0IExM+H3Um+Sn5MRY4ZjjqNOgr4iR0Ih0fpx4+IacikSMMInMeZxqEEuwFZPhd7i3o2eII3ifa9dj02kDcOdwn3YfdZN2k3fXd4eAc5sLrV/PL/CEHjRHcGAodPiDRIcsi2yL5IHUeIxxpGqkYshXmENQJ+wE1+vHx9eoE5TPgeN6i3hTgNuIv4sfgeN/53fTdCd/44Pjkz+lq7jPyTfRl9ab1UfWb9d722vf++Eb7Zf2t/+v/x/yW/o0HbhNbIFgn1innLy80tTOTMNgovCMbJH0kwSfMLJIvxDD4LXMnSx+kE0MFdvfn7WXpUObX4+ThmOBy4azgVt2P2m/XSdXR1QLX2dqP4aPo7vEd/NwDHAofDnIRdhc3HfAgJyOlIvwhwiHPH/0c4RgZE0sNzQZN/xr43PDf6m/nheU05GPiot943fvctt3E3izfG+DV4tbm5up37eDtCO6d7nPv6vBw8kz0pPan+Eb7m/7MAOYBd/8B/Cf/xAbEEKwaGh5nIvcqai+FMVIv+Si/KHkqbyrJLHcsbSpCKKAhiBr9E/oKtgL2+1b3XPVB8mHt7uik5fTiON9L28fY4dfJ2BHaxdu932HkIukh74f1WPxGA5gIPA3bEUsV2BdGGrUcbx8EIb0fgBzeFwcS7Qt4BfL/ffzc+XH34PQt8SDtH+l+5bzjZeOF43DjBuNa40Dk8OQ35XflHect6yTwcPRE9yj4h/ho+c352vmr+Vf5cPrv+2z8Ff/8BZMQwRxNJCcmgycxKc8ppifaIccdEx+LIrElvybtJd4k4SFIHOUVAA/qBzgBWvvM92z2vPTY8X7uzOuK6fnmm+OV36vcN9sV2+XcFuCX5Ivqt/De9Ur6A/4DArkG+wqTDp0RDhRzFb0VDRWFEwwSrhAdD2oN5wpSB44DGwBP/Sn7SfnR9xz2ufMC8Szu6ese6gToBOaS5eDmZek27Izul/Cl8rXzcvOs8jPyy/I29Hv1O/e0+Wz80P5E/xcAuwSUDOkUOBnlF60WrhgcHJ0eSR0eG8kcRyDAIpwi4x/7HSAd9BqQF/oSHw5NCp4G2QN3AgUBvv4/+6D3n/RF8aHsLufm4rDh6uH14azieuQZ6K/s3O9Z8uD0D/cG+Vn6TPu5/GP+PwAjA2cGqgn4C+IMuw1ODigOBA1lCnYH5QR3AoAAKf/r/Yn9/Pwt/Jb7M/qi+BH3pPUB9Xv0IvOw8Rbwnu4L7jntseyW7SPv/PG19Vn4tvna+jP7/vqr+Tf3kfiPAFYM0xXPGJUXmhfGGSsalxZeEnsSYBcIHY4fkR+/H9gfTx5jGpsUSQ/6CjMH0wRRA/YBiQAX/lr7+fjH9TjyKu536tHoUui+6OTpf+o57MHuJPAm8RLxkfCs8dbyvPNP9fL2ovkR/dD/ggINBbsGLQiYCCYIwAcFB5MGVQZABqkGhgc0CKMIOAgQB9YFIQS+AYv+vfpd99n0V/Nl8qfxevHm8W7y0vLZ8h/yhPEk8aDxgvPM9en3ufk0+2n8OPyh+jX6pfyvAc0HAgx4DgUR6RK4EysTURGKEMQRxxN8FvUYNBo0Gx4byxktGIMVlBLaD/cMfAqICJEG4QQNAyUBlP+H/S37V/gI9e7xsu7D677pZOi/583nIuis6dTr0O198N3y1fQW94r4z/nh+3z9Yf/bAXwEcgfZCc4KDgsyCyILmwonCRQHJQWbA2MCIgGt/3f+MP0g/B378fkP+f/3uPa/9Sf19PQw9Xn1n/Uj9tr2qfe2+Ib5P/rP+hX7p/sl/Sr/fAGHA+cEPgY6BzYHngYmBqcG1ge5CHkJJQojC2EMCg1fDecNGg4LDrANDQ3ODDIMFQvvCQUJiwgZCCQH1gV1BPYCZwGU/7X9OvxB+8/6qfql+m/6ivlD+PD20PVT9fz0F/VN9vn3zfmI+338av0e/gP+zP1f/f/8Wv2S/bH9WP6X/ov+fP6s/ev8r/wk/AP8Evz4+wX8xfuT+677APyC/Pr8cv0p/rH+wf45/kL9ifw9/BL8SPym/OT8Rv2m/Tb+3P68/k/+Y/4g/0MAlgC//5D/2QD7AgQFGAa5Bt0HGwmbCTsJMghXByYHZwcDCHQIkQh3CA4IuQeRB3kHlQe5B2sH9wZ2BsQFHQVWBGQDegKJAWsAc/+m/vr9kv0R/Z38Cv3t/dD+Pf8D/6r+kv5q/hj+1P1u/Tb99vyP/E/89vuc+3/7ffvH+3/8+Pw2/Xv9sf3r/Rj++v1u/bn80Pv++lv68Pnj+fP5Q/qa+vP6f/uU+x37Qfos+cH49fhd+Qf6LftR/Gf97f3o/f392/2s/bH9I/4q/34AjwFJAhEDzgNdBKYE5QR/BQQGLwYLBvAFFAZ2BtYGAAeIBwUISghPCBkInAcSB10GoAU6BfAEpAQABB4DSQLQAYsBagG3AQwCJwKNAVMAHv8R/mH93/ys/Cv9I/70/nf/0f/g/7b/Hv9z/kb+T/49/iv+Zf4e/+3/4P8j/0D+pP3Q/RH+Of5f/mX+Lv7Q/RP9Dvw9+7D6xPo6++37t/xz/QX+D/6z/Q79QfyB+yL7AvtD+9/7cvzX/FP9vv0p/nz+gP6N/tD+LP91/1r/If83/5L/GwBuAFoASABnAMcAcwEKAo0CMAOMAwoERwQ7BFkEegTjBI4FMQa9Bj8HowfhB7sHFweMBiYG3AVbBUcEHANoAtkBaQHOAP//fv9P//3+aP6N/cP8t/xK/SL+Ef/n/+IA0AE5Ag8CbAHWAGkALQD5/7T/fv8K/7H+s/74/j7/Kv+d/vr9kP1B/bz8B/xQ+/j64/rE+pr6UvoJ+q75Rfnf+Nr4gflD+ij77Ptj/N/8JP2H/RH+h/5P/ysA0AAZAeYAMgBm/+/+xf4G/4n/SgBNASUCiQJhAukBdQE7ARsBOwGkATkC4AJ6A/kDmwQ8BZoFhwUhBdEElQRbBNwDOwP7Av0CQAOZA6IDlANPA9cCXQK8AQ4BlACIAJoA6wBwARoC6QKOA7EDMANIAj0BWAC4/37/2v+SAFEBwQHOAaEBOAGSAAEAqf9z/0D/v/7g/eL8JPzQ+8X7EPx7/Oj8JP0t/e38qvxn/B78+Psn/Kj8Nv2S/Y/9c/1N/RH9sfxn/Gn8zvx7/Qr+Wv5z/lr+O/7//cD9hv1p/Y/93f1a/gH/yP+IABsBQgFRAR4B1wCUAGUAbACxAOQAzgDOAOYAAQEDAQMBNgG4AVYCjgI3AoIB6wCYAFcAQwBgANAAjwElAnwCdwIaArwBjQGUAf0BjQIaA5AD1wO8A4MDEwOvAloC2wF5AWEBdQGZAZABNgHZAHsAOwAOAOf/9P/9/9r/lf9j/zD/HP8E//3++P7e/qv+QP4B/vj95P2t/WX9MP04/V79fP2v/eb9Jf5E/jT+DP7k/cz9wP3b/Sf+r/5J/+D/RgCfAOoA/wDmAIsATwBcAIAAfgB9AB4AvP80/0n+XP11/M/7lvvA+yn88/zJ/VP+c/4//jv+Zf7D/hX/i/9XAFwBUQLiAhUDEwMYAyoDOwNLA0QDkgM3BBQF9QWDBs0G3AZ6Bt4F2gTIAywD6wL0AhUDGAP2Ao0C4gFGAa8AGwCD/7z+Hv6J/er8K/xy++z6nvrq+jH7f/vs+zT8tfwl/bf9Y/7v/kv/vP9BAPQAygFfAs4CLANUAyEDqgL4AUQBhgC4/yz/8P7l/iP/df+//8b/Rv9l/iX9IvxK+7n6j/rh+rv71/zZ/YD+Df9j/5T/tv+A/0D/+P7T/tL+0P7V/qT+n/7Z/kv/1f9lAAMBfgHFAaYBUQEFAd8A2QDbAOoALQGoAUICrwLBAo4CoQLvAksDxQMqBHUEagTrAx4DPQKHAbcAGwDT/8P/0/+t/0b/5f6q/p/+s/75/jX/lP/w/xcAXAChANsAEQFVAWoBTwEyAREBDAHxAOgAywCjAGsAHQDa/8H/4/8OAPf/q/9h/xP/sf40/rX9cv1N/T39Rv1c/ZT95v0M/h7+P/6L/vv+R/9q/2P/QP8g/xr/+/7l/gj/Kf+A/4v/VP8G/8r+tf6Q/qb+mf51/nX+aP6L/sH+6f4N/1H/wf89AJIA2QDzAPEA0gCaAGMAJwAMABIATgCuAAoBTQFlAYYBfAF7AXMBWgFEASAB7QAKAScBSwGfAb4B2QHAAWEB3wCGAGsAfgCfAKoA0ADkAAoB6wCzAGMANgAtAAEA9v/p/7T/Uv+q/vj9bP0X/QP9Hv1W/Zv9yv3r/fv9Ff79/cr9rP3g/ZL+Xf8BALkAewEGAmoCdwJlAj0CDAIeAkICWAK/AhEDXwPBA/cDEwTGAzUDSAJ8AZEAzP9G/wz/Lv98/5L/jv91/w3/lv70/U/9zvxD/NT7nvuC+7L7DvyP/B79yf2h/pv/swCUATsCjQKQApYClgK/AggDeAMUBHEEhQQIBDkDNgIuARcAPf+S/gH+7/3e/dT9qP1n/Tj9Nv2U/d39LP5f/oD+m/6t/s7+0P7F/qv+n/6L/qr+BP+b/zYAuQArAUEBHgGxAAwAhf8n/+v++f40/5v/+/8nAEEAOwA2ACIA9////yYAnQA4AbcBIgJuAo0CVgIFAncBnQD3/3j/Tf9f/7//LwCaAPoAJQEHAY8A4P8q/87+uv72/mj/zP8yAJgA1gDfAMIAjQBOAOn/rf+C/4D/kv+9////AwAOAPT/3v/O/6b/lP9o/5T/FQChACsBXAE0AQEBjQADAIn/MP8+/2r/xv8iACkAQwA6ADQAWgA7ABkA8P+d/2z/Pv89/03/Xf+L/5v/r//R/8P/sf+d/3r/eP9x/3P/oP/t/3UA5AAKAdsAnQAkAO3/8P/n/3sA2QD/APQAowAbAIP/Kf/l/iH/b//j/zoAFwDX/2H/+P6i/pv+yP4E/9f/ZwDXABEB0gB9ACsAHQBOAKwAJAHkAUkCQgJCAugBQgHvAEgAsv/Q/wMAfgCmAJYAzAAkATIBGwGuACUB+gEcAkQC3gFuAagAGv98/SL86vtV/F788fzc/zsEKAcxBwQFvwKSAMX9lfq492/2Off++Fn70v2O/wEBYwFlAAb/Yf0F/K77Dvxe/eP/BgKSA38E9AQIBfsDIgKzAL//5/4P/+n+5P5R/7L/+//p/37/3P58/kT+LP7B/Xn9Vf17/f/9tf6C/yIArwDQAPYAkQBaADYA/f+oAGEB/QGbAjMD4AK6AqsCDAKZATYB/QATATIBLgFjAXkBWgEiAY8A0f8M/03+vP1u/Wr9j/1c/ZD9HP5N/iz+jv7p/h7/EwA/AIAArwHlAnUDuAM5BIcEwQSxA90BnQHgAXwBagEnAfcEBgsnDBAK0wblA5sCLP7s9+D09PMg9R/3Ovig+hH+oQDOAPn+Uf3W+xv6xPgc+AD52/sR/lj/WgEYAkIC5gFVACf/av6N/lr/uP9YAFwBIgKWAiACqgEtAeAAKQH6ADsBUQGzAX4CCAL6AQ8CmAHbAW4BbACUAJQAhADa/6D/+//w/4sAIgAs/zv/rf+t/7j/GP8n/wEAMgAcAaUAVwC3AIsB6wFTATQBoQDXALwBjwGSAOYA0gBTAY0ADv5E/9z/OgAgAMn9nwOHCk8IzwUiAhsAoAUiAt362/qs+hz+Ef/G+s37t/2t/qH++flD+GL6jPoQ+wX6M/rW/D3+uv4M/hz+gv4R/4n+2/5I/k3/AQHQAXUCRAJHA7MCfAOmAuUCiwKLAl0CwwGQAjYCwQKZAnUD8AKfA0QCdwGxAVYBGQFGAEMAUwCxAI8A6/9z/nz+Rv/r/Wf9Qv2c/Jb9RP5N/iL+d/6O/+0AKwA/ARwBCwQUBiwEMAL5/9sAuv+r/n79Xv28/tQBQgP0CjERYwyLCVgCx/2m/yf3NO0j7FTvWPSI+XP3AvuGAfACSwNX/ML6R/qs+0gCOQPmAJUD+ALZCXARkQjbCDIJzAkADi0HZP+JA6YDqAAH/Gr0lPYG+cb5vPXx9KL3OPmH+Bj3jfUW9y35/fav96P5xft//If9m/2L/7MBtwHMAW4CUQNrBQAF3gQkBpoHmwk7CycKXAknCrwJwghiBVgDbgHgAY8A+P3U+x37f/uM+rn6evnL+kr9WP7V//YAeQEWA/IDagLeAkoBTgA/AokBxQAe/879TQPMDXoOjwl7BsEDxAjwBer5K/Us9Tr4bfhT9Pn3YQHWCAoKtgX0BCsHxQO8/tb4Lval+Xz3afQ19mD55v3g/zT+Of5sAFT+oPlF+O73Dvqp+rv4+fhW/Q4BJQLHAagAyAIzA0IBfv65/AH+tv/c//D+wf+fAZAChQJ+ASwCbAJEBDkFKAj2CicKHgr4CZsLJQ3bCzoJaQmxCWoKIAkdBm0FsASvAzQCNgC2/43+0Pzx+l35qff59gv3UPjn+Wb6Ffsr/JL+4P7v/LP7HftM+4/8H/pX+Sn8Cv2k/0YBLQCdARcC9v9j/z39oft5+/75G/rz+Tj5H/kj+d/4EPlS+JD2O/bS9df1xfZ497/4+vns+lL63PlH+bv4uPj59+H35/dZ+Dr4Ifik+Bb6iPqJ/zIK4hNfHiohYCCnJ9ktPS8dLBUjLh5JH2MajhRcELsNKhDIDtIHagJa/Wj4gPPM7PfmmeNT4Ifezd4e4T/kk+ZM6vLtoPFf9Iv1fvcx+4L+SQI6BZQIqQ0kEUkUmxb7FoMYOhkJGHoWORPPDywNwgiUAzT9//ZP82Tw/+3661vp5+eY6Bvpx+k66Z7omOqX7YPvWfBZ8D/yQvW793/4kfhZ+Yj6svqn+W/56fgz+s/6V/qw+Uv5Lfl6+D74KPq5+x78RvxQ+e0BFRRAILApwSezIj0ubjYVNHYxsSZgI3EnxRz2EsIPxA11EikRYAc2ATP7vvQ68HDrJug24z7dEds72wLgoeOv5Azr3fHM9cb4h/hV+34DPAbHB+4HoQfXDUYT+RV7GWcaghshHhkcnBeWEjcN9Qg3BBr+Bvcr87TxDe8j7VPpH+VJ5A7kaOPy5BPmYufU6m7tFvEV9eP3Qfme+Tf5iPim96b2mfbi9m33APir99r3xvfs9wL3aPXi86ryZvB+7SntlO108G3yPO849FkHqx5DNHs7YzVgO6ZH2EzPS/o94zHjMH8q+R6OFigQ6hDLEekKyAIA+fLsQuS03sXcF9oq09jM3szI06vb+t+q5PLrF/Mj+b/5Q/n6/SUDAwhkDEINHRCNFBYY8B3bIVAixSJmHwMcpxm1Ew8O7Ad0AE77rfWZ71Hshukd6Fnn/eSx47bjXeSQ5gPprOsY7/rxVvUo+Qn89P7kADsCdQNYAdv9cPsv+Xr4Efg99nr29PZz9g/2bvQ68WbtSOl96I/oiOZH5vfn9uxM9MnyG/NHBVYdHDcARGQ8wj2FS/1S5FbqTFM7bjZYLjMg3BXWCS4C8QA9+1z1Ye4b4gnZ3NZM2Yfa+dXuzmvN/dMI3S3jJumX8FL4zP9mA4UF/AiACwYNog5JDi8Ofw4HD3USOhb1F+wXSxakFGMT1hC0DH0GTwBp+xT33/N+74vqhee55rDnM+na6DHomOim6jzve/Pr9lX6s/0uAiYHQwmUCcUIKgeeBZgBZftU9Szxze/h77/uvO0K7ZfteO9o8HPvh+3X6+3qF+ne5sPm5ecc7EDu7u63/PcWIjOUSFBKR0VpTPJUmldpUIw8/itMIrsVgguBA8v78/ja9yP2HfNM6/nf5Njf2eDcPdpb1JTP7dKa3wHrtfMy/GkB6AaVDO4Neg/UDuIKNAoVC5kLRw3sDNoNChP9FgkZBRnXFbwSoA+kCp4F8QDN+2r3PfNN7gDqQ+e45anmmOil6Urqueo/7IXw5/X4+sz++gAABLMH2wrnC+sKagkACOcFIgHf+UHz/e6X7QjuOe2E69Tp5egi6v/rRuzF6k7onOeI56LnMek46ubs9+7i7a33lw8MKxlEN0yZSAxPsVezWcZUq0FcLdwfMw64/hr18utT6J7o/ujA65zqouPA37rixuhD6xTo1ePD5LXrNvNK+scCBwkIDbUPoQ8rEOMPtAvACBkHMQTlAiQBaQAlBekJ9wxnD54NfAslC/oI9QVEAR36uPT38PLtvuzO65vr5Ozr7hLyw/QG9mb30fmL/QgBoQKiAwIFLwfrCQYLdQqUCOEEQgGH/Yz4dfNt7mfqtOhZ6ITo8eg26M/mh+ZA54zoy+j15yzojOhy6qvui/Le9or3U/U6AH8YOjNWSMZKtUUaTB9TW1QxTw4+Ty1FINcNbP689Jbrq+a45HPkm+a65TrhRd/g4zDrce7X7Ynsau1p8hT42f1SBagJIgpfCoQKTwyvDQgLNgnOCboJswk6CFIGhgcpCVUKwQtYCgsGWgF3/sH+2/7J+632pfKg8GrupOsp6jLqvuuv7TnvAPI29dr4ov4oBaYJRApuCOwHHAm1CSQILAUnA3sBlP7Y+pv22/Kb71bsV+mt5Qziq9+23oPfZODN4K7iz+Vn6ZTr9Ozq8Rz4J/2Q/b/3kfwpE0svXUiUUE1L8U8uWoxegVxmTOQ2iSVMD0762+xK4QfamtYv1V7ZKN0w3N7cGuPD7fj10Pbq88vy+PWV+mP+GgPABgMInAh9CBMKoAytC+AJOwn6BzEHNQWrAqgDEAYdCGcJggcGBIgASP5N/gr9W/mN9O7vse4R7wvvFvH18jL07/Xm9f/2Vfkx+lf84v5TAGoCvQOKBe0IKQqICfgHHwVmAoT+Avp+9l7yeO7/6iboyude6AzpG+rQ6SLpH+nh6S3rN+xd7V/uffFA9zz7r/2U/Lb5AgW7Hq05xE2cT6JIG02TU/1Sb0u8N2siCxHW+9TqpeEe2ZnUN9Vu2XnhZOae5b3n+/Bg+0YAcf/h+/r50Pvg/f8AHwYMCK4HRgidCWoMdQ0lCrQG8AO1AGf+gfuR+Rv7mP3vAFIE/QT1BEMFVwVDBTsDm/82/P34xvbH9Kfy+vGN8QfyffTK9sH4rPor/Pv+XQKtBCgGPgbEBVIFAAR1Ap3/SPsG+BH2pvQD86vvYezz6p/qG+ub68Pr1eth6zvrNuxH7trws/Pw9T72Bvde+Tb72ftF9zHygvxqFDQu/UAoQwRB60h7TzRPsUcXNNceUgx++Mfr6eSJ3KrXHtmi39roWO1q7MXuE/e2/50DrwJj/539HP9RAdcEjwiYCLIHMghBCbEKcgmBBLcA3P7Q/YL9DPu09yf3svk5/2QEYAU8BCkD5QI5BIkEUQL4/gT6JfUd8+rydfP/89LzavQN9sP3JvpV/YsBxAVFCDIJ9QgrCLAHuwbnBKMBifz39x71dfMg8gnw3u117PrrCOxo7KvtDe+D76XvR+9f7p/tKO7K8GTyzfLA8yD00fad91P0DP1uFEAvzUbLTCdH00swUu9RbUwKOQkiShA0+6rqvOI22uzVKtdj2nnirOjc6NfrDvRV/fcDIQQQAFP+Nf/OAPsDgwYCBh8EjQHK/6oArwAg/vP7x/rh+q787f3w/n4BdgTxB8AKiQrNCHgGBgSZAjYAV/zV+IX1mvPh8wH1r/a69+n3q/jn+dj79P13/9QBUgTPBSgHlQfmBh8GWwRzAogA/fwf+SH2hPQ49Lvywu/m7CfraevH7NHtFe7H7a/u+/DJ8pbyKPFc8bDyafTe9Sz1Z/QX8t7tpPTeCrMmgD/4SBJH+0vRU9ZVS1EGQWArUBdIAGjsW+Do1vrR4NJy2B7ieekB7CbwrfiFAo0I9QexAysArf6i/qUAsQOeBGQDEwEl/6L/5/+b/QP78vgo+Ev5R/oS/BUArwTDCewNzQ4hDhwMzggUBlECvP0m+vv2aPV39RH25/fh+RT7Kfz8/OD9lP5j/pf+pP//AIkC0ALtAZYBMAGzABX/FPuC9gPzrPGe8UHw0O1l62nqHOxv73LyqPTv9H708fT29K7zu/CS7r/tpuw77eTtTe5b797scfBkBkMj8TxOS9JIzkmDU0NVs1B6RPEtJBqgBsvwVuWZ3tTXiNiF3HTiQepK7LPtN/UH/RUCwQJR/sv6Yvmc+EH6efxq/aT9av3r/tABegPpAw8D5AGzAQEB4//v/mj+PQAfBDoH5Ai7CBsIYwkpChUJvQY9AlH9MfoE+JX3oPgu+JP3/ffK+Mv6F/0E/2oBUgMlBDcEqAPgAjYCvAE7AaD/YPxQ+DL1L/Tx8z3yg+9n7ADqXOrZ7FLv6vBA8Hjuju6I77vvAu/07lDw7PA28sH07vZk+aD3bPTT/wAYrzAvQ1lFI0EBRxhL0kg4Q1sy+x5LDkX5qupm5KjcddlA3Cbhpenw7jzvdfPW+5UD8wcFB9cDZwEOAGMAowHBAjACqf+J/p3/AwHiAYYALP51/fT88/xY/Z/8t/0BAf8DcQZZBqYEOQWGBlIGUAQ/AEb8OPpO+d74MPi99pb1UfZF+eT7Gf0a/of/ygKgBjQIiAgACCwGkwR5AqL+b/r29erx3u+g7WPqAOgq5gjm9+fZ6d/r++2V7v3uivAM8mzzMPTB9HP1HvWZ9jH5TvuJ/Dn4KPfYBYccmjLVP9Q9GT2IROJHgkesP1Mtwxu4Coj5PvEF7GblseKP4sPmw+2t76DvB/PW+AT/WgFv/4T9zvyv/cb/6QHBAzIDwgBJ/8P+1f5J/mf72PhU+MH4XPqR+9/8ewBvBSsK4AzlC0YJMwdxBTwEzAF3/VX5h/bp9Tz3v/gU+pH7Bf2m/rb//f9YABcBpAI8BLgEJQQVA6QC1wKLAqEAIP3M+A/1ZfLg7+bse+l+5sbl4efk6jXt+O117Xfug/F+9Nv1FfVs9NX0nfUR+O75rPrs+oP2HPdOB+4dTzRaQEM8STtAQnlF+kRLOtIlChVMBdD2fPA96yHmxuUW5/3rtPFr8ZPwd/NL+Gn89fsd+IP2FviB+27/DgKbA1gDtwEKARABfgDF/oH7G/lS+aP6NPxp/Rr/5QIJCCUMrw1LDKoJ7wesBuUEugE0/bn4PfYn9if3UPjI+Dz5EPuL/en+s/68/dn91f/4Ae8CoQL9AWECFgPeAt8AO/0d+ev1Z/O38HrtBeqa5+fnker27XTwcfAP74fuxu+08RfyJvH58FPx/vEr9JD1Sfak9YTxQvaYCqYjuDjdP7Q7Lj8TSaxNTUtRPQ8pWRggCML6BfRb7V3neOVA5wHt0/C97wTvofLN+NL7ePm29TT1evhL/UQBCwQ6BX8EiwNPA4ED1QLT/yD8yPk4+Yb6Ivz6/fQA2ARjCYAMngwgC58JyQiBB9kDY/5r+dz1s/Te9OL0X/U59pD4Ovz7/l//zv07/IT84v1j/lT++v07/rr/DAGLAY8ADv4/+0v5jPc29PvvaOxw6ifrSOyZ7AbtZ+wZ7JftuO8m8u3y6PIZ9NTzafP29BP1cfU48mPqtfJqDPQmRzzpPkc5AEQQUPZSEk8xPMgnDBp7CSX+ovh275Po0+Z451Xr1Osz56Xn8O3b83z2n/SE8l31/PovAEIE+QSoAkwAYf///5QABP89/Or6YPtY/S0AHgITBAMHiwkhDHEN7Qu2CqEJ9Qb5AxMAOvxw+iP4i/Wh9CT0aPUP99r3nvnz+Sr5+/jN+Hv6SPzg/Mr+zAC/AtwEtAQ+BKAD0ABG/h38svha9dbxl+4p7ejrsOpr6v7qGuyo7FjtkO4U7yrvePDW8YbxrPGE8ojzYfWq8Qjv+f6AGq81/0YWRA1BakrJUNtR+kinM4MgBRAcAaP6m/aD8Kzr9+nQ6w/u9OyA6uvrvvG69Tb1o/Rw9VD4cv3Z/74AnwF3/vX7A/xK+5H8hP3C/Gj+n/82AeEEwAaTCB4KhAoeC6wJawd/BRMDcgCP/Nr5Mfkj+N72hPS38ifzXPK18Xfy8fJL9VT3dPhY/IAARwOMBZUF+wQqBXgE2QLrADb+a/uG+tP5nveJ9fbyG/F/8SHxz+9G7h7spepp6sDqy+rd6f7pJ+wT7hTxIPUu96X4R/an8IH4tA6fJoE6dz20N9Q+fkhGTp9OMj9TLNkd1Q31BAUBwvm584nuxeuD7Uvt6+qq6nft4fEp8zjxZPDf8Sn2/Po9/fb+A/+z/BD8u/vz+7j98/x2+0H7d/vp/jUDnAYYC8oOjxFIEkUPJwzCCfAGUgNI/UL3dfOD8RnyufNy9J30OfTO9J73u/lp+Z74GPmq+7b/IgLZAvkD3ARzBXQFgAMgAdf99fnj9+T1+vNe8qLvve5t72bvyu9Q73Puse6S7jvuq+2o7IPtTe/Y77nxgPNc9P31sPKe8gwDixoLMiFAcjtHObZBoUeKTFZHdzXGJjEYWAqOBT0ARfmm9PXuoO2D7m7rxOly6lHsl+6F7OPpDuvj7j31OvqL/Dv+DP4u/sz/pQCUAQwBov6P/Yv9av9GA64Gggr1Db8PsBAHD2QM+wp2CCoFyQC5+iD2ofNM8kzynvJn8iTyivL68471AvfO96/3gfma/GT/NwIlA7oCrwLoAf0AGwD7/Zj73/ng9z31gfIW8FbvhfAb8f3v4O0r633q6+ya8EjzPfPl8erxAPI089z1/fV79UHyc+9Y/RIXlC2ROw05IDQkPiJI00r8RqQ2HyemHMgP3QjIBPP8+/da9HLyK/Nq7wfr/+rB7L/uO+wf6OjoYew98iH3C/nW+039IP7rAKEB0gEZAUT9mvyo/UL+8gFLBDoGzgq0DOUNsg4fDCsLQgrhBlsELwCC/PP7APom+Br35vS89Cf1MPQ59FfzxPKz9G330PsMABUCbgOAA6oCKQLFAPn+t/xS+ZL2CPXX8wXz2/Hz7xPvre6o7Tvtcex3637sI+7q79rx9fKk9PT1ifVl9vv2qfZ79fPwdfZCDJskzDYhOTkwIDQ3QTVJSEliO9YpDSG5GLwRdQ0PBpX/y/nQ8y3xDO3C55flCObJ6Uzr3OfW5iLqafCF9wv6OPq7+nn6wPtl/dv+rgDl/4X+NP/fAOsEJAnBCv8LbwyBDNcMkgsrCeUGCAXRA7gCdQFDAJ/+Xvzw+Vv4jPds9tn0yfId8a7wt/AX8oX18Pnt/WcAPQGjAcEBSAH9/+L9APw1+sH40fei9tn1dfXU9BP0FvIz75DsF+rz6LDot+jH6Ujrau7W8qr1X/d2+Nr4ivlD+K/3YwGkFFcpMDb8NAAyDznjQ01K3URBNc8nWR/IFxcRYQqOBb4Cef7j+OTyCO7D6wPq5uhS6CXmMuQw5IbnZu479Aj2e/VG9dj3K/vS/PH9+/5PAKQBoQJfBdYJFg39DbgMwApaCVcHgQXsBMEERAQsAtD/3v8XAe8Ajf61+qn3m/Vr8zXxm+/E71Lx6vJU9Wv4t/v//j0BTQIMA00DqgKvAI39jPrn9/v1EfS38cbvS+9d8EPxL/EL8IfuIe5Q7sjtKe3S7MrtNfB78WLymPTX9rL5Yvor+jMDERVNJ+oyIzEHLbUzKT44RIA/OjEqJ4Ij+x6GGIEQMAuCCmAIzgHw+Krxm+6b7Rns8egT5abjtuSF55Tr+O0+7o7tSOwN7b/vGfLB9ED3/vkr/vsB1QVyCvQNhg/sDpcMtgrrCXUJ0gm2CmMLSQsQCgcJCQnYCNgGjgIR/aL4KvbV9Bf0//MH9PHzJfQF9YL2Uvja+G/3AfYp9uH3Pvp/+yL7ePo++jj61PnG+GP3WPYa9sn1WvUO9ST0HvOw8uzy+vMR9Vj1vPUE9zr4KPmu+QT6YPpX+kr7twGcDjkdoibiJu8jWiVgK4owmS5WJkYe+hltGKUWgBM9EZ4QMQ8pC2IEVv0N+bz2xfPu7nTpWebI5pzpBuy47LXs1+wa7vXvnvGI86/1+/fC+hn9kv4ZAPgB9gOeBb0FsASeBFIGVwh1CUEJhgjHCPYIkQgLCF0GPgPQ/1H9J/0i/gP9ufq/+QD6Yvqj+bT3c/ey+Kf43PdU91T4YPvy/RH/tP/I/zv/Vv5w/e/8sfzx+4r6m/jp9gz2qPVh9vf2Xfcz+OX4iPkQ+rb5afm5+Qf6A/tP/FH9D/5o/m7+bv/UAXMFYwlAC5YLWwzwDewQcBNGE+gRmhCrD7UPMRAQED4Qvw8YDqYMUQsDCpMIBwZoA5AB2v8Y/pL8Bfxs/Mv8QfwQ+4b6Gfs0/Ov8U/yP+tr4PPj1+GT6IPsd+5j7V/wI/Yv9wf0M/hH+df25/J38MP3K/TT+of5m/0YAywAOAScBMAEgAXkA0f+4/8j/dABzAUAC4AIyAxwD6wKUAtIBVwA3/jb8ePoC+Xj3nfWm8w7yy/A88N7vZO+c72jw1PGL85D0RPVl9gb4APrd+z/9cf56/zsAbAAJAD8ADwLjBLIHNgntCOwIOQpEDIUOuw+/DxQQchDoENARJBLFEicTWBLLEFIO7Qu1Cp0JPQiOBs8ECASmA7MCmAGLAPb/HgA4AEEAJgBA/6j9u/sH+jP5L/kh+fv40/hb+J73Pvdj9+P3DfgC9xP2wfay+Mb6vPvx+0j9vP8GAvYCSQJhAdYAiwBRAJ3/R/8AAFoBKQPwA2YDogLvAbUBYwHp/4L9iPpS97z0f/LA8PDv9O437lDuKu+T8U30A/ZA91f4+vno+9n83/yP/ID8bv3t/rT/3v87///9d/4RAeUE1AcDCKAG+QZaCTAMzQ2pDRQOtQ++EKwQchDNEesUxBagFXsS4w+uD2sQABAADjULAQnjBxQHNQbeBF8DcQLZAZIAqP5E/EH6JPlq9xP1RPOn8gX0v/XZ9df0OPTe9Lz2+fd691b25/VS9+P5BfxB/SD+pv93AqQFiAeaB88FlwN3AnECTQMIBNkDjAMsA7gCWgJTAf3/v/5s/Rv8hPr59030k/DT7ens+OyA7M7rFexS7tLxJfU390n4Gvna+W36M/po+a74rfjT+b77lv0e/wcAGwCx/8z/IAGmA+MFVQYkBsgGAwknDGsO3w92ESsTphSmFW8WQRiNGkgbxhnlFmwUwBOWE4sSmhACDqoL7wkLCCEGnQQ9AysCkgC4/Vn6N/fv9KrzFPKr79XtHO3R7fXuV+8U7xHvC/DJ8arz1PTB9ff28PjE+6H+RAGxA30F1gbWB3AI7QgyCU8JiwnCCToJvgeTBYwDLgK5AP3+6vyW+rj4+fYI9dDyRfDa7S7sSOsD61jrE+xj7ZPvFPJW9Hr2/fdQ+cT6A/zD/JH8rPsQ+7z7Z/0l/9n/W//0/cD8G/0BABYF6AmbDNMMbAypDZoQlhNLFYMViRU6FnQXKxk0G3Mdux7KHWMaVxZsE4ISPxJiEIUMzweZBKYDBgMRAd39xvmQ9jD0LPHi7QHrHekF6bXpDupM6h7q7+oI7ZzvG/LA8+L0lPaV+Zr9DwLsBb4IDgv7DJ4Org+7D0oPGw9kD5gPlQ4wDDAJjwaeBO0C/QCL/rv7tPho9gP12/On8orwve0B64jou+bK5XXljOX25Wbm/OcV67/ugvJA9dn2xPeX+Ab5C/nN+K74uflZ+6H8EP2G/BP8O/yG/ZsBJQoGFSMd4h5IG/4YKxzhIUokWyE2HLMZFxtUHeAedh9zH1keSBpzE34M0AdQBlAFjQHJ+8H2mfVS+Hj69/hN9P/unet26nLpFOgN55fmxufQ6SvsW+9n86b38frb/P/92v+mAgQGJgmdC8wNoQ/3ELUROxKEEnISfRFeD1AN0wuSCt0I6AWSApv/Iv3Y+k34/fXQ85jxKO+Y7HLrU+u369DrYuq36CToHekt64ftD+8Q8LDx5vMP96L5svoq+jD40PaH9tf2vfbJ9c70t/Rx9VL2J/eX9gj0FPK19e0C0RXPIssjOx19G+QkSzEpNt4w6ihCJtYo1CqcKpEpxCeJI1oaig6/BQcBFf7A+Xfzh+7K7BftE+1p62/oN+WC4dXcONkV2UTdX+Pw56PqO+2p8UD37fu+/jAAoQE1AxgFOAirDDsS8BZMGc8ZxRqFHBodsRolFeYP/Qw7CyIJ/QSPAED+Rv2E/FX6evbz8e3tk+pn6IrnUOfY5/noIOps60Dsoezi7Cft+O3s7gbw+fBp8QvyhPN59XX3bfj195v3GPgb+TX68/mr+Kb3cfbi9en1BvUr9AP2lv6RDwUiwisUKtQjiSMOLDQ0yTPJKzQjYCBQIn4koiVGJToi/hqaECgHLQGs/En31vBT7MLrh+xo7JTrmOtf7b3t8eke5PzfteBf5ZXp9utQ7ozxR/Yi+wb/nwJrBSMG8gWsBksKFxC0FKIW7BaTF04ZgBomGTwVAhA1C9YHawVaA4QBRv84/Qv7z/hS9l7ziu+f68vomuf751Log+jY6NjppusV7e7t4+7g73bxXPPt9If2LPgC+bf5VPlL+Lb3I/fu9jD30fb39jD3MPZG9UH0XPQX9QDziO/L8Kf7vBD6JNAsjikBJCAlSi1eMoEw+CreJVUkeSQlJbonPilnJaYb4w4zBdn/gfrk8+TtlOts7Rrvge6S7bPth+7S7LTm39+F2+bafN0x4UXmwewx8iX2e/le/WUCIQbEBmsGkQeLC6EQhRTuFhYZjRsnHTscrBikE5oOuAqeByUFeQKX/+T8ofqD+JL1l/H07brrhOsa7IXsRO2m7sbwB/Nz9O/03vTk87PyvfHx8Uz0N/dB+e75hvkN+h/7M/uB+T32B/Ni8VvwTPAU8dvxHvP681P09vSs8+Dvau709AMH+hw1KhkqNiSfI9krEzWtNyEzuyvpJdQiAyMeJzIrwCn3IMET7Qi6AbL6VfIy6n7lH+Vo5f/kVOW95vPomOny5kTjXuAx3+jgBOUD6wvy3PdR/C8AaAOuBXEGYgb6BskIEwuHDfEQ9BVeG1kfnCDMHs0aDxV/DsQIkgSUAQ3/Z/xT+iz5Ifj39k/1dfOP8X/vLu316s/p8+ms67Hue/GN89T0ZfVC9pP3Wfjc+Mj4EfjM93z3WPed96n3qfee9133r/c6+PX3dfdP9hX1dfRK80fyWfKy8UfwC/D09IUDwxbgIywm3CDTHRsiTihVK4oq1SeZJboj8SKAJYMoxia/HkETAQozBCz+KPdV8cjuI++57/XuBu4P7UPrxOj35d7jIuMy4yzkEuek6+Xw3PWw+XT8fv5s/wAAtwEaBXcJzwyTDoYQ0BPYF7oaphoCGLMT5Q4pC9IIrAc3BnoDpQCz/sH9HP2f+575q/c79Wfyc+/e7NTrT+wC7ozwvvLU89DzTPMv89Lz2fSi9YX1sfQw9Ob0Mve5+e/6U/rq+Bz4TfjK+I74Mvev9UD1YfZ2+Fv6XPt3+6z61PkX+wwB8As8GLkgnyKBILYezx9YIwYmsSX4InEfLh1AHW8eyB6qHCgXQxA5CkMF4ABV++30BvBf7ZLsT+xR63vqKepw6hvrVevm6kHpN+e45n3o/+tx74Px5PMW+Kj99gIZBt0GPgdiCDsKgAzaDacOhA/bEN0SkhRCFYkUixLjDywNwQqsCKsG6wR+A0gCQQG6/1X9KvqJ9jrzX/A37tLsGuzo69vr1+u+63Dspu0N77nvR+9N7r/tKu4Y71/w1vFg8970Afbn9j748/m5+2H9zv4gAEEB0AEBAlwCnwJqAj0CVAMhB8YMkRHtE1IU5RRAF0EaexsJGtwWNxTdEx8VkBa7FlAVxxMQE5QT0xMgEj4OdwnaBTUEmQNCAsP///wV+5r6svrP+Vn3wvMA8H7tmezk7IztKO4q7wXxqvNA9sP3gfhL+Y/6bPw0/pL/6wBlAn4E5Qa7CNYJ6AmaCSAJPAhkB6AGwgW0BN4CtQBN/yv+rPyP+uX3/fU79Yv0e/PP8Vfw8u+B8Jfxe/K+8o/yWfJK8hbyQ/Gn7/3tGu137cPuGvAJ8ffxgvMN9iP5o/vi/Bv9X/3c/ncBKARgBiIJmQ2UE9IYwhoxGtAZcBt8HhogtB6dGx0ZtxgmGsAbDhyRGgcYnRVWFI8T9RFoDqUJnAVaA2gC8wAI/oz6Zver9UD1BfWb9Ijz8/Hf8IjwmfB68G/vRu5W7qDv8/Fe9PT1R/cJ+F34C/nl+a76NvuT+9T8GP9RAb8CEQO+ArUC6wLMAkYCLQHc/6b++P2m/WP90Pyn+5H6tPnz+Ff4l/ef9nD1XPT881z0U/XS9aj1T/XD9Fj08fOI83DzqvMR9Ov0Kfb091f6O/0iAKYCVgT7BFAF8AUzBxAJzAqMDEwP9BKHFuMYaRnAGSsbAR3MHWMctxmiF8gW5Rb9FggWSxRNEscQQRCjD7IN6AlCBUQBtv6o/KP6fPhh9vL0MvQe9Fz0XPTS8wHzU/Ku8efwJvCD72HvC/CI8ZHzgPWo9jz3pvcz+K742Pja+Nr4UvkZ+kr7ifyx/YX+vv6E/in+zP15/TD90vyJ/E78VfxB/NT7A/tB+h/6XvqW+j/6cvn1+Bb5ePmn+Wj5+fiw+E34p/c79yz3fve290n3xvYa90L4/vmI+/b8NP8eApEF0AgeC6IMjA1CDooPuhHnE7oVgRbEFpAX+hidGmcbuhr+GBQXzxWAFTUV3hNuEdQOFA1mDJALdwkjBqICNADD/rz95Pvy+J/1FPPz8bXxQfEz8EDvRO8u8J7xtfLm8rLyTPI/8ivzd/TJ9e72tPfI+Cb6efuq/Hn98v1E/nn+kP6z/q/+8P53/yYA3QAeAdkAGwA+/27+rf3S/Mn7svro+Y75iPna+Sb6BPqw+XH5ovkm+kX6z/kQ+ZH43/jG+Y/6Hftp+8D7s/vd+sL5GPmr+Zz71f30/9QBfgPRBZwIIwtLDJAL1gn4CG4Kig1HEFcRZxFVEtEUnBf3GKkX7hSsEuYRPRIpEpUQxA0eC6YJkQmbCVwIuQWzArkA7f+p/+/+Jf23+kP4bvZY9Uz07PKR8dzwB/Hu8bXyAfP48vPyQ/MB9N70YfWm9fD1Avfa+IP6qvs7/Lz8av0Y/o3+hf5s/kL++/26/ar9+v2C/g//Kf/T/mX+Dv7X/Wz92fwi/GX7FPva+tL6wvqj+oH6Nvr6+cD5mfk++a74CPik98H3KvjV+G35Cfom+2P8hP1z/vv+1f82ASEDYAXAB9cJtAtkDQ0PQxHSE9MVahabFYIUExSbFCEV4hSzEyYSLxGYEPEPkw5HDJgJ6AbrBMYDEwNPAkYBEgAY/2H+av0X/K76Xfkz+FT3tPZ89tP2Vvfn9+f3NfeC9uf10/U09mH2X/Y79pT2fvei+Gj5b/lL+Xb5Hfrz+kP72/o8+h36afra+iL7Ufvb+5/8jf02/lj+Af5q/e387fwr/Vj9Vf1B/X799v1h/nr+WP7p/Vb9x/xI/Oz7n/v3+jH65/kt+gX72PtE/GX8dPwg/Wr+h/8JAAkAHgBaAasDNQYBCAMJrAkOC0IN2A8FEjITahNqE58TCBRqFPoT5hJ0ERsQ8w77DcwMGgtGCT8HhwUfBNcCbAHG/wX+ofyG+4/6y/kH+Wv4//fI94H3QPfk9oz2pva89qb2kvat9l33aPhB+cD5GPrH+lP7s/uh+0z7Svuj+zj81/xl/ZD9Vf2I/LP7PPsA++b61Pr8+ln70vs2/CD8ofvU+v75TPkb+Wb5K/r8+nf72/sT/Jr8Af1E/Vb9O/3x/K/8Z/zv+3v7M/tQ+5773fvx+zD8x/y+/eT+JACZATIDgwRDBeMFtQYBCN8JGAwdDrIPvhD4EZ8TXxWgFs0WHBY8FXoU9hNhEz8SyRAQD4ENZAwEC0EJ/AamBJ8C3QDl/qz8g/qr+Jf39vaC9tf1K/V79OLzrvOU84DzP/Mm80Pz8/M99cj2GPgH+X/5yPlp+hv72PuN/C39IP5C/2UASgHHAfgBDAITArcBBQEAAOv+/f1K/Rn9Jf1I/Sf9efy5+y374fpm+pz5c/hm99z2uvYu98P3ZPj7+Jf5ffp5+xL8E/yW++76ffpX+k76UvpH+kX6ePrA+in7xfud/NL9If8gALEAWgG8AksFIAhCCksL2QsLDVIPAxIPFCwVshUuFjMXUhjhGLAYxBekFv0VVhVWFJgSEhBbDecK5AjUBlIEQQE//vr7M/qb+M724PQ980fyKfJi8rLy1PKl8n/ybfKV8ujyPfPF85v0r/Xk9hH4/fi2+Uj6qvpg+zb85vx+/dn9bv4Y/5X/+f8KANn/qf9d/+f+qP43/tL9qP3H/Tv+i/5d/sP9Kf2m/AP8RvuT+hD62vlv+dj4aPgw+Dz4R/gs+On3vffy9574evkY+nL62/ot+4H7n/t9+0P7RfvC+8L8cP5XAFwCRASTBc0G5gdTCekKXQxODbINkA7+DwUSBBREFeIVYhZCF2YYIBnSGIgXphXpE6MSixHzD78NdwuECeMHWQZdBAUC5f8F/nL8Cfss+c72o/Qe80zy6vFr8e7wsPDf8NLxFfMp9Gz0HvQK9Fj0UfVN9if30fey+Mn54/rh+7z8X/3x/Yf+5f5a/3X/Uf8y/zT/fv/c/x4APQBYAGMAfgCLAIYAawABAE//gP7o/U/9d/yf++b6ivpm+hj6mvkb+aT4evh++Jv48vgq+V75kfm9+fP56Pmy+bL5B/pT+vz6PPsz+yj7L/uo+7P8Xf7//5QB/QLEBPoGPQn7CvQLjgx/DSYP/hDFEg4UdxUYF9EY7xknGjMZdBfpFY0UQROGER0PmwytCoYJpwhrB3wFAwN+AHr+1vyN++H5gfeU9Tn0t/Oj80bzAPMH82nz2/M59EH0SvSH9Db1KvbV9v/2uvaZ9vL22vfR+FX5ivnC+TH62Pqj+2P89PxI/XL9qv0M/lP+of7t/nj/VwA0AawBrQErAXUAuv+4/q39lvzN+3L7gfsQ/LH8zvy8/Ej8jfv4+vD5yvjI9zL3Qvfp96n4mvlp+uP6Avvf+lL6oPkE+af41fhk+e76Z/1BAMECuAR0BnsIBAtLDeUOxA9tENQRIBStFnoYCxkiGVMZFRrXGoQaxhhdFt4TBRJ7EGQOEQw/Cc8GSQXrA2YCdwA7/kP8Dvvq+Zz45/b69Jbz7PIy88Xz//PQ843zqPNl9Fr1I/aA9tr2sfeX+I75Bfr3+aL5UPlv+eP5j/oL+2f7zfs9/Mv8Dv3r/J/8ffyY/Nv8Jf0u/Ur90v3F/oP/tv81/xf+IP17/Dv8GfzY+3v7d/vm+1j8hvw//G77jfrs+UD5sPhN+Cz4fPgb+db5K/pV+kj6V/p4+l76Avqa+Wn5lfn8+bf6F/ws/qUA8AJNBGgFqwaCCBwLAA2DDmcPhBBWEiMUhxXlFRgWdRaRF5oYpxi3FxYWgxRLE2oSAREED78MoQoQCc8H4wZUBSADzgBU/pL8xPq7+Ab3SvVP9MPzqvPF85bzmvN/85jzB/R19PL0XfUX9sX2WffY91T4Nfk/+nf7hvxB/eb9SP6X/gP/DP8N//j+i/53/kn+d/7F/uT+RP+X/+D/0f+H/zn/mf4Y/tL9gP1L/Sv9Lf1Y/V79Bf1n/J/7ufom+pz5PvnM+ED4v/dY98r2avZU9jT2O/Yw9lH2WvYq9ov22fYB92334Pc3+Sv7ef2V/24BjgO4Bc0IOQvjDC4Oyg4fELwRORM+FEYUnRQqFToWfBffF44XhRaJFbYUjRMDEmUQ7g0GDLEKVQmTCCEHqwVtBA0DtwEQAFz+jfza+nT5ovdC9sv0nPM/8wDz7fIe8/byj/Jy8m3ye/LY8p3z+vPb9Kr1pPYE+OX4R/qG+3/8av3M/kn/oP+aAKgA0gC6AQMB6AAbAcsAnAAgAGj/Of5j/rb+tv7X/qb9Z/rG+Dr42vc5+M/48frO/BH/BwA7/v38OvmY9G7ylfCF8FLwre838HjxNvPh8wf0y/AB6ivp7O8+99IAeAa9B2oN1BIGFrkYABqPGvQc3CArJVwqmCz1KuEq5iqVKQon4x+9GO0Tuw9DDmoNPwp/BL//C/u+9R3xSOss5UXhYODk4Ojg+t+Y39vgluO55qXojelD65Xu0vNO+Vj9dQBPA30G7wk+DUMPihB7El8UQBZ/FuUUYBI4EWMRnBCtDl0LEwnHB+EFJwSHAWr+LfuT9yL1tfJi79LsbOt5643riepi6M3m4Obh5/jpdeu87NzuYvHZ82z1ZfZb9wD59vvT/j8AJwDn/98ADAJEA3gDJwFE/u396f3K/V/9kP00/er6Ovh19n8E9BTgHTkfOBGfCNwMXBR6HuUmninHKpUqGCdiIpUfChwUGIgYDxZXD5MIaAPwA3YHKgNV+obx8eiS5bTl6eUa50XnbOSJ4l7hst9r3xnhAeXr6oru3O7L8Bz1QfpKAFkEYAbHB0EJnQxyEesVEBggGTwZKBnUF78UHhO3EmcT/xN7EVAMsAUtAWb/Bv/r/aL59PXt85zyZvHQ7ZHpl+b55aLmR+c6563mweeI6mfsUe1m7V3tiPCb9Dv3jvgI+Gj5afzQ/+QAOf/i/Sn9lv2W/lb+Iv1w/Cf88/yv/Hf7IfoC+v/3Jvi49In/mxUjHgQmGheEBxoM5xU0Is4s+y9xL1IvYCz3JqchIx/2GsEcDx3eFBgOnQj5BNYG9ADi9P/snOcq5zHqterl50jkVd983AbejOAc4q/mK+ve7UPx/PGN8zX5if6FAtMF6gevCaYNphIdFj4W4hKID0cPUxLpE7cSOBAwDSUMFQv8CAcGrwF5/qz8Y/s4+Qb22fM289/zIvFu7Anpeuim6nDshe2v6/Pquuwz7hLyPfRq9Ob1pPa29zf5pfjl+Qf99v/SAIL+U/3o+yf8o/y8+076qfhh9xD6qfm09zT21/PC8UPzLfJG9dQRhhpUHnwW1Ps0Aq8V9CO7M342Ty3LLJUqQie8JWwmoSGKH80ggRcoEW0O5ghECesDVvRI7U3r3uyT8HHuNeUW3/TbedkR3jvjm+O/5V7o++b+6CnrH+5N9QH8d/45AcQEIgf7C/MP1g/qDoQPlRBsFTEajxrGFvMQLA2CC08MqwxuCiIH0AJW/6/9Ufsd+ij49vSC82TvRuyq61/szO5O7xjuPewR7FTuV/Do8mz0m/Sm9u74tfvA/ab9Ufzq+uX6p/vo/PT/nACV/1P9Xfke93f2aPag9yj4yfV19aryj/JL8DPx+e9sBA4bgRhXGaEBFvkzD0Yiei/XNfErUiZzJ1Em0CVoJbEkCSGpIbAaTRKiDCAK3AYCBHT7SvJS8S/yW/HG7gTmRNw73ffdE+I15unl9OV25w3nueYF6gnvd/XJ+xr+Mv0MAKsDqAjBDhQRIw/3DwgSZRT5GBoXuBOPEU4PDRCNEAsQaw3iCKcEyv+C/fz8Yfzz/Pz57/WM8XntNe1j7k3vYe/77lvuce7n72bv4O7L8FfyfvV8+NH4o/mq+j/6lfoH+yv7o/yQ/zAAI/+W/cD6g/r4+sv6j/rs+Vj22vaL9YD2/fVk99P15wLuGOgStxIu/+jyIAsoH/4rdjIlJRoccx18HbsgviF5Ig0frR+5Gq4S3gyECgMH5QS0/4X2q/ak9vb0vfFr6s3hx+Iy5GbmF+ru5x/mFOjx6LDp5+zV79nzAPja+dP5d/xBAL0FTQrpDKgKFwv0DOANJxMOEi8RmhAkD3sPcw4yDJQJsgaFAxgDAQJcAAP/gft29zT13fJi8Z7x0vFm8QTw3u4u7e7tAPFi8TPys/Jw8iv1s/YP94z4OvmO+a76rPsk/Qb+7f87/2X+av7B/fv99v6F//L/Kf9p+2v7mfma+2L7t/2q+toMyRkNED4OM/eR+QMToSRyK5Mn3BdyE54Zfhx7IV4gfB5jHJgb6RQaDvEIBQkVCLgFDgD7+N/42Pif9MHvH+iW4vvlRenJ7HHteOhI5JLkoOUM6YXuU/Pi9iz5S/e19Qv4h/3BBHkKVA0HCu0J9AmpDFsQ8Q+eDl8NJg/8EDISpQ+SCoUGAQP5AkIEZAN+AiD/x/rz+AP2hvRI9Frz1PJ28XTvi+3T7Bju2e1U7uXvTvB08frx/PFe8t3zPfWz9sb4u/mK+mH8U/wZ/Af9Ef3e/tsAWgLbAY8BlP4B/+D+zAGYATkB6//iCiUdqhOsEeAAhvnYERsilyeAJ6UYIhBzFb8VcBr6G30ayBj5FzIRhAp0BXsGGweCB7oD9/rw+X743PUZ8/fuoeoV7tPvS/Br8M3qJucv6ILp9usv8O/yY/VY91/2U/Tn9RD6Hv8NA4QHwAZvBzQJ3QeqCmUKewo3DYQPoxEUESEOAQpbBxsGGAa9B/oHdAYEA4L+hPtL+MH2gPbQ9e30hPKc7z3tBu277p7ule6g7knt0+3a7m/v1PBO8UXy+PMa9vn37Pdz+J74sPpl/Hz98P6vACUB0AK8AkYC9gJxBPsDIwNdA3sIxR2KF4IUIgrq+CUNfh5CJV0mTBsWDzsRQBRXGVoaQRtiGIcVdBG5B5ACWgPYBdQHOgiU/an4kvYR9VfzHfLT7uTtq/Ax8Grvyew06rvp5uyO7yHwePFs89vzX/Yg9lL3Q/sh/7wCmwR0BW4DzwVeB7UKGA4sDpAMmQvGDLINrg+kDYsKtQhZBiwFsAXlA/MAvf90/G/68/hl9vr0SvTC8hTx6e8R7kvv3fDa70Tv9O0g7bLumvCc8hP0QvS39FX0pva/+Cn7E/0D/Sv+vP4G/+X/KQF5ApsE1wJ6Aw8DDQMcAgsF/QIOEHIboA73DyD/6//ZE3AceB/6G/oPNwtAD7URPhbnFhAYnxLCECEMeAX/A+MHEwrVC84Ihf/C+5r5zPgY+sv5qPa690v1SvGg7zDtYe1T8Vfz/PJS8RrvPu8Z8aXz9vV6+Nr6Yvtp+4v87/we/8oDrAbSCGEJGQhIB7cHqggyCiUNLA1SDP8JwgXwAzUD4ANjA7wCOwHp/eH7TvmW9s71//Ry9Db0JvMO8rfw0++47zrwTvGu8R3ycvNq9A71r/Uq9t73QfkZ+yD8P/0g/nz/BwCjAKgAbgFaAqQD1wSBBBoE/wJ6BPkEaREiEIcKDAny/8IJiRUFGcYXmBJ3DPIOXhHKE3oUXRTvE2cSMBLYDYcKOgkEC0gL4Ap2BwgCpv/U/aH8SPzv+437U/rI9ubyPPBf8O/yVvVq9vrzrvEN8FnwnvKb9Cf3kfi7+Bj59fe/93/5TPu6/mcAzgETArEB/QFlAvgCcQOVBNMEuAWrBToFBAS/AmcB9//T/v3+hf8I/4T9x/rq+B/3cfaf9ij3Rfce9v/zTvLh8pbzSPSO9f31O/aU9iP34Pcz+Gr44fj3+e/8JAByAZgAHv6o/jgAeQL3BNgFMQVWBZMFbAQjDWkOHgykC+UDjwiWEQEUPBWcETwNAg6gDeUO/A/1EfIT7RJ4ELoKmgdIBysJXwtlCkgIPAR+Abj/qP4R/of94P21/c377PiX9lj0h/Wv9jf3fPeX9nP2HvUt9Gvz+vNa9uX3yPhA+Gj33vdo+Xv6afxy/a/+Lv/e//YAhgAYAiUCfgL9AisCAQJUAloCbAG6AGUAyv/r/yz/IP7X/XL96vuI+wP72vp9+rn5Jvoo+mT6OvmD+L34W/lx+bv6F/sp/KX8+PtB/D/7ifzO/UMAEQP5AnMCsQEXAY8ByAIGBYUGDgfbB4cFEgjzCeUEPAbeBOUG4Q2qCgUITgatBHYHFgd0BskH7gY/BxkGIwSmA9IChwRDBaAFrQS1AugAaQFqAoIC/QIyAQcBBwEdAAb/xf7X/nr/Pv8X/gH9RPxj/A78bvxu+8T6g/om+RD6rvro+QL6G/rG+Tz6SPqP+s37Ufwm/AH8/fz9/Fr96/4a/+7/DAAh//D+5/+cAHAA4gDT/7T/2f9P/1b/Vv/4/sr+ef1O/JH8OP2x/XP9Nvwt+4T7Rvy8/Az8/Pue++/7TPyI/E/9MP4r/uv+h/8wAJ8BvgFjAZQB/wKJAzwE5wQSBd8FJga2BQAFXwUoBSYF7gVzBcoFTAbqBbQEHgSmAscCSQSbBNMEZAOqATkBKQEtAZgBlgGAAb4A0P9o/w//bP+6/y7/lP5L/rf9w/3V/aT9v/5P/qP9DP2S/Iv9DP7H/Wz9cP2W/Sf+uv7D/mj+pv6D/7j/pv+F/zn/OAAcAboAOADO/wcA9ABqAXsAKQAkAC8A/AA6AHf/CP9H/zAALQCd/8j+Uf7w/gP/pP7F/hj+5v02/gP+rf2L/ev8Bf2U/Vj9Hv0D/e/8tf1L/hX+5P0e/sf+OACfAIYAnABpAMAAMAFGAhUDkgNvA9wC7QIwA2wDTwP0AgoDvwOgBKcE9gNHA40CSwJJAmEC1wLFAgoCmQFnAAAAKwDu/x0ABQCV/y7/I//X/tf+LP4V/nz+VP5h/lj+0v3e/XH+Dv5c/kL+m/7p/7b/Ff9L/2b///+jAFgAgABVAbMBiwFVASkBOQG3AekBjwETAbUAawBcAFEA6/+L/wT/av5J/jD+QP5c/hH+Hv4c/tD98v0P/t79XP6O/vL90v3t/Tn+0/4E/9X+uv58/gb+9v2Z/vT+A//t/p3+of6z/lr+P/6F/jL/CgChACQApv+f/xcAyQD6AFUBzAG4AoADjAPnAnUCFQI3AhMDcwOUA5IDOQMzAwQDTQLBAdIBCAIGAh4CrQHiAH4AHgCm/9D/4/+9/2j/MP+Z/pb+d/5T/qH+6f4c/xr/5P6J/hH/qf8JAB4A9P8ZAMwA6gB+AAoA6f/SAIYBmwETARMA7f8bAEYAyQDJADgAsf8e/8P+Fv9u/9X/uP/v/hf+CP5a/u3+RP/B/pv+cP5n/q/+1f7b/k3/Nf/F/tX+m/6Q/o3+1f41/2H/Ff+t/lb+Iv4//jD+RP6k/u/+qv6E/mH+J/5L/m7+rf49/6j/lf+p/5f/1f++ACsBTwF5AY8BqAHkAQECCgJqAu8CTQN3A8wDrwNuA0IDKgNoA60DdQNEAwMDaAI/Av8BtwFwAfgArgCRAA4AS//t/rr+9v7l/l/+9P3J/Q/+hf7Q/rr+bP5h/oD+ef6q/u/+g/9EAFMADACp/3j/zP91AN8A5gC6AIsARgDR/+f/EgApAEoANAAVAL3/df8P/+/+GP9C/4D/Xf8e/+L+vP64/mP+Gv5n/pD+hf6b/k/+Tf5n/kv+Lv4w/jf+kv62/on+3v7v/qj+jf6f/qT+9v41/2b/6f8VADQAOABhAKUA0gAQAVwBxwH0ARMCFQIgAlQCPwJoAk0CNgI5AkYCnwK4AmEC2QF1AVMBXgE0AQcB9gD2ALwAKQDD/6v/9P9BAO7/X/8a/9n++/5h/5f/jP+M/1r/Pf+4/xIAZQDfABsBCAFyAND/zv+hAIsB1QFwAcMARABDAC8ADABVAEwAUwBEABUA2v+o/37/W/9j/6b/JgAmAOf/d/9P/2P/Y/9h/3r/v//g/7b/Uv/K/qT+sf64/tf+6f43/zL/x/5G/uT95P0r/qb+Af8I/8z+d/4T/v/9Nv6E/vb+Ff8a/yX/4P7B/u3+Yf8BAJYApQBeAIgAiwCzAE8BbgGAAYsBlgGtAdQB+AHmAbEBeQFzAaQBwQGoAZ0BmwG1AW4BrAADAND/IACGAJoARgBBADAAMABDACYA+//l/wAAZwDZANcAjQA6AEEAkQCvAIQAEgDO/6j/q//t/+L/4P+9/0L/5f6X/pL+Bv9z/9D/9v+4/xz/nf6d/vj+mf/c/9P/qP+0/7//kv9s/0n/fv/7/wcAqP9L/wH/GP8u/yH/E//T/vv+Mv/k/lT+Pf5w/t7+T/83//n+A/8Y/wH/Sf9L/5v/IAA4AEYAFwDt/xAAcgDAAOoA4gAiAUoBjwGNAUoBOwFlAZgBugGmAXkByQH7AegBsQFWARsBIgFGAUQBLQEHAcIAgABRADYADgD0/7b/jP9+/2P/Mv/2/jL/E//5/lv/1f/u/4X/qv4w/pb+Pf8yAMsAiADZ/xX/m/7O/pf/RgCmAHkA2f9J/0L/yP8dAC8ANABEAGAAQQAQAOv/NgBpAGMAowCzAJYAbAA4AEQAlgB7AAMAev8T/47//f/V/3H/6/6F/qL+0/7X/vD+1/7c/pn+P/7m/d79Yf6S/r/+zP6A/kv+q/75/lj/yP+9/5//0//7/yQAiADHAP8ATwE7AUEBPQE4AYsBwQHgAdABtwGLAZ0BzgHbAb4BggFjAc4AjwCoAOoAJwHvAJ0AcgBjAPD/i/+b/+f/LQAXAL3/n//g/ykABwDI/9z/6f8vAG4ARgAvACQAGwByAFoACgBPAK8AHgETAScA0P84AM4AWAHoAAkAn/+8/08A1AClABkA1f+M/2H/b/9v/4n/h/9b/2j/g/80/8j+4v75/gz/Mv8R/zT/pv/Q/5L/Ff/p/sP+1/40/8z/MAD0/+3/pv8E/9z+v/4G/6T/w/+4/4L/Hv/v/gb/DP9C/5X/mf+g/4X/Of8T/+v+5/6A/y0AiACEACQAhf91/wEABQHVAZQBFwHSAP0AVgGAAYcBcAF8AW4BLQEBAbEAYQDrABEBswBjADIAPQBaAEwA+/8FAE8AkgCzAG4AGwDu/+n/JgBlAGkAUQD//8b/9//9/5D/Sf9u/5v/4v/g/2z/Kf8Y/xH/Pv+U/6T/sf+f/3z/X/9z/3f/c/94/2H/cf/7/2wAXgAkANX/5f8tAGMAQQDu//b/OgBrAIQAUQAeANn/rf/O/+X/7f/p/+3/8P8XAAcAov8W/zX/VP9s/6T/pv+i/6b/Rv+t/rb+QP/t/4QAiADa/yP/QP8eANsAPwFEAU8BNAH8AL4ApQDdACUBfAF+ASIBAQHdAIsAhABjADQAkQD8ABwB/AC0/+D+pv72/pn/xv+o/5//3v+x/z7/yv79/tf/TAAiANn/Vv9v/73/xv8QAFUAVQAnACIA5/+2/6v/JgC3ANkAUQBb/xj/mf+UACkB7QBgAIf/9v79/pn/wwCPASAB6//X/hP+uP44AMwAFwFlAbz/lv0V/fb9HgDkAagB7v+Z/uj9XP5DAFEBSgHJAMP+P/1A/uv/pAHgAXf/1f1h/kYADAF+//L9xf3D/zkBdQCg/+f+Bv+M/7j/MgABAAcA+/+k/34AggEBAdz/if9MAD8BBwG6AIsA5ACEAWcBQwBh/1wAUQE5AtcBr/8W/3H/vP/SAJgBBwDQ/ir/8P/6AGr/9v6IAAUAiwByAAH/BwAMACAASgF8/5QAlgGcABEB0/5+/vwA+AJWArz/kv9IAckA6/8W/6v+6wG6AeT+Lv11/TQAjwFzAaj+e/2Y/SP+DAGPAVMA1/7r/XX+LP/i/9AAwwBP/0b/Zv+m/tH/1AA0AWEA5/70/vD+TgDSAToAcP6r/1MBYwEJADf+rf8MAmYCDf8B/u3/Of9uAGkAFwGxAlr/4Pzk/cb/dwLHArz/lv2Q/TQADgIVAU4AGP83/7z/LwAbAdYAkv8K/6n/awDgAIgABQEiALH+3v5rALgCugHB/0v/vP82ATABaP98/94BYQEVALb/mf9eAM7/qf89AAgB6ADF/+L+5v2d/7wASgDt/qz9vP+6APn/Vv/v/Qj+lACSARkAq//7/nz+QP+v/24AOAFwAAEAZv/l/5gBgv+Q/kgBuAFu/3z/lf8JALMC2f+YAPf/x/03/+oARgHzANACNv3D/kP8+/6+CtwCt/xm9tb84giXBmAAu/kE+rkANAGfADEElf+J/WX89v1oAnACoP9J/rf98f04AP0ARAHe/5v+HgAs/zYA/QDt/xMAnf95AVoAzv5GAJgA8P/tAIQBhAA0APv+6/8eAlMC1AFP/7z/sf+UAMUBhAGYACX+DP9XAFEC1wG8/pD+b/9x/gH/iwEnAfb+xf4w/wMB5P7o/XAAb/8lAQwAn/6fAM7+SvyLAQoC6QMHAEL41gCkAlYBqf+g/1oBjv40AML8QwC6AsD9NP53/rcAav9C/cr9g//AAAEARv5a/5v/1f6O/2UA4gD2APv/+/5pACIAdQBlAWkAvP+jAZEAVv/JANIAjwE6ALz+qABCAVwAov7t/h4BNAFR/zgAMv9x//oAE/+Q/08AUQDe/1v/GP9jAQMCd/9c/kv+///eAbwCQQCs/aP9zv9aAokCKQBI/n4BGALM/nP+7f9RAoUCDgBd/xz/NgC4AeIAvP+M/7oAOAHc/6b/sf81/xkBYwHl/27+S/4eAGwCnAAt/B7/9P80ANcDJAGd/zT+jfxH/40ClgKF/7/+pv0g/df/cwLDAqT/LfxY/eL/IQOWAZz8nf/D/1/+owBL/6oBoQLS/qv+LP6f/1ECnwBcAGcAn/8I/nX+dQFNAu0Cyf3i+8sAIwMiATb+1/+vAdQAXf8h/wwA/f+fAAUBI//p/8MAnf87/mn9iQArAhAA0P7i/rT/6f9z/37/HAGy/4D/pv5G/7YCxv8j/k3/LgFTAncAw/1I/hwBuAGhAPv/TwBcARIAP/1z/mECygMKAoj8Ff05AdQApQDvAIQB3wCL/NT9nQDZAM4CMABx/8z9qv30AHIBlADe/fH8EgARArkApvwl/pQBCgAVAFoA3P7n/isATgAnAfYAGwCq/gMAnwDDAWEAvv4iAFwBRgLr/sf9/wApAgoBYQCz/fH9tQG1AoP/0v7I/53/6wDg/uj9VQGtApABfP2z/Jn/4QRhAyb8lP5nAb4BAQGV/5v/9ADZ/5n+dwCQAhAAUf8g/63+0gGjAOL/I/+d/JX/HAMgAFL/7f8g/pv/ZwCNAF//Vv9DAIf/O/9OAKwBm//y/f/+fAFuAbUAx/7r/XIAFwCIAGMBDgEq/yD/Sf+6/8IAbgA9AUD/cP50AMsA3QBlAAAAQv7r/jsBDgFRALj/Zv+A/ab/5AJKAJL9+f4lAaEBN/9a++D+IwVgALH9+vyv/DoGUgSU/bv6Mv3MAjIC///u/xz/JP13/vMASQNKAET9ef0wAxYDx/2b/Tf/HgLc/2r/aQFhACH/6//HAPn/pv9jAREB2f61AOf/EgDSASL9hgFYAnf/9P/9/KT+/QEFAbT/7QA0AQ7+GfxKATYA7wBwAsX+ZP8bAO/9vADwAvwASf9N/cf+KQFrBcIADvx8/yYASALr/4P/OgB1AvEB1vwR/2UALgKWAOD+JgBjAq39rP3j/woBaAL2/xX96/34ACf/6gCC/nf+PwAXAeD/Yf2Q/kgAmAEw/2AAZf7O/TABUwGx/zf+0gI7Abr+Z/61/qsDPQI5/pf+OgAGBNYATvyO/xoCqgIw//v/zgC9/y79ov6vAoUC/f4R//b8EAC/BNv6pP9aAvb+hgF1///+Kf8iAdQA3P8nAGEAof4i/lMAbAKzAQb+CP47/lgAJwIuA7j///wq/4L+EwCmArMCCgB1/v/+Jf7I/xYE6wEFAJb9SP22Ai4Cw//K/4YA3v4c/4n/dQKRAKj/xwBM/IQAIgDgAKQDJf9a/Oj9OgCSA74AHP42AOYAYQAM/RX/qAGGAYgA9P6o/+IA8v/i/XIAnQPWAFj8IP0HAUUFOAAV/df+NP6NAdIBUwE0/pb+FwCZ/hABowCO/t0AkgAj/tMCKQDS/G//yQGNAXz+m/9lAMEBdf8y/mkAoQGvAqz8d/swAU8CugGUAJ/92/5z//H7qP/BAw4CEf+S/Tb9qP8IARP/sf8XABAB5f+s/Q7+0AGZARAA5/83/rL/SAKxAKwACP5P/T8CfAHkAZwA2/xf/isCJgDkAFwCXf9C/sAA6gA5/y0AIgGaAHQAIf/H/mkBhgEDASYAbP+9/9D/CQC+AC0BaAI2AG//3v8JAEIBFQHMAHsAcAATAFgA+f/V/zsAzACdAXf+//15AOD+8P/AAfv+7/2x/5v/yP/e/yr/rf60/0QA4v7O/3QAav7F/mcBwACt/yP/uP4wACMCrAAM/osAcgFs/8wAdf+m/2kBbgC6/uv/VgFrACIA2/6M/8j/XAFGAfD+gv7v/mwB3gGN/X79RgDy/+YA3v91/nj/BwBu/zn/WP+aAGEAn/7D/9IApv/G/4P//AD0AQEACv4K/j8A4AGAAff/OgD3/+7/3P+r/13/kQC+AWEAkP/S/pT+vP+LAHIAvgCZ/z/+If8KAL//nf9L/5L/yQDR/z3/Af9T/t7/lgG+AeT+RP5L/zn/Rv/mAYYBnf9KAAz/DP8e/x0AZQI9ApIAqf98/if+5AB+AqYBEwG0/xz/4/9hABUBtwETALz+if/a/ycAJADmAHAArgCh/jb9PwBpAP//dAAyAOL/WgA5/9X+wgB1AJgAnf+1/p0AUwCy/8j/aQAwAW4AHv+f/6UA7wAXAO3+bAAOAT8Aqf+f/0//DAE0ALr/sQDn/if/bgClAMUASf+W/vb////9/xcAwgBuAFT/LP6i/84AEwHMAIv+5/6p/0n/eQAeAVT+Bv/3/9X+IABnAF//6f+g/3QAHgBx/uT+CgDkASUBGQDw/ov/yQDn/7j/KQEeAQkAov/r/u/+6wA/ApT/owC+ANX9A/+YAJIASwHtAEgApgBOAKn/qf9jALoB/QFhAe8Ah/+oAC4BrwApAboA5AEBAtH/UQArAED/1AEFAiIAkgCJAB7/Qv9+AHsAGQA0/4T+NP+1AET/cf4w/1H+kv1N/uL+4v5h/7r9V/yE/Z/9WP05/pb9pv0T/Cn8cvwb/Yf+Ef1e+xL7Gfwg/pL+bvzE+9T8B/0G/q/9t/3v/mP+Xf9Y/rP9UwCCAK8AJQJwAHcAcgEyATYCCwQjBIwDVgMnBH8EiAXhBfUFJgjaBkAGGwfPB9kICgn2CBUJbggmCcAIgghYCYYI3wfoB0oHNwYNBesEGwVWBPAC0gDG/w//J/7B/fT8y/uy+gT59/dE9732Pfbi9f31rvR589nyXvO588LzhPNO87707/Xn9Rz1h/VP9QL3JPl4+aX6K/tZ+wz8APwH/bH+sf/V/98AJQLSAGkAqP+cAF8DUATrAwAECAQwA00CggEh/ywCjgvVDNUMWgm0/90BmAetClMPFg/IDR8QSg9IC4gJowovDmkRRBLsEIoNkgroB38HlglBCkoIBga0BF0DoQBI/Rf7oPq++5j7W/h39dv0d/OP82XzhPEd8bvxEvIz8q7xhPFr8r7yKfTo9Dn1VPbF9ib4Mfqa+jb67Pl5+0L+0P7F/hz/X//V/zIAxv+r////oP9gAB4BzAA3/9v9aP6b/g/+yv1B/WP9nf21/dv8J/2H/bP9mv3D/Qb++PuE/u0BnAV9CaUH3gLSAv4FyweAC8oNbw+dEfoRhhDwDmsOvQ5QEAUTixSHE1kRQw6eDH4MHgtTCe8IvAhkB+AE1wEl/+/8zfuR+sb59/gs9zT1zvPt8p/ykfHf8AfxYPEz8v7xg/EC8qPy5vKR8+j0wfU79oP3xPgA+kj6iPpO+xn8av11/tf+DP+i/4IADAE0AZ0ASACxAAwBmQGdAWEAR/+X/4X+6f2A/iX+I/4O/jb9Pfxn/ej8bfua/J77APu2/hEC0QOZBRgDQQHnBDUFfwYMCh4K5w2dEdoQBxAkEF4P2A/kEagSzBKAEjER/A9nDw0OtAuqCj8JgQfhBnEENwI9AGX+9PwD+6f4kPY/9XL0e/RO87LxYPEk8aPw6e9E7+nuFPCC8gnz9vMT9BLzNPTT9b/2PPja+f765vzy/U/+c/7y/sr/VQAXAUQBFQHSAdsCQAJ7AUIBZQBYAHQA3v6W/X79Sv0H/Wf9Afxc+0P8gfvu+hn7SPov+gP7pPgW+Vv/mAHpAx8GOQG1AKQEfgSeBocLYQuuDhATHhFOEWMRoA9GEa0TdRSkFBMUNhLWEacRTBBTD60NXAtKCToI8AWbAysCGwAa/j38pfmi9yH2lPR081DyQ/G38Evv9O3Q7TDtre0z72vvPvB08WTxxPEp8kjyXPQI94r4gfov/Iv8qvw//aP9mf6aABECJwIhA5sDkgL5ArwCrwEiAuABNgCAAMwAHv8T///+n/2l/Jj7+Ppr+4375vrU+rD6gfqB+Yz44vvM/0ACMwUsBLgCCwUjBvUGSgmLC+MONhNvFCAUPRTVEj0TOxS6FLsVkhUuFBoT/xIHEjYQCw5lC1oJ/Ad/BT0C5/9A/jj9Nvzh+Qr3j/RB8ojwJe9q7r/ua+/V73rvQu5A7eLs5Owq7lXwDvIr8wH0BfVs9of3+fd0+I36U/2m/hj/qf/CADYCqALXAvICcQOKBCwFGgUIBPACRAEnAND/yP/I/9v+s/2N/H/7IfpB+QT5b/hU+JX3fPZz9+f2i/W4+LP8c/83A1ECaP9WA0AGUAY7CmULDQ32Ev8UQhWVF44XwRbGGIwY6hdMGM0WbRYkF/AWgRVKEmQO7wswCgkHCAQgAfj+Y/6P/Ff5fPbt84/x4+837tfsouzb69Tq/upe66zr0uvo663sZO7w7zXwzfAz8mn09va4+BD6FfvZ/Nn+uP/2/6MAVQH7AXwDgwTMBAAFlwQnBLgDyALQAZ8A2f96/1H+qPxI+3T6Gfq3+eP4avjl94D3X/cg9oX1uPTF8wr3hvvS/sMC/wKkATkF7gapBlUJGQqoC+IRrRT9FJcYuxm5GYkb8xo9GcAYOBcLFjwXxBerFicUXBFSD1ANzgo6B9wCOf8r/ej6QPgu9pr0OvNF8uzwpO7m7GrrDOqL6bPpSun36ZTrcOzI7tTwV/FQ8vbzdfUa90L4dPhI+gr9Xf9hAXcC+QLFA2EEugQLBTwFMwXEBFYETwMlAlwB6wD4AJQAGv/z/DH7a/lr+Gb4I/ik98H2ePZs9pn1DvUr9c7zpPUb+gf8E/+SAEoAWQSLCOoIugrRC+ILUBCFE1QTyhVQGEoZvhz9HQgcCBsoGWIWwxVzFcMTTxLtEKEPZA6hC/kGRAKF/3n9P/sI+CL0mPGG8Lbvsu697abs9uvD60rr5uqA6kzqDOuY7JXuJPCh8cfzFfbh92j5VfqK+sD7Y/2b/qEAqwLRAwgF1gWBBQAFkgTIA9wDxgR/BC4DqgHn/8r+Z/4H/bf7Y/t9+vn4YffJ9cn07fPf86/0RvRE9C/0xPEA8r32a/ms/Y8BbgCkAz8IoQeLCXgMqAtnDzYTDBMaFiYZEhmLG70dhBx3HBwb4xcYF68WCBWoEkEQBA5UDNcKKwh8BAgBpv6T+3T4VPXq8aTvne4q7sXtZu3D7O3rrutj7MXsJexh7G7t2u7I8GTys/P59VT4Uvpa/Gz9n/7t/wMBRAKQAzcETAUoBi8GVQZKBg8GHQYJBrgELgNzAZX/Ef74/Ej7ufkC+Rr4CvcV9vL0T/Sj87fyOvIf8crwqfDg7xvx1PQs+HD8zv8ZAA0DjwbNBwgK0As1DHYPxRKbE88V0xeeGf0cZB/cHnEeXx2AG8kaghmQF3MVBRMrEA0O0ws/CZcGqAPdAEv+ffqt9QXyRfDu7rTtjuwK6wXqEuod6kXqseoT64frfOy/7aLuRfAz8l/06fYz+Yr6tfuL/Zn/6wHRAw8FzQVpBgUH5gbABjMGQgVUBW8FwwRLAycCXgDZ/g/+/Pu/+T74tvak9b/1tfTC80PzkfIJ8qPx/vDI757uVu/m8oP2B/vA/cz+wwIXB1oJZQuZDAANkRBuEw4U0xXEFi0YWBtIHY4dCx6LHWUcfBz/GqwYxRVVEmkPCw0cCo4GdwPZACr/NP19+qT2KfO78JfuzuzA6zjqR+nC6d3pHerd6kjrgOy97n/w0fEm8/Tz8vT/9uz4x/qE/JD+wgDTAhQETgSmBG0FeAbUBm8GoAUoBb0E7QN+AhABLQA0/zn+Bf2I++j5ivhU90n2RvUV9Gfzo/JT8vby6vIM85jyJPJy8wj25fhX/Pj+7QBmBfgIyAuuDr0P7BDBE5QVCRaVF30YDhp5HCEdJx3bHAUcURvQGtgYRxbAE38QmQ3kCpgHBAQ5ARz+KPs1+YP2Y/MQ8XjvFu4u7aHr2+mf6QHqx+n46Ujqzuqx7Jnuk+/C8IHyGfQw9k74tPmN+5/9w/6JADsCNQPtA4wE7ARMBSoGVAYbBt4FZgWBBJ0D/QGJANf/1f6z/aH8Kftm+X/41/dv9xr3X/a89CT03/N58zL0xfN98w/1pPd0+TL87f26/4kEDAn7C54OOhDvEFYT6RQfFYUV9xXRFpUYThpPGi0arBnUGGQYmhfcFV8TIBESDjsLMQhkBLUA4v2T+/D5HfhT9QzzOvE68PXuve1W7OnrBexu7K/shewR7SPudO988LfxqvLm8471NfdD+aP68ftN/Z/+GwBTAScCTQLbArgC4ALQAnkCPQJqAoIClAEVAED+IP2N/Hn8tfsF+yv6Uvm4+Mr3bPdh90/3evep95738PaM9o72PPg6+3n+6gBuAvQEtwfMCgINBw7YDhAR2BH/EY8SZxG8EfoSMBPKE9wUdxSxFCwVahQBFAoTjBDcDVELXAgGBngDRgDi/d/78fns+JX3w/W39JrzIvJr8a7wq+/s79Xv3u/n8FXxePGE8vXyjfMF9YT18vV198L4Q/pB/P/8vP3X/pX/wf8DACYAawBEAQUC2wGbAT0BowCCAHAA/f+p/3r/zP7O/nP+6/3B/Xv9Qv0k/db88fte+8T6Vfpc+iH6/vkf+gL7dfzO/rwAzAI6BUgHlAmWC2gM7gz+DakOeA+1D6sOUg4FDyYPUA9xD9YO/g5XD88OLg5WDSEMmQonCdEGfARjAvb/nf2G+6P5HPgU9/T1MPWj9FP0B/Tk81zze/Oo84LzxfMK9HL0P/WZ9eT1pPYz9+z3z/h9+WL6p/uR/Ev9DP55/tn+Xf+o/2AAqgBKAND/r/9v/wj/6f6F/mj+zP7k/rH+Rv+m/87/UwDu/zT/Lv8a/8j+6f6i/gj+F/7o/eT9bP4R/8P/SwFfAjcDRQTRBLgF6gbQB5oIFQknCXUJ8wkcClMKZQpeCpsKiwpKCicKpQkOCRMJsAgpCEcHAga0BMwD0AIKAaD/Mv5G/Zj8j/tt+rT5L/nT+Ir49fd+90f3VveH98T3pPev99j3Jvjw+EH5iPk++sT6UPsw/JL8mPwH/Sv9MP3m/SP+nf4w/z3/QP9f/1b/Kv9S/1r/q//e/2//Af/B/rb++f4p/yP/4P61/mX+rf2q/WP9Z/36/fr9P/6//rr+Af/V/5QAYwE3AhUC7wF3AgED7gOpBPkEYAUABoUGtwYHBzoHhgfoB/UH4wfGB5wHfwdQB98GTAY4Bt8FWwWvBKIDGAMGA4ICKwKQAeQAkgAKAI7/wf7e/Wr9Ff2E/Db8u/s9+zP7/voV+yD7y/rd+vz6JvuR+4v7YPs/+yT77/o8+3L7nPsw/Hn8rPwH/S793fzx/Pj8Ef1l/Vb9mP0n/o7+Mv/X////TwC5AAMBWgH/AUAC9gK2A94DGAQ3BBgEQgRFBP0DEQTDA0kDtgIrArwBeQEkAY0A9v9m/+D+Gv7Z/Zr9cP1w/T/9CP0l/Qj91/wO/f38Ff2A/c79NP7S/n7/EACvADABcwHbAQgCHgInAiACHgIaAjQCSwJfAosC8gIcAwQDxQKOAhUCqAEeAbkAdwDj/1L/9v6H/i7+Rv4p/vj9Lv42/iP+Of7r/Y/9hP18/ZT9r/3D/S7+l/72/qD/LQDkALEBPQLVAmEDiwOpA7oDjAOUA4UDPQMVA7oCbgIyAtABdwFVAfYAtwBjAOv/kv8q/6b+S/4a/sP9lv1W/Tb9/fzQ/Mn8bvzF/H791P09/oX+cf7B/g3/Ff9a/4X/kP/Q/8r/lP+y/wAALQCsANcA3QAXAUYBYwF+Aa0BtwHpAfsBtQFwATkBIAEKAQUBsQBlAEQAGQAgABMA5//0/+P/uP/a//L/BQAkAAkA0/+t/1v/9P4E/wj/Pf9j/0//jv/R/xsAlADdACsBhgG4AeQB/wHoAfEBDgIaAiMCDALXAWwBLgHSAIQAWgD3/8z/sf+L/1T/DP/K/qv+mf5N/ub9s/15/Wr9Xv0w/Sv9Lv0u/R79Hv0//WH9mP2Y/az9x/0G/lb+jf70/jn/pP/y/wMAMgAwAHkAyQDfADsBkgGsAboB1QH4AS4CVgJ5AokCWAJEAiIC1wGkAXcBXAEtAQEB1ACdAIQANgA9AC0ADAD9/7//lP91/0n/Ef8D//L+zv7n/jT/Pv9Y/2//ov/7/y8AfQDMAAMBPQF8AZYBvAHeAcoBsQGmAWwBRAEeAf8ACgFIAUIBFwEXAd8AqgCNAB4Ayv+Q/1T/DP/I/of+Of4X/vH90v2f/Xz9WP09/T/9Qv1e/XL9df2A/br9yv30/Tb+bP6r/vD+If9Y/53/3P8tAKYAGQFaAZkBvAG8AckBugGQAZsBnQGGAYIBWAEbAQEB+ADtAN8A5AD6APQAJAHzALoAhABpAEYABQDI/6D/pv+2/wMADgA0AF4AiQChAK8ApgC8APwA/QArATIBXwGjAaoBqgGbAVgBMgEQAcsAkgBRABcA/f/i/+D/sv+X/4n/ev9Y//T+ov5Y/iz+/f3v/dX9r/2G/Yn9j/2H/dn97f0X/jv+Uf5L/j/+P/5A/mr+kv68/rb+0v7//i7/W/+J/7b/8P87AFgAqADrABUBOQFRAYQBqgHKAeIB8gEaAhEC+wEGAvYB2wHkAaYBYQEkAdIAjwBGAOP/nf+b/1L/If8I/+X+5/7X/sz+zv7D/sf+//4e/1H/i//D/wEARgCCAK8A7QAZATABTQFpAWwBYwEwAREB/wDSAMMAlABlAFoATwAbAMX/mf+d/5T/c/85/+X+n/5R/h7+Cv76/e/91f3x/Rz+Jf5s/oX+sf7n/gH/N/81/13/kP+6/9n/FwA2AFwAqgDdABMBWAF7AYcBggFcAYQBmQGUAcMBzAGvAbUBdwFKATIBBwEBAe0A4AChAHQASAAgABkACgDr/73/vP+Z/47/l/96/6v/xf/T/+L/3v/3/+n/EgA4AFcAZQBhAGAAOwBPAEEALwAZAAUA7v/a/9H/0f/K/7//w/+o/6//tv98/1b/Qv8I/+T+zP7F/r/+uP6t/nP+av5z/on+vv7T/vn+Qv9f/2z/fP9x/2b/l/+U/3z/oP+x/8P/0//2/zAAYwCGAJgAwgDqADYBSwFIAVMBPwFYATsBNAFIAVoBewFjAVMBJwEKAQcBCAH6ANQAuQClAHcAZQBDAB0AFwAHAOf/q/9+/3r/pP/i/wAAEgBhAHkAhgDDAMAArwCoAKMArwCjAKwAlACGAK8AhAB+AF4AHgD7/9z/w/+f/2P/Sf8y//j+6f7K/sH+kv5x/kT+A/7r/bz9mP1y/XD9d/2j/dv9Ef5W/qr+0v4B//v+DP9q/3j/pv+x/7T/vP+9/6n/sv/u////QQBwAKUAywD9ACsBQQFuAVoBcAGEAXIBfAF+AYsBdwF8AXwBYwFGARUB6wC3AHQAYQA0AAEACQAHABIA+//V/9r/5f/2//f/3v/Q/6n/kP+x/8b/xv/p/wUA///r////9////ycAIgBOAD0AOwA4AB0AGwAQAPn/+f8DANP/q/+f/4n/d/9h/0//bP9v/0//N/8n/wj/Pv9P/0L/Xf9k/4X/l/+8/9D/9P8AAPv/AwAVABUA9v8KAAAA8v8KAOL/9v8QACYANABDAFgAYACCAKEA1gDqAAUBJwFKAUoBSAFWAV8BagFVAUYBFQHzANcAqgCoAKgAhgCJAH4ARgAZAO7/zv+o/6L/jP9v/2j/Tf83/yz/RP93/6j/w//g//L/CQD0//v//f/e//D/5f/Z/9H/tv+o/6v/sv/G/73/xf/V/9n/+////+3/6f/i/9D/sf+C/1v/Nf8R/wr/Kf8l/zL/Of8u/0v/Xf91/2//aP9Y/0f/Qv9E/0//Y/9h/03/g/+Q/5n/3P/r////QQBnAJoAqADHAK8AvgDkANcA4ADSANQA6gDoAMAAoQBjAEoARAAwAB4ADgDw//v/BwDc/+f/0P/O/+f/0P/B/7b/tP+2/7j/zv/V/+3/AQAeAFMAdQB+AKUAnwCUAKYAgAB+AIgAfQCGAKMAtwC5AMMAugDbANsAxwCxAH4ANgABANf/q/+Z/3X/Tf8g/+n+qv66/rb+ov6m/o3+lv6O/qb+yP70/hH/Rv9S/2P/cf9o/3H/d/+U/6T/uP/X/wcAJwBrAIsAmAC3AMAArwDAAO8A7QAQAQ4BDgE9AU8BbAE5AQ4BMgEiAQUB6gDiANAA0gCxAIIAUQABANf/0f+t/47/jv96/1b/Uf8u/yr/N/8n/zL/Kf9H/1T/Y/+b/73/4/8BABUAMABMAGcAZQBlAFcAcABhAEEAYwAvACIAFwATAAAABQD2/7T/sf+A/03/Lv8Y/+3+3P7S/rH+qv6X/rz+vv7b/gT/HP9G/27/vP/7/ykAWACCAJoAnwC6ANQA4AAKAREBCgHgAMwAxQCaAIAAWABDAEoAaQBEACkAPQBEAGAAlgCoAK8AuQB1AFgARgAiAAcA6//I/5v/qP+J/3r/h/+V/6//1//2//3/JwA4ABUAHgAXAAMAAQD9/wcABQAVAC0AUQB9AJEAiQCCAEgANgAkAPf/7v+i/3X/S/8n/wr/Bv8j/yX/Sf9C/yr/Qv9U/2r/eP93/3H/aP96/4n/fP+U/5n/h/+Q/4v/av+b/7//8P9IAEQAUwB0AE4AcgCEAFwAbgBGABMABwAFAAAACQAVABkANgBeAGkAaQBjAE8AYQBsAGUAbABXAD0AUwBBAC0ATgA/AD0AYQBhAEYASgBKAB0AKQApACIAFwDp/xAAHQD7/ycALQBEAGsAYABgAE8ARgA7ADsAKQASABMAGQAdABsAEwAkAB0ADgApADQAIgBPAHAASgCEAHUAjQDAAHAAXAAnANn/vP+6/6D/hf+C/1b/VP9W/zD/D/8T//n+0/7O/u3++/4M/xb/D/8p/zn/O/9Y/4D/kP+//8P/pv+r/9D/3P/5////EAAyACsATwB3AHIAjwDMALwAwADqAOIA5gAHAegA1gDmAMsAqgCmAIQAYQBsAHkATgBPAEoAGQBOAEMADAD///T/vf+2/7z/if+L/5f/bv9z/4f/Y/96/5f/jv+8/8r/pv/y//b/4//2/wMA4v/T/wkAzP+6/8b/tv+k/6v/r/+A/3z/i/+i/4v/sv+p/4n/pv+t/47/lP+i/2T/gP+Q/3H/i/+0/4D/rf/j/7H/+/8FAPf/KwAvAB4AcAB0AHcAgABOADYACQASAOn/2f8/ACkATADMAPwAGALMA7oESwVoBesEYgSZA0sC+gCx/0T+JP0X/Cv7/vrC+hf7xPtB/DT9Iv7y/vb/1AARAZABxwFVARwB3QD7/53/b/+2/pv+9v7T/kT/LQBKAPYAwAHJATkCpAIaAjIC/QETAdcARgBG/w//vP4F/iX+J/7e/Wf+0/7B/lL/xf/M/zoAawA7ADoADgDD/37/Nf/0/vD+yv7p/g3/VP+2/ykApQD/AGMBhwGLAbUBsQEtASQB1wBIADYABQCV/5X/v/+Q/+7/IAAbAHQAvAB1AOIA6gBBAMMAdQAOAHAAMADT/40AYQAZAOoAcgBjANQAHQAFABMAjv9m/z3/4v7t/hb/NgD6AE0BSwI3AgMCegK3AeYAGQHM/77+uv58/br8Lf2U/Ij8SP1T/eL98v5E/ykA/wA2Ab4BvgFwAV4BEwFpAPn/lP8a/+/+5P7B/qr+Fv83/2r/5f8QAD0AdQClAIQAowBRADoA5f/F/4n/bv9z/3P/yv8SAFMAcgAIAT0BjQHQAegBewGZAUYBrwB3AMj/Lv/y/tv+Af5T/j/+Qv6x/hz/0P6d/y0A0P95AJYAhAB7AKUAEgBTAIsApQCmAAEBlgHJAa0DDwVqBdMFVAV1AyICLwAy/aj7nPkz99f2D/aJ9U33avi9+Z38rf5XAD4DqwThBXYH3QfkB8cHfQbRBEsDCgF+//b9efzx+8L7xfuW/Ib99P0g/xkAUwDrABsB7QD9AB4BgABjALT/GP8+/z3/ev9b/8r/UwAMAYIBDgIeAggCYQKSASUBDgFEANH/vP+q/pn+/f6C/pn/ggCLACsC8AKoASUCDwJuAAgBhgBq/rX+yv7D/e3+X/8p/6UA6wBcANkAZwD0/0YAbv+z/sH+LP58/Z/92/yv/Aj99vxN/Sf+hP7Z/tf/9v9XAOsAFwHUADQB/QCdADYB4gD2AOIB5gGhAdkCVgLDAdACEQItAeIBdwFEAKQBOAFVACABRgD7/qb/2f4a/vL+MP5J/g3/N/7X/VP+6Pyz/PT8UfzU/Iv9Ef0T/iD/N/9eAPoAXgEuAu8CZAPTA94DEQSDA+QC+QJTArgB5AGjACkApgDg/9H/awBH/wH/lP9U/mf+vv4j/iL+Y/6E/YL9nf1E/dL9U/1C/az95P0c/gT/WP9W/40AowAkAYQByQG8AUsCJQLVAY0CvgHZAQwCAQK6AWoCWgEMAZ0B3wDSAOoA2QAQAGUAyv+k/in+Af5c/YT9df6q/dL9ev5s/hH/8P9b/2//tP9a/kj+ef7p/dz+8P+v/7MA1wFjAYcCYwPbAuIDzASdA24D6wONAnwCPwL4AK4AowDn/qT+Df9s/kv+ev6C/uD9pv6v/lr9Hv3e/cL8sf0+/yf/jP82ALz/Qv+m/63/0P8mAO0B4gFBAcwB7wC1AF8BQQDy/tD/oP/2/2EByv9H/2EAeP+W/qj/zP3k/WP/tf3i/dX+Zf5f/tn/7f5v/0sBFQEbAZkBuAFGAV8CZgJYAUwAv/6q/rP9SP5E/jv/KQBEAeQBnwJSBGYEtAWQBLgDCgP7AWT/of2l/Gf6z/rP+n36pfr4+8f8Kf1l/rH+4P82AcoC4wOrBp4HdgX1BukEJwN1A4ICbP/X/6/+3fyz/nn+IP8r/j/+Qv1R/ev8xPuE+u/6IPyA/FH+rf8ZATgBagIPAgUCZgJwAp8AMgCp//D+lP7Z/r3/w/+fAMsALQH0ACICqwKrAhUD4AFyAGkAKf+J/en9OP2G+4v8E/w/+7H9Kf40/osAmAEtAUYDXQMBA+kDFgPFAbgB1gDp/tv+LP7K/fj+N/6G/Yf+aP+L/1wBbgLoAYsCwwGJAScB8wBrAFoArf/r/mj/o/1f/Y39DP6k/q//YwDkAJcCYwLDAVwBPQGxAC0BZwGS/kb+if5+/oL98f18/TL+DAHXAMoBGATTBHEEWwTmAQMBBQGS/v/8vPwr/In86/05/pf+VP8bANr/T//LABEBmQHKAgYCKwFDAJD/Xf6L/on/MgBf//L//QEQAdIB2wKiAp0B7QGQAfT/SADg/0wAvf+f/+T95f7X/ykA0f+o/lT/lf+AAG//BwBz/4P/pP83/1z+4v1U/n/8gPyl/Lf7s/1nAHoC2QN6BFMCqADKAssAwf8rADD/fv2L/qL+bP4VADX/wADJARkBFQFoApoAiQDZAbUBXwJMABH/Dv7J/c38Mv7i/YL9Gv/j/7wAKQCvATgBqf87/+38i/vk/WP+DP+uAFEASQI5BP8C5gHFAvoAbgFWAe3+Tf6k/Uj+yf09//EAlAGkAuACTQIKAgMDYwKJA08BaP/j/6T9F/4n/hn9tf6t/sT7F/0i/TP71vyN/KP86f6f/9D/IwIIBMEDHgOtA68DTwPcA9cDhwKUAX4Bpv+Z/jT+lP53/in9WP1a/O/87f3Z/6YAVgEKAR0AJwFyAJIAIgFaAd8AnwAFAaL/5P6F/iP/w/6X/1T+nf2m/1j/Mv/v/tf/n//xAEoB1wCoADoAEwHDAVoBDAHMAaEAhgCJAMz/fgABAE/+j/00/rj+3v2E/u8ANwJzAuIC3AKfA3oCxwBwAEj+vP/0AesAAQAD/+L+Af6X/1/+4v2i/pv9gv6//rf9Of8DAXX/WP5E/Sb8VP6S/2wAJQHtAPQCzgPpA1UBT/8c/lUA5gA7AfQAef5IAOQAawC4/z3+lvys/RH/EwDAAekBCAFhAiICNgIVAbX+d/6H/Rn79vv//An8df/y/zgA5wLrBFQEqwJRA8cCggIhA2IElwMbASkAj/1R+/r8Gv5r/OD85/7S/MP9d/4+/74A/wD4AXUDZgTFAmoDvAAu/of+c/17+w79+/8P/9D+6/4l/qD/NgIDAcH/fAEXAhEEIQTpAawBqALJAUT+jv4i/ob9K/1G/Yv9yf1L/8r/EAAeABAA8P6L/53/3f34/lT/P/6F/pn/TQE7Aq0CXgFjAF4AEgDr/7/+m/4//nr+6f/V/84AdQJwAo0BSACGAGwAGwDkAeMDSALxAcIAvP5z/i39Zf32/FH9cP0n/F78zv0P/sb/5gAeALwB7wHiAZIDugPKA4sDdQL/AIn/Zf59AMUAIP77/8MAav+A/qb+uP6A/6v/0/87AcUAHQAMAE8ANADc/xcAc/5s/p/+9v2W/cf9rf7y/xEDlgKXAnoDMAIKAcwAPQCz/mX+WP1P/fr9Gv4K/0wA1AGzAs4DIwR3AwoCnQHqAKD/r/+N/q/9Uf1P/QH+7/1R/f/+JgDbASICDwJJA0QDpAJnAa4AQP/A/WX8Dv07/sz+MgBuAAoAEwBYAAMAbv8KAMH/zP/HAKD/aP/g/v/9Vv6m/tn/AQG3AVEChQLXAkICTwHX/03+DP6J/SX+Cv/w/kEAyQDp/6j/HgHSAA4Ahf+E/vj+5f7i/oD/JgDy/2wA7wCoALoABQLXAd7/iwBT/vb9WAB1/l/+6f+//7H+6/4SAAMBJwFeAVQCdAAQAL4Auv8u/yP/GwC4AeICFwLLANQAQP98/u/+9vxp/dz+d/69/1gBEwJDAEv/Zv8/AMsATgDc/27/IAAkADAAOgAtAOX/Uf9U/2P/yP+hAFMASgAnAfQA/f8l/9T9af2C/tD+zv89AXQACAFeAZn/vgCtAhgDOwKWAXwBywB0AHAAWACQ/6T/Mv9c/YT9fP6r/vP86P3k/XD86f7t/+YACgN5AugBDwP0ArgCAQFa/rr9MP3F/Rr/OwB7AdABegJUA9sBIAGNAHsAaQFlAP/+yv47/n/8s/wO/eL7vPx3/dT9yP6ZARUD0wL7Ak8COQP7AogAlP0S/Ob7y/y8/R79Ff18/YAAggJTAlsDKQPOAwIENwOUA2oEHAKf/yn/5vtn+vX7x/y6/UQAdADQ/xAABwBz//b+kQCqAKYAggFTArYC7wG6AVgBhQJwAdP+T/66/Ur8Iv2Q/0gARAElAX0A/wD8AOIAE/8D/pv+Ff/F/1//BwBRAagCmwI9AZIBdAAM/in9YPyW/Mn94P+o/wr+9P9yAZYBzAL0Al4BLgJCAnAA8QDLADsA/ACk/pv9Of5P/fv9RP83/uD94v/r/84AhQKiAtcBkAGiAjYBkv8s/rj9I/7p/RD9XPwr/SH/5gAAAIv/4P8SACUBFwI5AV4BIgHxAJsBswCb/1H/lf/B/y0B9gB3AOoAFQCuAI8Bc/8B/0b/D//B//L/lf89AEwA2f/MACIBOAGfAKj/Y//K/rj9JP1q/UT9cf4kAIsAMgHBAYICcQJ8ARkB6f9Y/+3+XP4M//L/OgBRAEEAQQAtAbUBaQHXAPT/X/+D/9P/Kv/Z/jD/tv9E/1//awDgAE0B1wAQAO0ACAIZAQEBSwHF/6j/uP8g/tL9Qf1E/Jj8SP03/3cBbAJdAnoCygGsAAkAi/9f/y0AKwFuAdkC8gITARUBBQHn/13/s/5W/kL/qv7p/bj+4P72/vD+5P62/6L/LP+m/8r/DgClANsAYACg/6gA8QAMAJEAWADu/7EALQAV/+L+gP4y/tX+3P7t/l3/tv+GAA4BLgGPAC0A1ABGALL/ZwAmAPn/YQBTAIAAuQATAJv/ZP83/8b/3P/c/+f/EgBBAA4AAwDbABUCbgJmAiIC+gEXAl8BggDk/ub84vzA/Sf+t/0l/aH9Of6y/0MANgBPAGEAYQA4AKUAjQCNAOgAZQGAAXABQgEDAfQAugBDAP3/gP+r/on+gP6q/r7+r/6r/4gAgADFAMMAZwCF/0j+lv2t/W7+Cv+F/6n/1f+CAI8AJQHBAckBBQJzAdcAQgGzAFwA1wAVAKT/yP+H//v/NABrAMwAlgDJAP8ACgG3ADQAXf/i/iD/gP7O/Zv+WP9v/9r/gv/0/4IAfQCfAKYAZwClAPQApv8u/13/3v4N/7r/6f+aAHIBRAEnARkBFQEOASkByQAOAMj/xf89/8X+d/56/mH+Of4O/vr9c/4e/7r/TwBhAEoAbgA2ACIAxf+m/9D/l/+Z/0v/9v5f/6b/NgAbAQ4BjwBeAIgArwAOAdYAnwD0AM4A1AAuAdsATgCo/0D/Jf8+/xMAAwCJ/2AADAEtATkBQwCr/5D///61/nH+lv7B/ir/BQCjAO8A3gGXAmoCegIPAvEANgAl/xH+pv3r/Gf9VP5l/iD/vP8OAIsAYwEVAiMCxwHkASACkAHiAAoAdf9N/6L+8v3O/Rz+of5S/xAA/QCWAYYBCAIsArgBUwFwAKb/9v6//qv+kv7F/v/+W/+0/5v/jP/G/37/eP/T/9r/AADc/wkAVwA/AD8AcgBgAG4ApgBaAOf/tP+L/3j/BP+k/gj/Ef8e/zX/+P5q/kn++f45/7z/jwAFAXMB8QEOAgEC0AFPAckAfQASAL3/tv+p/xAAdACLADQAsv9+/wT/wf5f/iL+c/56/lT+r/4G/zf/zP9EAEEAhAC6ADQBxQHmAfEBjwFeAS0BowAZAKT/Pf80/yr/Fv8g/x7/pP+9/9z/UQBnAHUAeQBwAEEAEAASAAAA9v/u/xkAfQCdAFUAIgBOAJQAmABKAMX/sv/l/6n/QP/e/l3+WP7F/i7/tP/u/+X/ewDCAKYA0AAbAGr/bv9k/6//LQCIANQAMgFBAfoArgBaANX/Yf8e/0v/w/8kANYAcwGSAaMBXwGuAC8AqP+1/iv++/3e/QX+nf45////zAArATkBVgFsAT8BIAFEATsB4gDOAJQAUwBGAC8AdwBBAMj/EwA9APv/PwD7/47/pP+C/2r/kP+M/47/vP/B/+P/AwDc/3z/c/9R/5T+E/4G/kT+m/6O/uv9t/2d/Wr9Z/2s/fr9jf7b/gz/Zv9s/0n/+f6A/vv9//0n/iD+D/5E/oX+pv7e/vD+E/9h/7//OACLAPMAbAGqAeIBSALTAmQD2gPMA+4DVASOBJUE1wT7BOEExARtBF8ETgTtA+sDeATMBCgFHQbdBpUHbQi7CL4Inwj4BwcHyAVQBMoCMgGt//L94vs1+t74wffa9vn1bPVj9av1evbP9y35qfq++1783fzb/Kj85Pvo+s35k/hk9yX2IvWd9K/0QvV39qT3EPmN+gf8jf2J/pT/nQAiAXIBvgGLAVgBGwFyAPn/bv+J/tL9Lv3A/Ij8a/yL/MP80vwb/cD9fv6m/18BmwM+B84LnxHLF00doyK8Jv4osik8KNskaSBjGqgT/Qx6BpYAfftb983zFvH77u3t6+1+7pPvv/Dx8VHzlvTQ9b/2X/f99xb4GPgJ+PX3Hfhv+Oz4l/l9+sv7Z/2t/sz/iQDMAKUAKwAB/4L9Q/zu+sn5+fgu+Lb3pve09973PPhv+Ir4aPjY94P3Lvfc9uv2D/e/99b4APqG+yD9kv7j/9AAbAHSAaMBZQFfAUEB3gFLA2sFywjNDY8TBRp/IPglmCpuLfEtlCwWKcUjUR3gFWAOaQfbAFD7BPd0893wwe6x7HLr5urf6nLraOyx7VbvMfFI81/1RPe4+Jf5Qfp4+sb6rPu6/CP+5//HAZ0DQgU3BmQGyAW6BCwDFwHv/r78rPqu+OD2e/VT9HXz0vJi8lfymvLs8mPzFfTS9Kr1b/Yj9wL45/gm+rL7O/2//gkAmgDZAO0AmgAnAJn/0v7p/ST9kfyv/AH+uQAjBQoL8xGBGT8hiChJLxU0nzZ7Ni0zYS1fJfwbFxI9CFL/0/eG8a3sYOlz57bmh+Z/5m3mdub95uXnIukT63ntTPB98/L2gfoO/mMBZgRKB+0JYQw6DmsPyw9HDyYOLAyUCZEG+QIW/4v7aPio9abzP/JZ8SbxNvGl8VryG/O68yn0JfTx89nzx/P481j08vTk9Rj3g/j3+Y37Rv2x/tP/tQAMAQEBeQBa/+/9Tvyj+kn5VPi69zz4Svrd/doDYwv6E3EdrSb4Lpo1yDkFO/k4IjQBLS4kiRquEFMHIf9v+Pryve5h67DouOYq5SDkbONa4zDkv+Uh6C3reO7b8TD19/dB+jL86/0FAEsCFgWaCFsMFhBPEzsVzBXrFDQSLg4HCXcDOf7I+YX2fvSq80/zHvO18uHxq/BL7+3t4Oyd7CHtie6u8EHzBvZX+An6K/vS+wf8y/uC+0z7ffv6+4D8K/1h/Tv93/z8+/76Avqe+ID3wfbB9nr4HfzmAU8KQhT5HvopsDOMOydBlUNfQkE9wjTPKYwdPRFoBTz7gPOM7ZXpDec85Y3kHORP4+bie+JI4vjiJ+Q65jPpsey98Lj0YvgO/GT/qwIQBmcJBg2NENcTtBaDGGAZ/hgPF0YUKhABC28FeP/++Xz17vHP77HuDe7c7Z3tUu0a7dPspuzn7Jntxe6I8LfyVPVD+GD7Wv7fAIcCMgPpAtIBRAAY/rL7L/n39of1U/R585HzMvTX9MP1RPbI9l/38ve3+bH9fAQJDm4ZdSZKMxc+bkY3Si5JKERUOhwtqR4iEH4DmflO8oXtNOrB523lkuLL3yjd9tr92RDaEdwH4FDlE+wy82b5fv7ZAYsDrwRSBUMGmAjcCwcQPRTeF8sa/xtsGwcZdRT3Dm4J0AMw/3n7gfiL9vT0CvMi8R/v9uyH667qsOrF6/vty/Ai9IP3Xvrt/Kb+n/9uAGkA3P9a/yz+3fyl+x/6yPjB96321fVU9QX1BfUs9bb1A/a+9Vz1UfSP8lvxb/AJ8tj31ADRDfIcDCyFOlpFHEt4TIlIEUB9NPklNRc0Chj/5fYJ8bbsAOpJ5xPkKeHa3n7deN2n3u/gLuQP6CDsPPBu9LL3wvm3+5r9rf+/AlsG4ArzD2EU6hfjGS0aCRmiFn4TShDpDM4J8waxA40AQv2I+bP1/PFv7s7rK+pt6VfqMuzT7qnxCvT59XX3rfi7+SD78/xN/w8CUgS/BfwFXwRBAQX9YPhC9Fnx6u+Z76vw1PIn9c/3+fl7+vH5EvhP9THzZ/FH8Qz1k/upBckSFCBpLfc4lEBgRINDwD4jN5osBCGUFfgKZgI/++L0DfDU60PoZOXi4iDiqOJG5LLm7Og/65Lt8u6075HwFPE/8nL0h/cT/NABwgeHDYISHBaBGGkZKxkiGGgW6RPCEDwNYwm/BRUCr/4D/Lb54Pdu9t70NvOE8avv/+2W7JbrOeuh67bsyO7h8cr1UPrc/usCJAYOCDgI0wYnBNYAx/0f+x/58vf59h72OfUO9PXy1PEW8S3xqfF38rPzIPWA9qb3KPmq/JkCbgsPFysjQC+gOXc/LkHxPkc4Ui9fJJwXswswAYj4hPJS7lXrQemD5oTjDuE+35ffhuGU5C/p8O0r8r/1Pvjf+Sn7Pfys/en/MwOwB60MpxHYFYQYwBlZGc0X4hU5EzgQIQ2CCZMFwAHH/RD6O/fx9GXzd/IM8uXxZPGc8GLv8u3T7D3sqOyS7h/y6fYF/PwA4AQhB80H6gYzBTID9gCz/qz8y/pF+TH4ZvdL92P3c/eM9yX3lPYw9nH1nfSA84vyDPLA8RDzzvav/f8I0xbxJJcyRzzBQKtAUzsxM0Eq/h/nFZkMkAPo+1T1f+/r6h3n6+OY4UHgguCa4lvmJeuO79/y1PS69SX2r/YR+Fz6WP1eAakFfQn+DVUSNRZ7Gc4a3RpZGQIW/hFYDW0INwQ/AMX8nPoC+bj33vZw9XTzxPC27RzrXOlB6X/q0Oz57xDz1/Vd+HL6e/ym/pwAkAJhBJUFLAaOBQgE8gEh/2X8P/pv+IP3HPf99kf3bPdP97H26/Uj9az0wPTm9On04vR59Ab17vgBAWsOjB8UMEM9tUQQRYQ/CDbjKuMfHxUnCgT/F/TS6qLj596e3dbeo+Go5arpfO168ZL0YfY+96f3ivhn+rH9GgJ0BssJTQsPCycKSgk7CUoKCgzuDX0PFxDGD7AOqQwFCp4GYQLd/Zf5v/XS8vfwBvC97/3vR/BQ8GjwffC08G3xz/Lt9Pv3rPtx/7gCJQW0BpMHwgdMB6UGywVYBDYCUv8Q/PD4QvZW9Ezz7/Ib82nzZ/PW8vfxZ/G78ejyJ/Xg91f5cvnc+F75GP/tCk0bmS0rPBtEkUTHPaczeykAILsX5Q6FAy73U+tr4QjcSNuO3f/hR+aE6crs/e9Y8+f27vlr/Jv+cABWAk0EgQX5BS8GTAbxBgoJ5QuDDhsQ0g/uDa0LiQmlB4MGPgVfA/gA+v0H+3P4q/YD9uf1Pvba9gT3pPbF9SD0dvJ78RvxIPJz9En3YvqG/RsAcwLVBKwGAQgpCLcGHAQtACf8Mfku91j2/fUX9YvzgfHq7wbv9e7c7+HwOPJq9Lz2q/k2/b3/tQCaABsBeAYSEgAhpDCWPIlBVED3OXgwMCfMHsgV6wqz/RDwfuSS3ErZr9ny3LzhReZB6mruFfNb+IL9wwGOBZYIWAszDUANDQzbCQcHwQTeA/YDHwVgBmIGqwXKBOsDnQNqA6gChAFo/8D8Vfpg+Bj3S/a+9TT14PSW9I/09vR39Rf29PY1+Fv5gfpl+9v7DPwA/BL8kfxz/e3+xQBjAp0DLgTRA+ACSAGf/nT72vcb9CbxI++27hTwmvFp8lXyrPEt8TrxrPLU9Hr3gflS+sn8hQQtEo8jDDUVQUxGP0X2PTw0VysVI38aYA/4AG7y9+UL3aHY3dcc2treyuN66EDu4vM4+eT9lgCtAnMFDAjKCtwMRw3cDJ0LlApuCvsKXQspCkUHxgOGAKr+cf61/qv+x/27+1n5mfed9oP2uPa49uT2l/fT+KX6dPxf/Ub9gPyL+zT7dvvb+0j8L/yC/MX9EABGA6UG8QhgCfMH/QQiAer8Xfix89zvI+0R7L/s2u2y76nxUfIF82PzJ/P080b1mfa7+N/62PsJ/NT7cf+GCU4ZoyvPOflAq0CxOKEtpiNeG0QV9w0RAwL3F+xC5MTgB+AD4iXm6OnM7YrxDPUm+WP8pP6AAecE0gjiDNYOoA5YDbMKHQjWBiYGrQU7BBUBJf0Y+ir57vkb/M7+sQDQAckBggC2/tT80vpQ+av4PPmj+zv+8P97APT+jfyB+sL4gPdL97L3kfj6+o3+yALYBkQJYAlkBwsEewBK/Q76w/Yb84rvhe0s7X7uGPFa8wP1+fUM9o72Mvfu94P4I/hQ+Ab5Xvm0+VT4H/jl/soLKh7PMcc900FaPlIz2ij1ICQaORUuDO/9HfCP47PbRtoV3E3iSuqp8Mj2YvpT/Gz+fP5o/+sCHQd8DCYQGRCrDq0LxAjvByIHaQZdBKb/NPuJ9771//YN+Wv7Ff7p/8wBxQMEBaIF9wN7AI/8nPiQ9in2vPVC9ij3jveH+IP5L/oz+4j7e/tr/HP+hwHjBHIHawgvCKwGsgN0AKr8v/g09W3xr+6F7U3tkO6K8Ejyj/SU9vT3pPgE+HX3m/Zx9rb4EvtG/Wr+NP1DAJsL0ByeMYJAykPmPooyhiT+GmYUXBCsCpb+bfBq5AbdntwD4PTkrOuy8YL2aflO+rf6Z/p2+tT8XwGYBzwNJA/+DfkLvAo5C2YM6QxRC6sGPQD5+Zn1K/Tt9Fj2yvfa+RX8cf5MAFEAQv8P/qz8lPy6/ZD+2/7g/b776vlF+d35tfob+0X7s/sO/Yz/FwJdBJwFyASxAgwAVf0f+974LPb084Ly2/Ev8lHzavQs9Ub1/PQP9TL2MfhK+mn8nf7X/24AfgGZAYIApP0Z+s786ghYGycuyjiiOT80YipBIX4bIxYSEHMFkvTT5A/bJNjk2tPeneOU6gnynvnw/x8EAQjUClsMeA57ELIQXQ6KCPEBN/7m/Yz/GQGZASsBYwA0AJQAcgGxAk0C0P/8/F768/i4+HP4svjN+RD7Bfzf/P/9Y/9RAPgAHgGlAFMAN/9p/V78/vs7/Cn9HP4n/3UAoQGrAkQDOwMjAhP/5voh9prxVO5P7ELsT+7A8dn13/ic+qj7Dvu7+Vb4z/d0+Gj4GPnE+u37Wv13/J77tARLFhcqVDqxPb83zi8rJdIcnhiPE7QMv/8I7QfgSNsE3JPfV+Gt5MXrmvJO+JT8bgC/BeYJDQ3mEAYTyxLsDosIZgVxBTEGdAYYBBUBn/6P+7D5Tvlx+WD6g/ok+ib7Svwg/WX9yfxB/T/+bP7M/uT+bP9GAa8C0APcBHwEgAKd/zD8wPnl+C359fqb/f3/vAAdAGr/2f5o/jn9IPue+Ar2dPPd8FLvBPD58QH0HPYP9/33+vkm+9v7ZfxY/In86PsQ+x38IP6dAHwBMgGjB/kVgCZBMwM1oS7cJy4gYhnVFB0PaQjk/WvvjOX04iPkp+aM52vpve8D9n36yf0eAFYD3wU+B9IJWQ3GD2cPxQy8CjQK3QmlCAkG+wJsADD9MfoS+CP2IPWN9Fb1X/g//Lr/cwFeAYYAlf8Y/yn/pv66/Vj8gfpc+q77e/39/vD+mP0p/Iv7svtX/PP8if09/kv/2wBhAucCSQLLACv+IPvn93L0evF07+ntTe0s7unvZPKA9Lr1lPan94b5dPuC/fEAkwQJB8kGbgP5AzsMKBm0JlwtSCwkKfYj9x15GbgTcw3lBXn6UPFS7Ursse0C7izusvHX9Uz5Jvxp/f3+iQDzAP0CLQbYCMoKagpjCSsJ8wdkBi4FvANcAs7/DPwS+W/3EffD9+74pfov/Cv9Ff6b/oP/2QCNAWYC1QKkARj/hPt696P0kfMB9Nf13Pei+RL7J/zA/W7/CAGrAtUDAAQEAyABjf5j/JP7DvuM+lX6dPmw+FD4m/dd9+f31fgJ+vX6fft2+4P6UPkn94f1VPax99/5+PpQ+wwCZA/TH+QuazRvMpkuBCg6ImccoROmCt7+sPFc6lnoP+qq7SzuG/BT9Tz6SP4c/8r9//xn+5b61PsB/koBpAPwBGQHvgmxCkgJWwWzAfv+pfzL+r/4p/dm+Ln5vvvF/oABvAMNBaIElQM/Aq4A4P6q/IT6XfhL9lH1SPXy9TX3pvdW93r3xPdr+Qr9agHnBZoIAwk9CK4GtATbATT+9fpU+Nn1efN28WLxkvMh97T6efw4/Vj94Pyq/Cv8mvt2+rj4IfhC+Pn4ZvlA9335jgZgGY8tFDm6NnoxUyz0JvMidxp/DbP+rewv3+XbmN/+53zumvLz+RECYgibCjEIjAUaAwUAfP3s+vz5a/qI+gj9VQGaBToJSAm9B4YH3wY+BawBx/tF92r10PWi+F78aQDlAzUFNwUoBCsCQwCh/fr6rPli+CH3X/ZK9Zb0T/RP8wXyDfGr8DryCvb3+t7/vQPYBo8JggsVDDcLJAkCBtABHP0Y+CL0+fGF8IHwUPHP8UHzIPWt9mD4Yvly+jr7V/tu/Z3/6wBXAIb72fxVCs4dADGmOLIzdy6MKZIkRSEOGcoNgP+x65vdJNqK3dnkYuoa8M36yASoCrIMswsuDOkLRgj3A1r/gfpd9u3z2fVi+x4AHgLUAVUBwQGYAVgA3v40/X/7dvqD+nX8bv8TAkQE4wUSBwcHOgXvAssAX/6n+9b4Jfaj9ObzJvPf8wT2dPhy+mv7Ffz9/MX9QP6m/pv/VQGUAhMDIwPHAvEBLwCk/T/6fPaR83vxKvGz8p/0IfYG9zP3d/Zb9if3H/hM+y8AsQMmBfQClAAfCHsYGypyNZozaSyDJyIj7iB8He4V0wul+8TqJOKD39DgKeIZ4proIvMf+5EAAQLQA6kHdAgfCIwH1QTdAXr+xfyA/1QCtQLpAXkAEwCA/3P9qPw5/U3+Jf8y/64ApgP+BS0HgQbtA24Bw/44/Ij7tPrE+K32lPTo8zL1wfab98T3aPeM96T40frm/aUAuAIWBNwExAVQBm8FCgOi/xf8FPm49rX08fLm8djxBfMc9b331vkt+lX5Evhh93H4S/mV+bX7Ef7y/ysAWP6UArcPxh/ZLAIwbSsWJ6EieB53G1IWKBCCB/z79PR08kfxD/AD7Wrsf+8f8W3xrPE68yz4Bf1KAQUHZgtdDbQM1wlyCNYHAgaBBGoCNAA7/tT6lfja+NP5hvvL/Kr85PxI/eb9OADkAhQF3AVbBEsCSAAM/kj8SPoh+ED3jPYn9p32D/fl9wf5a/p//Mj+wwCfAksEIwZyB8IG0QRPAk3/d/yg+f/2MPXD8xvzw/OQ9aD35/gJ+mX7RPyN+/v4Pfbk8/HxWvJ19d35qv2F/oACNBDdIrcyOzjfMgMs+SV2HqsXHxBrCO8Alvae74HvhvFI8+rywvKZ9jH5GPfx8nbvG/BR8872E/zbAT4GQQkwC04OeRGcEFgMfwe2A9cAuvwA+EL1uPWT+HT7sf1E/xMAJQHHAjwEuARsA4YAWv2l+nH4r/b49Zv2Nfhr+gr8ofzJ/Cn8Rvy6/Xr/rwHgAh4DjgPgAzwEGgSEAuX/XPzR927zsO/i7ZLujPAD8yz19vaD+CP5BPnW+C/55/kY+e73xvcE9yz2bvSS9b8CYhf1KZ4zDTHLK1ErJCtZKVUjsBaRCIz5d+106lHrhOzI7ZTuB/Ni+GD5xPgx+Kv5o/yW/Kf79fo4+v77qv4nAg0HOAnDCagK8QpdDOAMdwpyB1EDh/+o/Tr8V/yC/ZL+4/93/1P+d/4s/90A2QEDAND8LPl19sP2zPjH+sX7PPtI+rn5wPln+k77tfz9/TL/VwDUACkBdwHXAT0CnQGm/1P9/voA+W/3yvU79Mvy7/HU8aXyfvSm9eD1gvW89Lz0afRT9H72c/jJ+Wn6DPyoCGweRzEEOwY3LS15Kp4pjCbaIPESRwPb9PLmhOI35LvlJukj7DbxI/nq+0T8VP5sAZgGZwgABqsDlgA7/6wA/wKOBhkIBwfABrQGpwZoBZ8B0v5B/VD7+fk5+Mz3Ffv7/0MFhgj3B98FEwTjA1IEMgLv/Wr4WvNe8WTxlfJB9MX0WPVs90f6c/1k/zoAggFjAqoCzgFS/7H8rvpU+d/4Wfi49nf09fJD87r0UvZP95X3Qvg++Wb5MPgy9t3zSPKn8qHz9PUJ+2kAfgT8BWIFrwt3GzIs7zZlNRss3CbqIyEgURsrEegFTPu979vqBesv62rs7+x28Ev4gPxe/Yv9h/25AJQDLgQGBmcGBwagB64JRQ1nDxENYwnEBaECev/l+un2QPWU9an3GPl9+aX6NvyA/5IDQAXuBB4DywBPAKMAHQBj/qX6jPYO9CDz7/OW9SP35fis+jj8Mv7QANkDaQZeB4oGOwReAZD+svt6+MP0dPB37FHqhupn7HjvufK19a34RfqV+mf61vk++gP7Wfv4+gf5q/hc/KoBVAZvB80IChPAIuAvljQ3LignMiQfICAcgxVcC9ABIPaJ7C3rRuyA7SjuzO3Y8eX2ePgA+hv8UwBfBWsGBga9BfkE6gVvBzQJKQvQCUkG2QOUAlwCBwFy/RT6nfdH9lj2S/e/+UL99gAbBVUI2AgJBw0Drf4p/Kr6OPoq+i/5tvdN9sz1jvZY95X3QPjs+N35APvC+5/9fQCxAuIDxgObAuQAi/6o+4H4h/XA8s3wj/D+8aj0v/de+rD7e/tn+ob5H/pX+/j7L/xG+/76rP18AQsFNwYvBY0KWxg3KGQz7DKxK8MmsyL/Hb0XVA1lAlD3N+zP58LogOq8627rJe4F9U76Z/1J/7wB2gU0CJEIOAieBlcFdgQ3BJUFbwVbA68BgABgAD8AvP27+tj4uPcW+Jf4rPkn/E3+r//T/2b/QgERBG8F5QSGATL9ePqT+Kv43fqs/CL+N/4Z/XL81PtX+9v6OPrY+bn5v/kN+nn6WfvQ/DL+8v7p/UX7Wfg+9sz1Yfav9sr20PbB9hT3DfhS+jn9S//R/7b+Jf5R/mr+DADiAWgCTAAO/FH+DwuWHNoqBS41KSwmTSTfIZ8dsRPWBx/7LO0f5STjK+Tj58XrxPGG+nQAsQLOAvkCuwUpCLsIUQiwBhgFkAP0AbwBuAHFAK//Cv+X/0gAY/+S/bn7JPuf+zD8LP5PAQsEjAVUBcwDsQGZ/m36Avc59Vj0wfTe9jH65P11AJgB4gJxBEIFzwQ5A2MBLv8k/T/8gvwj/mj/Lv/U/b76uvZr863wju8H8HrwoPFj83z1xPim/N7/0AH7AVEAIP6G/Cv8Dv0V/Xb7V/qa+mD7svr59zr6lQfOGjssoDMwMFcrWCdPI/4fpxhdDGz+4u7y5HPjpONk5Tjo2eyS9VX8hf6D/2AA2wLnBbkGFAcsBvkDfgM1BSIJeAxGDEQKEgghBicE1wAw/c362PhC9zT2s/UG9wL6nf1IABsBTwCm/uT9Ff4l/rP9s/zQ+2H8Bf7j/6QBRAL6AegAGv+E/Tb8FPuc+g772PsB/f/9+P3Q/Fn61/aJ8zzxh+9S7kvvOPLB9S/5MfuW/Jf+WgBcAVMBE/9a/M/6pfxsAOQBGAIiAZL/pv46+yb83wg2GxssijP4Lo8p3iUzIBcbLxJ0Bc34s+qd4iHkX+fz6jXuffEW+bj+Mv89/9v+KwDFAlgDEgWjBjEGLQf/CNULgw4hDFsHGgRVATgAPv9//C/6tvdA9Ub19/aT+Ur8kP1N/nD+D/6r/n7/EACb/5D98fuP+8n74vze/QP+Bv7S/HD7Qfvx+kb7a/wc/rkAxwJYAxUDQAIuAVj/MPyu+J/04/B47vDss+2y75XxZ/Sg93b7HP+xAFMABv/g/cr9zP5VAFcArf8vAEQABwB8/Qz7igRZGLErajaDMIskpx+mHNsZChW+CPT8svJe6WvqYe8F8uT0N/X599L9Yf0k+sb4Fvln/QEBUwFhAg8DpwQgCqcQKBYCF9kR/Qs4B2ECdf1P9x/yVPDY7wDxIvPv9MP3t/rm/SQB/wGHAWkBggEhAzEE+wJwAZD/VP7g/sr+4P2f/Bn7SPsd/I/8+vxc/cz++gBNAp0CWAFo/j37tvfV9PryoPCt7vbtju4O8Ur0ZPeg+lb97/6D/3P/4v7t/Rn9JP2X/i0Amf/k/pf+3v2A/Gn5L/xnClgcZCq1LQonbSJdIE0dxBrgE50J0/9n9Hzuou9d8D/xJPGR8VL2ePk/+lf8Mv5NAbQDKgPOA2oE7QO9BHEGDgl5CmMI3gUNBcgFiga2BP8A5PxQ+D/1yfPC8971ePgi/BUAXwLuA/sEGwYqB9YFNwKP/fv3gPNV8fHxofV6+fH7Xv0X/vv++//AAHUBswEIAcz/Zf5j/cn8tfy6/OL7EvrR9kbzy/Ha8R7z6fS49Qb2gvYC98j3HfnN+kv9awDGA8sF0QbSB3gHVgUdAD76tfwJCbcZlSaVJ0whqBwJGjQZNxdZEBUIc/7O80DuGu0I7qvwG/Jw9AT5/PrJ+ub68fta/wUC5AH0AIz/d/5W/4cCfwdaCz0L/wjhBkMFcwO8/077N/gM9tn0RvU+9/X6W/9aA+oGXgmFCq8KMAoOCQkGtQHb/YT7ffuz+5P6cfh19ebyXPL+8qP0Dffy+H/7xf7rAUwFDghwCToJYAaWAeL8Mfkj95D1G/MW8fXvju/T7+zvJPFu9Hz4kvyp/8cAOAEMAZgB4wMUBa0FegVYAy0A4foz+IAAARGuIWcr/iiVIiMewBiUFJoP6AbJ/UTzwuq56jXuPfIG96r6PwAjBQ0FhQMDAmcB5gEwARMAJf+S/Ur9av/pA0EJIguCCa4GMgOWAE3+5voh+Dv2S/UY9076IP62AkMGjwioCXsIQAYUBEYB+P44/Qf7evkw+GH21fRT8zPyVfJK8/b0X/fm+in/DwNiBu8IIgrkCfUHqQTXAH/8aPi19Rr1n/XV9dD1mfVd9aT1MvXD9E/1+fXX99r6Lf3i/tX/RgBRAawAfv5W/az8A/yI+nD68AItE+YiZyvlKWEkSSC3G5UWPBCyB8z/4/dr8gPzifTv9GP1uPUq+V79d/2h/J/8XP1h/1gA0ABUAkIDEQRCBUMGUgelBuUESwTMA8MCYQDC/Mb6Dvs7/F/+AACSAKwBagJvA+MEeATZAssAyv79/fH9w/2H/cD8WfvE+e73b/bv9LrzsPOH9K32cvkS/Hj/CgMjBk8IEAgCBukCFf+x/Er7B/oL+Vn3WvaD9u31/fRY9Ob0bPcS+mn7NPsA+o74avhv+s78sf5YALT/4P0K/MD7qQazGp4rQTMlLY0hKx36GVwU5Q3wArn5IvQ+7qvvI/U+9xL67fsP/jkC8P90+dX2d/a7+Dj7jfoD/KT+rwAzBc4J3gw8DfgI4wSoA4kBVv5T+hr3v/cH+sX7F/4XACUCEQVlB/wIMQglBIL/ofx7/Oj9Xf6E/R38M/pi+Ab2efNk8nvy5vNz9tP4gftE/0QDKAfZCfQJXghoBYcB3v0V+9H5Wfk1+fL4kPhm+B/4M/dW9iH2HPZS9ir2m/XK9Sz3e/lB/DT+hf5U/kL/WgAiAAb+e/wDAnEOOxuxI+AjEiDjHuQcPxldFKQLcwNe/XP3q/bs+PL4G/ne+Db6kv6t/8f91PyW/Dv+d/+Q/sP+q/+PAIUCJgV4BxcIZgZSBM4DVgS4AzsBMv6g+q33ifYh96H6Df8VAqIExgV0BXoEMAJVAFH/h/25+wT6APl2+UX6OPsb/EP84vv++iT6MfpK+p76p/tn/HX9Pf4w/lH+Pf4V/iL+Nv5d/hf+lP0F/c37V/kp9l7z/PGn8drxAfOL9f75aP4wAuAE7gRtBFYDCgAB/Aj3IffKA1sWrSUJK14k7R2NHJ8aAxmhE3IKkgKt+DzxhPEJ81/1TvjL+YL+EwFz/fH55fe9+Jb7oftp+3D81vyo/l8BYgRrB4EHewbdBisHgQbXA1EApv4r/vL95v0//ZH88ftg+zj8ef0B/i7+9P37/ef+yQBjA9EFiAaJBJIAmPyG+bH3YfdS9zP3QPdA9/33Kvms+Zz5wvnv+jv9i//8ALgBIAI7ArcBzgAZAAr/fP31+pv39vSu8t3wW/E79DD4nvsm/MT7rvzJ/JL8JvxX+lf46/Qi9B4AHBboKzM4mjRtKxclQB4QGN0QLwf0/rX1+O1d7l7ytPbx+hX99ABPAw3/Pvk09Rz1b/hc+k776PzV/V3/5gGHBcIJnQpuCNwFgQMYAmsARv77/br+3P66/vj9n/0B/gz+7f4gACIAFQCb//T+tf6z/fr8rf3X/db8U/vc+Rb6IvsB/GP9Of9+ADIAqv6G/XL9Af6E/jD+RP7M/o3++v2v/LX6ffku+Fv2lPSy8jjypvPw9Xr4gfoe/HX9of0t/eb8s/0w/6n/d/9o/nL8VfpD+A78PwnYGf8mPyrXJAQgix3oGvcWzQ4CBfH7lvOt8Kzyh/Ud+Kn4lfmo/Fb9mPu0+Rr5hvsr/iP/PwAeAdIBOQO0BBQGDwaAA5YA4v89AdkChQM3A+0CqwM8BB4EwQOxAscBugEgAaT/m/2K+wf7ofvW+2L7hvr8+fX52Pmn+Q/5KPgf+An5UPqU+3n86f1aAK8CnwNWA5kCugF0ADT+XPti+JT1O/MU8kfyOPNN9GX1b/eM+hz+VQG8AoQBI/7n+SX4TPkh+rn6GfvL+mn7xPqq/CkKzh5hMIs2xy1yImYdIBqVF+gSowrrAuH5p/It8+f1uPYZ9afxtfGj8iPwQO7974z2Uf/YBDEIrwogCyMLFwsiC/0KKwf9AKj8Evsw/Az+bP8DAQwCcAH5/03+1/zt+8v7Vf0AAF0CpgPiA1QEagXYBewEgAJN/rv5jfUM8kHwGPBr8eLz5fZg+nf+RgL9BEcFUgOaADn90fmf9rXzC/L18f7yuPSd9gL5APxz/g4A2v85/uD8A/s1+eX3DPZf9FjznfMV9iz5B/1CAhgGYAfXBEsDuAvoGtwnLSsvIwobyxjcGD0aLxlWFO4NKAQi+5f3SvWE8uzvWO5M8Xn0RPSN9ND22Ps/AW4DXQREBIUCBQGCAFQCYgUvBrgF3AUGBoEGlQWUAgoAlv3z+3/8of2A/sr+sf7T/4QCkwTaBC4D3wCi/0n/sf9m/zL94/lR9tDzpfPe9LT2pPic+XD60Pv//WEBWQToBWkGfQWDA/8A6/3s+qv30PP+70/tce2277fyDPZ2+Mb5K/o8+XT4nPhO+UH6Nvsp/N/7bfvL/PT/UAQSBgQFbgoZGOUnojHrLIog0xeREpgQZRCHDYQKsgXy/c369foh+nr4ffTl8Snyiu/m62Drge7i9fr8lgGnBTEHywaCBz0JxQsfDD8IaASrAj0CmQIMAsMAjv/m/e38t/39//kCkQWuB8AITgcqBDIAOvw/+pX5iPmN+pX6WfnO90j1NPNZ8lXyJfS89lv46vk2+3T8yv4pAREDuATTBG4DdwHZ/kz8Hfoz+PL2R/ZP9rz24Pa/9gz2MvW+9H30EfW99t/42/qP/Pr9S/+mAbsEOgcFCEsFMgP/CV4Z2CqGNN4vliQXGykUdhHmD/IMPQqHBLf9x/qX+H71qvFs7U/tBu/u7Z/sQO2R8U759P9+BNgGpwUlA6QBXAJdBNUEZATuBEkGRwfGBXUCtwAVALb/h//4/u3+h//t/y0BXwM3BYUFugPrAB7+OPuK+Gj2mPVa9kL3Cfin+D75Uvqe+3/8n/zH+1z66vm1+hL8n/0h/xUBdwOvBKgDpQB7/Lj44PUI9J/zIPQO9Tf2+/bX9yj5GfqV+qz6TvoE+nb6mvu8/FT+nwBPAh4DjwGQ//4EkRI/IuErNykzIAkaYBcEF8UVxhDOCgsEZf0V+/r6e/pt+XP3C/f99nDzaO4p63nsP/KI+OL9SwHiAYABWAHFAnMFQwaFBe4ENQTKA+cCFQGEANYAzgGJAzkE9ANmA4sDcwXqBvIF3AJY/lz6Yvjn9z75JPuw++/6Ovkh9+31RvaF+AX8X/64/gH+uP3Z/oQA+gHpApkCRgH5/nX8PPvf+q76hPo8+ZL3BPcC9wj4u/nm+oH7NvsA+tj4LvgI+Kv32vcL+Uz6Jvxz/VX9Af07/Fb/rAotGZ0knSYjH5EY3hbCFx0aMRmDFTIRMAqgBIcCSgCO/sv7lfi295v0g+7Q6SboluuE8WP1IfiI+dT5dvuk/qQDUQiqCbsIJAf7BTcF7gPwAvACvAIiArUA1f/CAF8CRATqBQQG0wToAdT9oPoG+bb4hflB+tT6NvvY+jH60/lt+uz7d/3o/eD9Uf5q/wgBfAIKA8ECTQHi/qP8bfsx+2D7IPyz/Lz80Pt9+ur5BPq/+Zz48vYj9nr27vZ++EH6F/tg+xj6qfiZ+Z76Q/uo+wv7i/46CPsT9h1BIPYathUpE9sSfhNEEikRrhAYDwsNsQq5B6AEawCj/Of5fvb18Wzth+ur7YHxPfX/92j5yfpu+7n7B/1s/oP/PQGJAswDMQQWA68BwwHBAgoEWQSrA+kCswIqA8gDMwT2AykDLgJuAYkA4/+//mn9A/xQ+lD4zPax9V32ivgC+zb8xfuY+pj63fuk/eL+2f/4ACUBUQAe/2H+q/5U/5n+Sf4R/sX9O/1r/K77FPuu+f74APlZ+n37gfr5+Vz6oPrC++/7Cfue+z37nf3IBacPIRixGnoV4xCnDpEOBxHdEhEUIRYnFZkTjxGDDScJuANR/tD7q/jr9A7yyu/K8DbzRPRl9RP2FfYf9873V/nb+t/67PpY/F3/XQTwBh8HuAXTAq8AjP+m/jIAhQJFBPAFTgV6A7gBGwBRAP8CLwUABuUDrf+n+xD5Qvf/9nX3l/iF+Zz5UvkC+b/4wvi2+HT59fqE+yn8J/2X/p8AGgJ3AS0BxwBRAD8AAQDv/sP+2f10/FX8Y/zr/Hn9EP3d/PH9lP6C/6j/Cv8X/tT85vxcAFQFVQkMChMJjQldDKsPrBBKD34NXwsDCpsJWAmUCQoJ9QUWAysAS/0C+2r4MPeb+Mv5t/qw+vX4wfdx9q31sveq+rX8wf39/Fr9Uf8tAUkC6wIVAmEBDgC4/on+Sf9rAEICRARLBWAFOQRJA28DyAPtAqoBsf9R/oT9HP1h/Y7+w/6i/p/9vPwr/H/7LftD+8/7hvzF/JT8mvxD/E780vx8/cX9//11/aj9Wv6F/jT+s/09/cH9sf7c/ykBmQH9AJv/nf6x/oP/6AAIAx8FwgYQBmIEHwThBXYIUwoQCjAJVwjTBjUFrwQmBcQGUwdtBeYBJ/4J/IL8N/7e/t79UfsN+bT4Dfpy/Pn+MAC6AK8AMABS/wr+/fwa/lUAZQL2AusBrwCf/0b+Q/yI+sL5oPpe/Hz+DAD0ABAB6wCvAD8AIf+6/ZL83/yA/nIA4AEVApsBHgGhAOD/Uf9Y/ub91/2z/Uj+v/7V/kv/+P6z/pf+cP0y/GD7K/o1+t/6WvuJ/N39MP6z/lr+j/0i/g3/hgCCAloDMAN6AnIAwwDXA3AIVgzlDDcKhAdkBT4E1QN/BCYG1gdFCDYHTAVbAxwBMv9o/tn9df1a/DP74fqK+7P7wPtp+0P7t/vQ/D3+BQAnAQUC5AKHA0AEZAQfBL8DVgJwADv/of5m/7H/GP9o/nz9r/xR/N/7XPy8/bz+kP/u/3X/Gv+d/jD+zv5+/97/6/8K/1b+ev7M/tP/RgDp/wH/8v2H/Y/9rf0c/iL+P/5N/pL9+vwK/Vb9av6M/7j/vf8D/779af3//Vv/fAFYAfb/xf7i/lMCZwb+B/AGfAOjAEwAOQFYAl0DLAR0BVIG3gTXAdz+m/1W/tf/gADFAHIAHgDu/3H/Rv/B/kv+gv7S/vT/cAA/AIkACgHMAXACVALyAYUCbwPDBCwGzwZxBjEFDAMFAdH/A/+o/sz9GfyK+tX4+feS90333veI+LD53/rL+3f8uvxe/C38efwu/Ub+0v5S/z0AAwHOASwCAQLrAV8BOAAR//b9bv3X/b7+OgBIAf8BWgLHAQEBuP+Z/qv+W/+0/yAAbgAOAdUBUQE9AOL/9ABEA0IFuAU1BcwDvwI/AhMC8gILBJME9QQYBFMCrgAu/1L/nACkAekBFQGm/9f+l/7//uD/nQA5AZkB2QHdARcBGwBk///+r/9RAOsAPwJRAxoELAS/Aj8BSgC2/2MADgFTAVwBTgC+/hf9U/sY+qz5k/kS+mL6yfkJ+Vb4LPg1+Xb6wPs5/e/9GP4P/qP92/3y/kYAtwG6AuICnQIaAjAByQC6AH4AYQAkAF4AbAFCAhECPQFRAOX/+f8HAND/nf+F/0//fP8kAAwB1wGYAVUA+P4//j3+Fv80AFUBVALZAY0ASf9a/uD+GwAXAQYCQgKZAS0BJwFfAd4B1wHXAWECcwITAlgBHQCV/7L///9RAdMCpgO6A7gCggEpAeIArwDMAP0AWgF8Ad8A2v89/5v++v3e/fT9Of5u/vL9SP3b/Ij8efys/Pr8Lf1B/Qf9A/1W/en9rf5E/27/T/8E/7b+0v4W/0f/W/+t/2MAgAHVAncDFgPkAZ8A4/9GAE0BIwL0AgQDQAJWAT0A2v9GAAwB1AEPAnIBSAAy//D+n/9sAPgAzAAZAIv/4v5h/oL+9v7K/5oAqgCJAIIATAAeAIX/wf51/nD+lP7k/jn/l/8XAH4ADgFcAVoB/wCIAHcA5gBTAbMB+AE3ArYCLgMsA5IChgHAAFcAJwA7AO3/if9C/6r+/f1N/VX83fv4+z38wPyo/Ar87fvN+9b7CvzE+xv8wvxa/U/+zv4G/4P/ov/V/wcA6f9OADIBNwJPA4AD0AI3ApsBUQGhAaoBsQGtAXkBFQHFAMcAKwEBAlgC/QFBAaUApQAZAXcBlAGdAWcBLQEMAcAAjwCfAIYArADAAH0AYwBRACsANAArAPL/7f+r/0n/Uv9+/73/AwD5/+3/SAByAFMAEADp/y8A6ACtASACRAInAsABPwGzABcAl/9q/2b/pv/i/9r/r/9d//n+zv6z/pL+zP7y/g//+/5h/rf9af1V/fv95/4l//D+Pf7X/TL+yP4s/5f/oP+Q/2j/BP/H/pL+uv4N/4L/EwA7AID/4v7H/qD/OQE9Am4C0gHXABAAv/+t/x0AwgBNATACmQJWAg4COQGuAPQAFwFGAYYBRAE/AXMBPwEHAY0Aov8y/wj/6f5A/87/LQCAAHAAAQDD/5T/qf/R/9r/qP8c/9z+7f5L/+7/TwCIAN0A+ADxAEsBggF5ATABbgDn/7L/0f/g/8X/r/9k/wj/m/4a/qr9af0r/S39fv3p/Z/+Fv9j/7r/4P/3/x0AKwBXAGkAFwCQ/xX/v/7K/vv+Fv8g/yf/Tf8j/+n+c/4R/l/+vv4K/2b/g/+v/04AqAD0AGMBlgHeATYCIgKsAUQBGQGdAXECJQOBA24DPgPMAl0C4AFnATIBXAFnAUsB2wDl/w//if5n/tn+df/0/0wAOgDa/zL/0v4K/5//NgBaABMAwf93/27/mf+x/xIATwBVAEQABwDX/8b/6//Z/9D/uP+J/5X/uv/9/z8AVwAOAG7/wf4s/r79qP21/fH9Uf55/mX+Xf5U/qj+VP+p/87/uP9W/1r/bv9Y/1T/Bv/e/v/+J/9f/5n/tv/G/9D/uv/a/ycAgADSAPYAEQEbAf0ApgBDACsARACRAO8AIAFYAY0BggFIARkBAQHUANcA6gAwAaMB1AEIAvEBkgF5ATYBFwEuARwBLQEZAboARAC6/0f/Qv9v/4X/q/+A/1v/ZP9m/6D/AQBXAJ8AywCRADIA0/9q/yH/6f7O/j3/4v8/AAUAO/9T/pj9XP1h/bf9Wv6d/nn+Of7H/br9Kf7M/m//8P8SAMj/if+H//T/nAA/Aa0BzAGGAQwBugCfANcABQEeAfoAdwDB/zf/Hv8u/5T/+/8eACsAFQD///v/EwATADIATABsAH0AmgClAJ8AiwB5AIkAxQABARUBNAEgAeIAYwDc/6L/5f+SAEYBtwGoATIBmAD//5X/X/9H/1j/ev+p/+X/JwBVAH0AbgByADQA7v/p/w4AVQCmAKYAcABpAFwAWgBKACAA8v+d/z7/yv5n/kj+if79/kb/Yf8w///+8v7T/t7+5/7y/kL/df98/5v/jv+L/5v/tv8SAI8AugCuAEEAnf8n/xz/aP/3/3AAewBMAPb/w//O//3/RgCPAIIARgD5/6b/n/+8/wkARAB5AIQANgAOAAoAJAB9AMMA/QAVAfoA4ADFAJYAgABjAGUAiACLAF4AEwDF/4v/eP9u/2//jP+0/+D/KQBrAJQAqAB3AA4AlP9U/9v+kv5q/lj+l/7D/qr+pv7Z/gj/i//O/9P/zv+o/7L/zP/a/+n/FQAvACYA7f+X/3r/kP/F/xMAVQCNAH4AWAAvABsAYACWAMwA9gDJAJYAWgAyAFoAwwAiAU8BRgEVAdQAqADFAN8A1AChACYAqf8s/wT/CP9R/6T/yv///wEAIAAwADAAVwB3AJoAyQDfANAABQEtAUQBTQElAd0AugB5ABAA2v/B/+3/HQDX/3z/Lv/D/rP+vv7V/vn+Kv94/9D/KwBPAD8A4v+J/zD/7/7p/tz+5P7Q/nr+Sf4y/nP+5f49/1v/RP8N/8P+of6o/u/+X//a/z8AgACSAIkAqADDAMkAtwCPAFoAYACYANsAQQGjAaQBlgFYAfMArACJAJEArwDSAKgAUQD3/5f/Zv9H/yH/HP8q/0T/df+S/5X/eP9+/5//5f9XAIkAowCRAGEATABcAJQA2QAVATsBTQEyASkBEAHdAMAAvADbAPoA6ACoAFUAHQAVADQAWgBuAGsASAD5/4X/I//n/gb/S/+V/+v/KQBlAJQArwDFAN0AvgBpAAcAmf9a/1b/Kv8w/zT/If8s/yH/Gv8K/wb/3v6q/qL+gP58/o7+mf66/uT+Gv9A/03/ZP+g/97/IABXAGUAdwCLAFgADADj/+n/WgDfADIBEQGlAA4AtP+r/7r/3v/2/wcAAQAFAO7///8bABUAFQDc/8X/wf/Q/+7/DgAwAEwAdwCfAMcA1gDDAKYAggBaAGkAcgBjADYA9v/Q/6v/v//w/zQAVwBrAFUATgBVAGsAkQDAAN0A1gC3AGEAKwABAAMAJAAQAAMA+f+x/5D/nf+m//n/GQDr/7T/bP81/yn/WP+d/97/3v+O/0b/8P7B/sX+7f4I/yH/Mv9N/3z/wf/w/x4AQQBYAHAAYABnAHAAjQCxANYA+AAOAQUB+gDoAMIArAB1AE8APwBKAH4AiwCUAGEAAQDF/5T/fv98/47/fP+A/2j/R/83/0n/df+v////LwA6AAUArf9m/0v/VP+m/wcARABpAFoATAA7ADoAPQA7AC0AIgAXAAcACgD//+D/xf+J/13/QP8Y/xr//f4D/yD/Pv9x/5f/r//R/wcAGwA0AEQASAA9AFUAVwBaAF4ANgAHAOL/6/8MADYASABBADgAJADy/7T/vf/X/xcAZwB5AGwAUQAyAB4AGwATACYARABjAI8AlACYAKYAwgDDAKoAiQBVACIA+f/g/6n/l/+k/6//zP+2/5v/pv/K//D/+f/g/9D/q/+o/8r/4P/5/xMANgBVAH4AmACPAHcAUQBeAIAAggByAFMAIAD//+P/3P/j//f/AAAMACAAGwAOAAAA6//T/6L/WP8u/xb/GP9C/2z/h/+8/8r/4/8ZAD0AfQCYAJIASgABAMH/nf+k/8b/8v8BAAcAzv+y/7T/nf/M//n/MABjAGkAbABlAGUAewCcAKwArwC5ALUAoQB7ADgAFQAQABAAOgBYAFMAQwAXAOD/r/98/3H/c/9v/6n/xf+//6T/gv93/2T/df9v/4X/qP/B/+v/AADy/87/lf9v/2T/S/9G/2T/n/+9/9H/2v/r/w4AFQAdAAwA6f/3/zAAnAAVAWMBXAH9AK4AYQA6ABsA7f/K/6D/fv9J/0L/Zv94/7T/uP+p/6D/jv94/2j/T/83/0L/av+m/8b/6/8OAB0ABQDy/+7/8v/7/xMAMgArAC8AMgBDAGsAnQC+ANcA1ACsAHkAYwBKACYAFwAAAPb/5f/O/7//zP/w/y8AcACLAIsAcgBgADsARABOAFEAbACGAIIAYwAkAOv/yP/c/x4AOABKADoAIgAeABcA/f/j/9X/sv+b/5L/pP+0/7r/3v/9//b/4/+//6b/l/+J/47/kP+S/7z/4/8OAEMAYQBpAGsAawB+AIgAbABVADIADgD7/9n/xv+i/5T/Uf8p/z7/Pv9b/2H/Vv9Y/2P/Xf9b/2P/if+9//v/JgAnACYAMgBEAD0ATwBaAHcAmACUAGsAOwAvADIAOgBOAEQALwATAPn/7f/c/7b/tP+0/63/0//u/x0ATwBeAGUAZQBlAFcASgA6AD8ARABMAFcAYwBnAFcATABGAFUAZQCRAJ8AhgBTADIAHQAZACYAMgA/AC0AOABBAEQALQAmAAwAEAAHAN7/sf9j/0T/Pv9P/3r/m/+A/2//R/8w/1//h/+k/7j/2v/Q/8r/rf+D/4X/lf+p/4v/bv9v/1//WP9j/4L/jP+U/63/2v8OAD0AXACAAH0AWAAvAAEA4v/n//f/FwBGAF4AdABrAFwAPwAmACsAJAAdABcAFwA4AGAAeQBuAD0AAQD0//T//f8rADAALwASAPf/5f/t//3/7v/u/9f/tv+S/3j/Y/9h/37/jP+k/7H/tv+k/7r/2v/0/woACgAOAAoAAwAAAAUAFwAtAFMAZQBlAGEARAA2ABMADgAXACYAPQA9ACYAFQAiABUAFwAdABcAAQDw/8X/pP+Z/4z/qP/F/+n/EAAgAA4A+/8XAC0ARgBYAFgATgA9ABsA7f/a/9X/zv/i/woAMgBaAIIAnwCPAHsAYwBTAE8ATAA7ACQA/f/l/+X/6f8VACQAMgAvACAAAADe/8z/yv/p//L/8P/a/87/3v/y/wEAEgAFAPf/9v/V/8z/yP/B/8j/5f/r/+3/1f+9/9f/6//9/wcA+f/0/+7/8P/y/+n/3v/B/73/uv/B/8r/2f/t////FQArADgAMAAvADgAOAAwACcAAADe/7b/m/+Q/5T/h/9f/0L/Ff8B/xb/Jf9j/63/9P8kAEgAbgBwAH4AkgCdALEAuQDkAPMAzgDFALEAiwBuAEgALwAtAC8ALQAOANn/zv/V/+3/CgAMAA4AAQDy/+3/8v8OAAwAHQA0AEwAcABwAHIAYAAZAND/oP+k/7T/0P/w/+n/5//R/8H/3v/r/+v/yv+i/3H/fv+v/+v/LwBpAJoAiABlADoABQDF/5D/fv+S/6//xv/F/7L/v/+x/8H/uP+X/37/Zv9W/y7/Fv///vD+If9R/4P/uv/e/wAAHQArAC0AIgAmAC8ANABBAEMAXgCIAKoA3QAIAQMB6gDSAKgAgABeACcAEgAFAAAA9//X/73/v//Z/9H/2f+8/7T/uP/X//D/7f/7/woACgAbABcA6f/V/8P/uv+9/73/vf/B/+D/EAAXACIANAArADoAQwBOAFMARABBAEoAMgAHAOP/wf+d/4v/cf+A/5v/xf/0/wwAHQA7AEQASABsAIgAqAC6AK4AlABwAFcAawBuAFoAOgDn/73/tv/g/+3/7v/7/87/yP+8/5T/if+D/4P/h/98/4v/pP+6/97/5//2/wkAIAApAD0ATgBrAHIAWAA6ACQAOgBGAFgAXgBXAEYAEADZ/6n/lP9x/4X/fP9u/4X/mf+6//D/AQAFAB4AGQAMAP//9v8DAP//EgAVAAwA+f/j/+L/zP/K/9X/+f8HAPf/5f/w/woAKQBGAEEAHgDc/7j/vf/T/+n/CgAOACIAMgBEAEEAKQAdABkABwAAABMA9P/V/8X/0//V//L/5//j/wMA9v////f/BQD9//D/5//n//D/4v/G/6L/if+S/4X/g/+t/9f/AwBDAFgAVQBBABkA/f/p/9X/+/8QACYALwAnACcAHQAkACkAJAASAP3/zv/M/+n/CgA0ADgAOAAtACIALwBYAHQAbAB0AGsAYQBrAGcAXABBAEoAPwBOAFgATgA9ACQA9/+x/4f/gP+f/9D/BQA4ADAANABEAEwASgA2ACsAHgADAPD/3v/r/wMADAAKAAAA4//T/9n/uv+p/5n/gv+f/7L/pv+g/5D/gv9+/2j/Wv9W/2H/Uf9k/47/pv+6/8X/2f/w/xMAKQA9AFMAVQBjAFgAVwBTAFcASgAwABsAAQDy/+7/8v/w//b/8v/u/wAAGwAZAAMA9P/R/7b/tP+b/6j/sf+v/73/pP+6/7z/xv/5/xAAJwAmACcALwAkAC8AMgArAEwAcgBrAGUASAAmAB4AKwAyAC0AEAAKACYANAA4ACcAGQAyAEYAWABuAHcAWgAtABcAAQAFAPT/7f/e/8P/w//O/87/v//X/+P/AAAVAB0AJwAdABUAGQAVAP//7f/c/9H/3v/7//b///8VAP3/9P/a/8z/vP+o/7b/0//r////9P/V/8X/zv/V/9r/5//3/xMABwD2//D/5f/g/9f/0//Z/+3/5/8BAB4AEwAQAAkAEwA2ADYANAAdAA4AFwAiADoAKwAXABAABwAXAA4AAQADAAAA8P/u/+P/0//g//L/0//O/9X/1f/O/7//w//F/8j/zv/e//D/6f/O/73/tv+t/6n/qP+0/6v/yv/0//v/EAATAAwABwADAP3/8P/y//T/6f/V/9n/1f/w//L/8v/y/+f/2f/i/+f/6////xMAOABDAEEAMAA6AFgAfgChAKUAnwCPAHkAcgBcADIADgDw/+f/5f/2/wUAEgAQABAA9v/T/8j/yv/M//v/DgAZAEMAWgBpAGkAiACSAJYAkQBpAE8ANAA9ADoALQAmACcALwApABUABQDr/87/zv+9/5v/mf+k/7z/vP+y/7L/zP/i/+7/7v/M/63/vP/F/9z/+//7//v/9/8BAAwAAQD0/9D/vP/D/7z/tP+2/87/4v/i//v/AwDn/+f/+f8DAB4AHgAmABsAKQAnABIACQABAAAACQAXACAAKQAnACsAMAAvACkAGwAFAOn/3v/l//b//f/t/+3/3P/V//f/5f/t/9r/yv/O/8z/pv+H/4P/Zv+F/5L/m/+t/8H/0//g////CQAdACYAOAA9AFEAYABMAE8ARgBIAE4AKwAbAAMAAwAVABMAHQAgAB0AKQAtABAA+f/9//n/6//p//L/4v/K/9X/4v/y//3/AQAHAAMAGwAQABAABQABABIAEwAVAP//9//3//L/+f/r//L/4v/j/wUAEwApAEMANABDAEgAIgAdAAUA/f8BAOv/4//u/wAA9v/r/97/qP+F/3P/fv+b/8b/7f/i//D/7f8FAAoABQAMAAMABQAFAAUACgAQAAwA9//9/xMADgAOAAEAAQAFABkAMgA9ADoAJwApACIAGQAJAA4AAwDy//D/9v/j//L////p//D/AAD0//b/8v/j/+7/6f8BAAkAEwAbABIAGwATAAEA/f/0//D////j/9f/vP+t/6j/xf/i//T/AwAMABcAAwDj/8z/xf/I/+f/9//3//v/DAAKAAkAEAAQAAoA+f/u/+v/DAASABUABQD5/+7/AAAiAB4AJwAgABMACgAJAAoACQD//wUAHQAnACAACgAHABMACgAtAD0AJwAyACYAMgA4AE4ATwBRAFcATwBDAC0ALwAbAAcA9//t/9z/6f/j/9P/0f+2/63/ov+i/5f/qP/B/9H/4v/j/+7/+//2/wEAHQAmACsAMgAtACIAJwAmACAAFwD2/+X/9//2////AAD9/wEA9//u/+L/3P/G/8j/tv+6/8z/1f/i//T/+//t//b/AQADAAoACQD2/+3/3v/p//L/5//w/+L/2f/K/8r/xv+k/4n/lP+f/6j/sv+x/8X/3P/2/wwAJwAnAA4AFQAVAAcAEgAKABsAMgA6ADoAIgAmAD8ATABGAFcASAA9AEoARgA9ADoAJgAeABIA//8KABUAFQAdABUAAQAFAPv/7f/g/8b/v/+8/8P/0P/T/+v/6f/t/woACgD9/wEAAQAJABMAAAAAAPb/9//7/wEAAQD7/wEA+//2//b/AAABAP3/CQAMAAAA6//a/9H/0//V/+D/4//w/wAA+f/9/wkABwAHABIAHgAbAAkABQADAPn/AQD7//v/CgAKAAkABQAOAB0AJwAnACcAKQAmAEMAVQA6ACcADgD//+P/3P/c/9H/2f/R/+X/7f////v///8FAAMAIAAgAB4AGwASABUAAwAJABcAHgAkACAAIAAQAPv/4v/O/8H/v//F/9H/3v/n//n/8v/u/+v/6//l/87/0f/O/9D/9/8AAAwAGwAXACIAKwA0ABMA/f8OAAcAIgAvACkALQA6AEEAMgAZAAUAAQD9/woADgD9//3/CgAZABUADgAAAPL/9v8AAPv/+//y//L/+/8KAB4AHgASAAUABwD7/w4AGQAVABcAAAADAPb/6//j/+7/5f/a/+7/+f////b/7f/n/+D/zv/F/87/zP/O/9f/2f/V/9H/yP/G/7z/zv/O/8P/xv/V/9D/yv/F/8X/0P/D/8X/vf/D/9z/5f/0/xIACQADAPv/9P/3//v/FwATACsAHgAMABIAGwA6AEMASAA7AC8AHgAXABcACQAFAPf/9P/w/wAAAwD///f/AwAKAAMADAD7/+X/4v/w/+3/8P/u/wcADgAOAAoACQAMAP3/+/8FACQAJwAvADAAJAAgAC8AIgAMABUADgAbADQANgAtACQAJAAKAPL/1//V/9f/2v/e/9X/1//c/+7/9//9//3/+f///xUAIAAmACYAMAA4ADgASgBDAEYARABIAE4ATABIAD0ANAAvACcAHQAMABUAKQAQAAEA6//B/5f/gP9o/2P/av9h/4D/m//I/9n/7f/w/97/9v/3//n/AQABAP3/+f/7/wEAFwAMAAUA+//u/+3/2f/X/9X/1//j//f/AAAbACYAFQAZAAoADAAHAPv/BQD2//3/CgAFAAkA9v/3//b/7v8HAPf///8bAA4ABwD5/+X/0//p/+v/0f/D/7j/v//R/97/3v/X/9f/7v/7/+n/2f/O/9P/3v/e/+X/9v/n/+D/6f/t//v/9//u/+3/8P/5/woADAAFABIAEgAiACQAJwAnAC8AOgBBAEwASgBKAEEAMgAwADgAIgATABkAGwAdAB4AJAAMAPf/7v///wUAFQAiAB0AHQAZAAwACQAMABAAJgAmABcAHgAyAC8AJgAeABUAEgD3/+7/9P/R/87/zP/I/+f/5//t/+v/9P8AAPf/CgAMAB0AJAAZABUAAwABAP3/AQDt/+7/6//e/9z/4//O/8H/tv+4/8P/wf/I/8z/1//K/9n/6f/l/9X/1//t/wAAEAASABUADgATABUACQAXACYALwAtAC0AJwAdABsAFwASABIAHQAQACIAEwAJAAoACQAJAAEA6f/e/9n/xf/T/97/3v/g/+f/9/8BAAMAAwD3/+7/8v/y/+7/8P8BAA4AIAApACkAFwAJAAcACQD2/+3/8P/c/+L/8P/u//D/BwADAPv/7f/X/9r/0f/a/9P/1//O/9P/8v8DAAoAAwAQAAAA8P/0/+n/9P8BAAcA+f/7/+3/9v/w/9r/4P/g/+7/+f///wEACgAXACQAMgAvAC0ALwBIAEwAQwBTAFEAUQBMAE4AOgAKAPf/8P/l/+7/8P/t/+X/5f/e/8j/1f+0/6v/sv+0/8P/w/+8/7//yv/e/+3/8v/7////CQAMABAAIAAVABAAEAD7/woAFQAgADQANgA0ACYAHgAZACcADAD9/wMA/f/9//D/6//l//b/5//g//D/+f8FAAcAFQAHAPn/8P/j//T/6//e/+D/3P/c/+n/+f/n/+n/6//w//f/7v/2//L/5f/7//v/7v/0//v////7//b/+f8AAAAACgAOAB4AJgATABMAEAAJAP//AwD7/+v/AAD//wMADAAJAB0AIAAwAC8AOAA9AEQAQQA7AEEANAAbACAALwAdAA4A//8BABUAGwArAC8AHQASAAoAHQAkADsAQwA/AEQAPQA6ABMACQD2/+v/6//G/7//vf+4/8P/sv+0/7b/wf+8/7b/xf/G/8j/xf/I/8X/w//D/8r/xv/B/9D/1f/c/97/6f/p/+3/9v/p/+v/+f/2////DAAQAAwADAADAP//BQAHAAkABwASAAoACQAOAAwAFwAXABkAGwAdABAADAAFAP3/AQABAPn/7f/c/8j/yv/Z/97/0f/c/+v/5f/5/wkABQAAAAMAEAATABAAGQAQAAwADAAJAAkAAwABAAMADgAQAAkA9P/e/9X/zv/O/9D/1f/e/+v/6////wcACQAQAAoAGQAnACkAKwApADIAIAAtAEMAQQBeAEoAKQAnABsABwDp/9r/2v/i/+3/5f/c/+n/+//5//T//f/2//n/EgAbABIABQAVAC0AQwBVAE8AWgBMAD0APwA4ADAAJwAiACQALwAiACcAIgAOAA4A//8BAAcAAwD2//D/8v/j/9n/zv/B/6//lf+M/47/if+b/6j/qf+f/6b/uP+8/8z/zP/g/97/7f/7/wkAGQAdAB0AKwAeAAwACgD3//T/9P8DABcACgAHABsA/f8AAAUA7v/2//D/8v/0/wEAAQDt//L/9/8QAA4ABQAKABMAFQABAAcAAAD7//n/AQADAAoACQAQAAkACgAQAAoA/f/j/+f/6//w//T/+//5//D/6//t//b/8P/t//D/8P/y/+7/AQAHAPb/8P/u/9r/1f/j/+P/8v/y/+7/6f/w/+3/6//0//n/BwASABAAAQD0/+7/8P///wcABQD3/wMABwAHAA4ADAAXABcADgATABkAEwAVAB4AFQAVABUAFQAXAAkAFQAHAP//AQD9//L/8P/0/+n/2v/O/9H/zP/X/9H/1//g/9r/5f/n/+P/6//7/+7/5//3//b/AQAJAAcADgAgAB4AFQAbABcADAAFAAoADAAMABIAGwAXABUAFQAQABAACgAOAAwA/f8HAP//+/8BAPT/9//9/wwAEwAiACkANAA/ADoAOAAmACIAKQAeAAkA///n/+D/4P/Q/87/zP/V/+P/7f/w/wUAAQAHABsAFQAZABcADgAXABsAHgATAA4ADgAFAAwABwABAPD/5f/r//D/9v/y/+v/2v/Z/9r/2f/g/+L/2v/g/+L/4//t/wAADAAZACYAGwAgACsAGQASABMAHgAOAAoAEwAQAAkA8P/7//f/5//7//////8TABkAGQAQAAAABwAMAAUABQD///f////3//f/7f/j/+f/6f/5/+v/3v/g/87/1f/D/9P/7v/t/wAACQAHAPT/6//p/9r/2v/V/8z/1f/V/9X/3P/e/97/5//3//D/+f/2//L/5f/n/wEAAwAAAAAAAQD5//v/AAAKABAAEgADAAkAGQAdACYAGQAeAB0ANAA7ACcAMAAdABMADgDy/+P/3v/a/97/3v/r/+n/6f/3//D/9P/n/+L/5f/r//f/+/8MAAwAFQAkACQAIAAiABcAHgAtAC0AMgAwAC0APQA/ADoAMgArADIAJgAtACsAJAAwAEEANAAwACcAHgAZAAkABQDw/+X/4v/R/8j/0f+//73/0P/R/9D/1f/Z/+D/7v/r//v//////wwABwAFAAcA/f/5//f/+//9/wEABQAKAPb/3P/R/9H/1//M/73/uP+4/7z/yv/M/87/zP/X/9D/0P/i/9P/4P/p/+f/8P/5//3//f8KABMAEgATABkAFQAQABMAEgASAAcAAQADAAMADAAbAB4AIAAZABcAGQAKAAMAEAAiAC8ANgAeACQAJgAVAB4AEAAOAA4ADAD5//f/9P/p//T/7f/a/8z/zv/Q/87/0//a/+f/0//c/+L/4v/w//L/AAAHAAEAAwAOAAUABQD//wEABQABABMAFwAbAAkAAwAFABIAIgApAB0ADAASACQAGQAHAAoABwD5//L////r//D/5//l/+P/7v/j/+D/5//n////5f/0////+f8FABAAEwAeABIAAQADAP3/9/////v/AQAVABcAFQAQAAwAFwAZABMAFwAZABkAIgAiABkAEgAKAA4AAwAJAAoACQAOAAUA//8BAPv/8P/3/+3/4//t/+7/6//g/+v/5//r//b/9P/5/+3/9v/2/wkAEAAKAAAAAwADAPL/+f/5//v/9/8AAAcAAAD9/wEA/f/0//b/6//p/+7/6//p/+7/7f/7//b/4//2//D/6//3/wEA9//3/wMAAwAOAAwADgAdAB0ADgAOAA4AEgAFAAkACQAJABIADAAMAAUAEgASABAA/f/t//T/6//r/97/4//l/+f/8P/w//T//f8BAP//AAAAAAwADgAOABkABQD5/wAA+/8MAAwAAwD//wMABQAAAAAAAAD2//v/CgADAP//+f/9/+7/9v/2/+v/9P/r//L/7v/c/+P/1f/X/+f/5f/y//n/AwABAP//EwAAAP//BwADAAAAAwAJAAAAAAABABUADgAMAAEA+f8HABIABwD///L/4v/e/9H/0P/R/9r/0f/R/9X/1f/T/+L/5//e//v/AAAJABUAEAAiABkAGQAeABkAGQAVACIAHQAbABkADgAMAAAA7f/5//3/6//p/+7/9//5//n/CQD9/+3/AAABAPv/9//u//v/+f/9//f/9P/3/9n/4P/Q/9f/5f/g/+v/7v/y//L/+f/5//n///8BAAAAAwAKABkAFwAVADAALwAiADIAOwA0AC8AKwArADIAPQA9AD0AOAAwACYALQApACYAJwAVABMAGQAQABAADgADAAUADgAKAP3/+//3/wMAAAD3/wEABQAAAAcABwAHAAcA//8DAPD/9P/0/+f/4P/e/9X/0f/X/9H/4v/l/+n/6//p/+X/5f/y//D/5f/c/+D/2v/R/9H/yP/Q/97/1//T/8j/yP/K/9P/2v/l/+f/9v8AAP3/CgAKAAkAAwAHAAAAAwADABAADgAHAA4ABwAHAAkABwAAAAcACgAJAAAA/f/0//v/+//0//b/+//3//v/AwADAAAA+f///wEA/f/3/+P/1f/e/9H/4v/p/+X/6//t/+3/4v/y//T//f8FABIAEwAXACIAHQAZABkAJAAeACQAIgAmACYAGwAeABMABwD9//v/9//3//L/6//j/+L/3P/Q/9H/4P/g/+P/8v/2/wUACgAHABAABwAOABcAEwATABsAJAApAC8AJAAkACsAIgAgABUAHQAiACIAFQASABcACgASABkAEwAKAAUA9//5//f/AAD7/+3/9v/0//3/+f8AAAwAAwADABMAEgAQAAUAAAAAAP//AQDw//b//f/2//3/+//y//f/9P8AAAEA+f/3/9z/3P/n/9r/yv/Z/97/3v/g/9X/0//e/9H/4v/e/9X/4v/j/+X/8P///wMAEAAQABAAEgAQABAADgAQAAoADAAdABIAFQAdABIAFQAVABkAIgAeABkAIgAmACkAJwApACcAFQAZABIADgAJAAoADAD//wMA//8AAPT/9v/3//b/+f/u/+X/7v/5/+3/8P/2/+n/2v/i/+n/3v/Z/9n/1//X/9n/0f/a/+v/7f/w/+v/5//2//D/5//w/+X/6f8DAAcA//////v/BwAHAAEAAAABAAoA9v8BAP///////wAACQD//xAAEgAOAAUA+//9/+v/6f/r//T/+//2/wAAAQAAAAMAAQD5////AAAAAAAAAQAOAP////8FAPf/AQD7/wUAAAAHABMAAAAFAAMA9//9//3/7v/p/+f/4P/T/+f/4v/c/+f/9/////T/6//2//////8KAP//9v///wEAAQD2/+n/4v/t//D/8v/5//n/AQABAA4ADAAQABUAFQAOAA4AFQAXABcAFwAXABAAHgAOAP//9//w//v////5//f/BQD3/+7/+/////n///8DAP3/BQAKABIACQAJABAADAAJABMAGQAVABMAEAAQAAUA+f///wUA/f/9//D/9/8FAP3/AQAAAAMADAAFAAwACQAOAA4ADgAeABAAFQAQAAMABwAHAAUABQAQAAoABwD7/+3/9P/0/+7/7v/3//D/7f/3/wUA/f/0//f/+f////b/AwAJAAwAEAASABAAFQADAAUADgAFAA4AAAD7//b/9//9//f//f8AAPv/AQADAPv/+//7//f//f/5/wMADgAQAAwAEwAOABAAEAAFAPf/9v/u/97/1//K/8z/wf+9/7z/vP+2/7j/uP+0/7z/vf/D/7r/v//G/87/1f/e/+v/7f/5/wAA+f8FAAwADgATABUAFwAdADQAOAA9ADgANgAyACkAMgAnACYAKQAtACsAIgAbABcAEgABAAEA9//w//f/9P/y/+n/5f/l/+7/6//n//T/9v/3/wEAAQD//wcAEAAVAA4ABwABAAAA///3//D/9//7//3///8MAAcA8P/2//T/7v/2//L/6//l/9r/3P/R/9r/3v/Z/+D/5f/n/+3/6//y//f/9/8BAAAAAQAFAAMABwAHAAcACQAFAAEA/f8JAAoAEgAgABIAIgAXABUAHgAkACAAJgA0AC8AOAArACsAKwAtAB0ACgASAAoADAAKAAkA/f/7//b/7f/3//L/8v/w/+f/9P/0//D/7v/n//D/8v/l/+f/6f/p/+f/9v/y/+L/4//u//b/9P/5//n/+//3//n/+f/7/wEA9//7//n/+f/3//b/+//w/+n/5f/e/9n/0P/i/+D/4P/p/+D/8P/3/+3//f////f/AAD9/wAAAQD3//f/AAAKAAkABQAKAP3/AAABAAMAAAADAAMA9/8AAPb/AAD3//L/9v/3/wMAAQAFAAkAFwAiABMAFQAdABMADAAAAAEA+f/y//b//f/3//n/BwAFAAUA+/8HAAMA//8JAAUA+f8JAAUA/f8FAAcABQADAAUA/f/9//b////5/wEAAAD2//v/9v/2//v/9/8AAA4AAQAFAAUAAwADAAcAEgAXAB0AJwAyAC8AKwAkACkAKQApABsADAADAAAAAAABAPf/7f/3//n/7f/p//b/6//j/+D/5f/n/+3/9//0//T/+f////v/+//9/wcABwABAA4AEAABAPT/9//0/+7////u/+f////t/+3/4//j/9z/2f/n//T/+f/w//v///8OAAoABQAJABcAHgAXABMAEgAVAB0AIgASABAADAAJABAACQAJAAwACQASAA4ABQAOAAoAAQAFAAUAAAAJAAMA9/8AAAcA//8DAAUAAQD//wEACgABAAAA+f///+n/3P/p/+D/3v/c/9P/0P/M/8X/yv/K/8j/xf/I/8X/xv/M/8b/0P/O/9X/1f/a/+X/8P///wEA//8KAAcAAQAOABAAEgAeACIAHQArAC0AKwAkAB4AGwAQAAwAAQAAAPD/7f/y//L/8v/e/9H/4P/e/9f/3P/c/+D/7f/t//f/9P/y//v/9//7/wAABQAFAAMADgAKAAkAFwAZACIAJAAyADAAMAA6AD0ARgA/ADgAPQA4AC0ALwAiABkAFQAMAP//8v/y/+v/7f/y/+v/8v/2//T/8v/2//L/7v/y//f/BQD///v//f/5//3/9P/y//T/8P/w//L/7v/y//n/+f/5//T/8P/2//n/+f/5//T/7v/y//f/+/8BAP//BQAQABAAEAAOAAMACQAJAAMABwAFAAkA/f8DAAEABQAOAAkADAAKAAoABwABAAAAAwAJAAcABwAOABMAFwAXABsAFwAVABUACQADAAUA+//2//b/6f/p/+f/5//p/97/7f/t/+X/4v/g/+f/3P/g/+L/2v/c/97/0//Z/9z/1//l/+X/3v/g/9z/4P/l/+P/4P/e/+D/4P/j/+P/0//Z/97/6//0/+3/9/8BAAUACgASAAkACQAMABUAGQAVABMAEAAKAAwAEgASABcADgAQAA4AEAATABIAFwAVABsAFQAJAAcADgAHAAMABwAFAAUACQAFAAEADAAHAAUABQAJAAMABQAHAAEABQAMABIAEwAZABkAEAAOABIAEwATABsAHQAkACAAGwAVAAkADAADAPn/AAD7//3/9//w//b/7f/0/+7/9//0/+3/8P/w//T/8v/5/+3/9//3//n/9//5//T/9v/y//T/AQD7//n/9v/9//L/+/8FAAUAAAAFABAADgAJAAAABQAJAAMABQABAAcACQABAAMA+//u/+n/6//c/9f/4P/r/+v/8P/p/+3/9P/2////AAADABAADgABABAAEwAJAAoACgAHAPv/8P/w/+n/6//w/+n/6//t/+n/4P/c/9z/5//r/+7/7v/u//D/8v/7//3/CgAMABUAIgAkACYAMAA7ADIAOgA2ADAAMgAvAC0AIAAkAB0ACgAHAAUAAAADAP//6//0/+3/5f/n/+n/7v/7/wMACgAdABkAHQAbABMAFwASAAoACQAHAP3////7////9v/r//L/4//n/+n/1f/M/7//w//B/7z/xv+6/7T/xv+6/7T/tv+9/7//xf/D/73/yv/Q/9f/2v/T/9H/0//c/+P/8P/p/+3/9v/2//n/9P/7/wUAAAADAA4AEwAeACIAIAAdACQAIAAZABsAEwAXAB0AGwAQAAwAEAATABcAEwAbACIAFwAJAA4ADAAMAAUA//8FAAMAAAAAAAoACgAHAAwAGwAdABMAIgAgABIAJAAnACcAMAAyACcAKwApACYAIgATAA4ADgASAA4ABwABAAoAAAD5//T/7v/r/+L/7v/g/+D/3P/T/97/2v/V/87/zv/O/8r/yv/F/9H/zP/M/9n/4P/n//T/AQAMABMAKwA4ADoAPQA/AFEAVQBcAF4AYABeAF4AWgBKAEQASAA4ACkAEgAHAP//6f/c/8P/v/+6/6n/nf+X/6D/pP+p/8P/v//I/9P/3v/r/wAAEgAbAC0AOAA/AEEASABKAEYARAA/ADoALwApAC0AIAAKAAUA+//r/9n/yv+//7L/qP+k/5f/lP+D/4X/gv94/4X/gP+F/4n/if+H/4z/lf+b/7L/uv/I/9D/4P/r//b/CgAMABsAIgAkACIANAA7ADgAQQA/AEgATwBKAEYATwBIAE4AXgBnAHIAZwBnAGkAVwBVAE8APwBBADoAJAAmAB0AGQATAAEABwAFAP3/+//y//D/7f/0/wAA9v8MABAAEAAeABMAEgAMABIACgATABAACQAXACAAIAAbABMADAAKAA4ABQAAAPb/6f/Z/8P/sf+f/4z/gv9v/1r/S/87/zD/Gv8I///++f7l/tf+2/7c/un+9v4D/wz/IP8y/0f/aP+M/6n/yv/l/wEAJABGAHAAhACmAMkA6gAHASUBSAFhAXsBiwGsAbcBxwHeAe8B9AEBAgECCAIIAvEB4gHdAcABqAGZAWcBQgErAREB7wDCAJ8AjQBYADIAEwDl/8j/oP+D/2z/RP8p/wP/+f7k/r7+pv5+/mr+XP5A/h7+F/7//e397f3p/eD94P3e/dn90v3S/dD9vP24/ar9qP2j/Zb9gv1u/V79Vf1L/T39P/1B/UL9U/1N/V/9d/2U/bX9yf39/T/+gP6+/hj/bv/I/y8ApgADAXAB4AFEArUCIAODA9UDMQR8BM8EFAVMBZAFsgXjBQIGFAYbBiEGKgYmBgsG8AXTBbQFiAVSBRYFygRvBBMErwM+A9cCcQIFAosBFwGUAAcAi////oD+CP6b/Sn9x/xR/PH7p/tM+w77yfqW+lv6JPr5+cD5sPmi+ZX5j/mD+W/5ePmO+Zf5tvnd+QL6Jvpg+pj61voX+0z7iPu++wP8Q/yG/Nb8HP1c/ab9+P1L/q3+CP9u/+f/VwDoAHcBGALVApcDYgQoBfAFxAaTB2sIHAnFCWoK+AqNCwYMXwyZDL8MxQydDF8M4gtJC6oK+gkeCSYIFgf1BeMEzAOxApsBkgCg/6j+vv34/Er8u/sp+6X6R/oO+vH57PkC+g36K/pe+or6vfoM+1r7ufsK/Ff8nfzf/B79Uf1+/Zb9rP2q/Zr9if1a/SX95PyW/CT8pfs8+836Wfro+Wj5+fh6+Br4yPd490/3LPcL9wj3I/dJ94n3xPcW+IX48viD+SH6xPp3+zT8B/3y/en+/f8XAU0CdwOtBAkGWwfHCBoKRgtuDG8Naw5XD0MQ8RBiEcIR6BHoEb4RcBEHEVkQbw9fDi4N8guqClMJ3QdmBuwEZAPpAX4AQv8j/iT9Mvxc+6H6C/qa+Uv5HfkP+QD5Cfkz+Wb5q/n6+UP6cPqu+ur6C/sz+z/7U/tp+337dPtj+077IPvq+q76dPob+s/5hvlB+fX4l/hH+PT3kPc79/b2qfZ+9lL2LvYX9hP2CvYc9k32fPbK9iH3ivca+KX4WfkZ+hD7HfxP/aj+EACWASoD0QRVBvoHpglAC+AMWw7JDyIRaRKAE0kU+RR+FbgVvRVzFf8UYxSEE4QSXhH5D1QOhwyzCrwI3AbwBB4DZwG9/0L+0PyG+4H6nPnM+DH4uPd491T3ZPeg98/3Qvi4+Cr5k/ko+qD6IPuu+/z7SvyU/MP8zfzA/KX8Z/wX/K77JPuc+vX5R/mk+OX3J/du9sP1KfWS9BX0sfNn81zzVfNn84vzyfMr9KP0NPXb9Yv2VPcu+Ab50/nN+qr7x/wT/lb/+AB6Av0DdgX6BogIFQrHC0sNyA4ZEGIRhxKZE34UORWiFbgVqBVJFfgUgxSxE6wSXBHdDxoOTwyJCpwIvQbEBPACJwFY/8P9UfwC+/75GPlJ+Nj3h/eD9373ivfG9xT4fPgG+XT5/vmq+v76ffvt+yb8Y/yU/Lf8s/yc/Gn8Rvz4+6P7K/uY+hD6bfnN+Ef41fdP98r2UfbV9Xz1EfWo9FX0EfTH87nzw/PU8wj0e/QO9Xz19PV19vT2lfdC+PP4H/qP+2r9b//9AMcCbARvBm0IVQosDK8Nuw9pEQYTlhSkFbYWUBd4F5AXYhdLFxgXZhZhFdsTRBJnEKIO5wz2Ci0JBwe6BJACrgDv/oD9U/z4+q75rvjr91b3O/cf9wv3QPds99j3ZvgJ+c35Q/rx+m370Pth/Kz8G/0//RX95vy1/Gv88fuP++76Qfqa+en4JfiM9/T2YfbD9U317/S19Hv0U/Rs9E30Z/Sa9MX06/Q/9cr1Tfbc9h73nfcS+F34C/mX+cL67/tG/cr+7f+vARUDGAXzBooIewo5DC8OkQ8pEcASwxMTFcEV+xV2FpcWwxatFksWbRU1FMISxhDhDqkMpgqoCIMGbQRcAoQAwf4r/bf7SvoL+Qn4Nfei9nj20fYu95n3QPiR+BL5Lfo2+9T74Py3/Y7+m/8bAHsAOQEeAsUBqAA4AAgBIAInATT+5Ps6+zT7Evq69tnzWvLu8WLxr++87d7sE+2W7FPsw+z/7dXuve7M7pzv7/H682f1E/br9hr4iviN+iD/rQQdCIIHIwa5BqYKJBC3ERcRyREhFMEWnBgoGfoZ8RtyGlcW1xMyFAcXOBjwFF4Qrw06DdMMwwlZBVoCnwDr/Tb6Yffe9+H5YPlY9ifz/vKt9VT4q/fH9aL1z/cJ+y79uv2W/U/+WP8a/3z+0v5lABYDMgPmAb4ANAB1AUgCfv/W+x37B/tw+nr4G/RV8ZfwCO4k6T3k/eJd5lPpxufk4h/fA+DG5Ynq3euo67rrFu4h8K7wj/T/ArAYmyjMKP4ayRKWGz0sUzZbMxMtGjBGNx84ijFxKcclJiOYGowOzQeqB9kIaAX++zHzc+6C6sXlwN8p27bb+d3a3ZTcgdyV4Crn8+ph69nrgfBv+QgD/QlMDrARCBYVHNggqiKKIpwgbx6UG5EYwRZqFV4S0Av9ApL88vh+9TjxJ+y0587k1OJn4ODcXNo42erYJ9mP2KzY0tq/3V3f8t4z3h3fNuK95X/pm+0F8Sv1KPmj+s/6Mfm6AaIf2z/7UFlFBCnKHmEwF0XPTcFJ80M4RiBFhzlLLSomYR5zFEEBHfIj7ebrr+vv6nvjiNlXznjEVMK1xWHLs9E02HHd2+LB5y7v3/kVAysIUA1WE8geySwHNXM2SjSpMDYt8SpSJ4YjQB75FGUJ2/5O+X30Qu3C4kjYwdI20STQtM5TzrnOktCJ0TDSUtMZ11HaOd2c4eTkA+t+7nrwQO8m70fvtfOg90z6ffze/n0Aef3a+eYAySI7RmlXcketJ/cdGTLbReVNnUfTQAJEqUIlNsAprR9jFFkHf/Oi5l7joePt49Dk9tyL0rLGOb/Gw3rNUNSX21PiRelH8FL2of6fCaYUUBl6HQojiSx3OH4/TT4QNjgsLiUrIkQdMBXtCbb+n/Rl64Di+Nrn1CTO/8hOxlzH/8qu0G3VNNkT27jag9sS3q3krOqn8pf4gfvW+v75dPjk9hX0V/Oq9IP3BfqN+lz6oPcU8tTztRN/OohUzEnFJO8TBijsQY9Pw0hMO7w/+0FSNyMptxrcDNADafLr4/DeSdyp30fmPOGp1RTH1LyFxE3SxduH5RzvvPaV/+cEKQqzFK0dFCL3JqYsyzHnOKw80znaMf4j5xX+DRUIXwLE+RrvpuRs2qvTXM72ymPINsadxzDMotII267iGOi56JPnz+ZT64n0Vv3rA78FKQNn/mn7VviC9un0pvVe9Mn0mvEC8WruGO466Br5KibySY5bgD4YF9cVBS7HQPtKikHmPDVDxDo2LcAjnRSLCCb6Eeat21TT+NGJ3drnXeQX2PPGuMM2zvXV2dzI6EL1MgIsC5EOJxauIeoobis8K6ApOixyNM05ljfiK0gbVw7VBCv8wvHp5n/evdZT0S/N/8l0x9vFgsjNzU3SM9fp3a3nse6c7+fswe7F9lj/6QRDBcoCBwDJ/fb7Mfr49cLyJ+4q7nTwRvQv8lfvI+Ql9YAkyEppX19Dthx+HQkzjz06RPg3ZTc4Q8M5ACt8H7QOjQIG9cXi5tkr0CXLFNVc4jzmnuD71IbRq9Zv3APjWfBIAYkNExUZG48gUCm7MXI0dTanMs0rbSu+K3QpESTzGDUOLgNz9Abn8t0f2I3RIc4SzELKX8rhx6LJ/9FT2bDe4uS552Lqzu3z7yX2LfwD/kH9+/3k/RP/8v+G/Ar00O0C58PmI+yP8HjwGPCD6DPu3hexQF5flVMFKu8acSmNNrZBIj1AOK5D/D0tLdEgPg4m/HXuYdyJ1BLOoMRLydnaOubw5lDdjtXf2eHgz+UH8t4DYBHbG9wg4CRPLUIxkTHxNSU2rTHXLVknWiLnHrsVBgxsAvH0V+eg3PnVidDuzMXKzsj7yT7KicuH0pnaAOA85b3nsOlW7cDwc/fg/nsBc/9G/Mb5Dflf+CH2bPN68dvrK+nS6gruou6S7OXnyvYdHxRF6Vr0SugqyiCNLaM9OEdmQXg73TvsM3omBxpRC+T8VO+B4MHV+8qbwFbBgs833r7imt662uLcfOQG7Ab2SQXWEEwZ5iEZKkY1lj0nPsI8ETcGLt4omiN2H5gc1RUmDtcCx/LZ4/jX8c/tysHI7clFy1fMbc3k0WnZR97E4J/kHerE70rz2vbS/VIFAgciAt367fXF9K/2BvfL9HTvbOrv6Xft2evg5SbgUeS3AYUpPkwoVqtBMSgSIrwtwj4zQ3Y68jYWOII1jytuGvwHIflH6VjaBc/Nxl3D/cgC1lfih+VH4ODaCN7W5pfvVfmTBS8SKR2hJKos5ze+P0ZA5zkhL18nEiLbHNAZhxX+DSgFZPj86sDf99QazZTI68fkybHLIc5I0YPXg9+v5TjqDe397rDw0PJN997+AAa+CLAE1f31+Gr3E/Yp8+7tCeqP6THqUelH5VXi7eLj91EaY0BiVeRJ9i+GIHwm3jcHQxU+TzaGMyQzry8ZJdUSbgA376fgatULy9zDCcZ+0ZPeieTd36/ZP9sn5Lnva/vLBfgQchvvIm4rsTV3PktCTz6dNbou9yq4JiQhwhdJDLoB2fV36r7gKNiN0XXKpMOov/a/0cS7y+DSXto84KLkTudD6SztrPMZ/IMEbAl5CRgGDAOZAUgA4/ps8xztSOl76erq++zX6uHnzOMR9U8aWj9qUjVCtClhJIoxBT+wQm05zzM7NQgxXydwG3MMNf+B8b7jjNfkyhnAN8AGzBrb+OJX4iLhfuSC7Nnyq/joAesLNReIIuIryjfqQkRH90T5OAsqniBnG8cZaxecEEoITPww7dHeFdNJysPCrr2svbjCysqQ0o3Ze+EI5ovl6eOr5FPrr/a+AsMLTA6YCC8A6Ps2/U3/Ivoy9MPu3+pb6G/oS+088eDu6eMv87EaLEKCUs4/RisbMrE9UzuGMwUquzErPKo2xyybHrcJuPR45WveSNmvyZK67b3UzffeX+Nx5ILpBO4Y8dzuJvLG+b8DZxN1J142TUDWRKxEP0YROrkp7Ry8FDIT9w9EDJMF0vtb7Z7fX9NqyCS9n7dCui3ADcvQ0Jnaw+Wm6gfwge/961fq6+oA7xn7bAIAB/8K6wlVCTQARvTt6g7pTOnP7qT1tPfn+dHvn+qJAfwqOUrEU+U6CCZCMPo0KTePMogpyi/MNToqmCS5GaMG1Pt/6sLggNj5w6S5n8BI0NTgVOP534flL+s68zH5s/utA9wG5Q/KHz8ulTxZRThHh0gjQKgthSApFMIO2gx7BmcAYPld7snhdtefyX2+ZriZuCrCGM4O10nfL+g962/tVOyu6SXsoO/K9dL9jgTYBQAHOAgzB2gDmPpX83TvLO5h7pHwZ/Tt9YTza/q5FmY3aEwfRfgqiiF1J94vXjW4Mdsrui0GKU4inR3xEB4Efveq7CHkcdXRxD3A8cjL2QjmjuYW5sjmneuE9Iv7dwNTCHcMgBMgG1gkdTB6OPM9nD0vNCAs7iF6Fn4NbAPf+kz0/ups5Fzgtdic0C/IfMOPxqfLUdB01vLdsuUr69Ls/es96v3rV/Eb+zEFdQlRCBgFmAHe/gX8GPnc+Uj6iPp4+P7za/Dc7Xz1Sw2xK/lAu0GpMPQkDCZnKsotLSkeJKwjOiIQIB8fQRpXEZAE+PRF6EvasMwJxwvM0Nkq5Xvopubb5BjnUe0F9LX6Sf9JAx8NZRnDJREu0y9DMSIz5TJxLwgodR5rFyIQLQig/0j1Y+3K52DiodvF0qjIRcPjxLjMk9el3ibhkeGs4qTk4uW/5afo2/Ja//UIGgoUBuUCUAQxBvQDRv9o+Mn1CPgg/Ov+/f+4/lsEjBVNKAM3izXyKCcj3iWYLJAwaSqGIQkfoxuRGt8XKA/8BY/65+/q5zzd19A9yUXLbdeZ47/n+efn5fPnMu1F8m/6xQJ3Cu8S7RrJIowq/y5OMl40NjNgMaMr+iIDGbkNIQXV/3j6K/OW6vrgB9n/0enLzsfQxwjMq9KU2nnglONf5PjkqOUH54vpFO/K+G8D8QlPCZcEBwDe/koANAK8AS7+nvvU+tv8mv3R+j8AUxNVK8Q7CjmEKo0lUCnmLMksiyRsHScafBYyFd4VORMaDD8BbPbt7FnewM7IxbPIMdQc3OzeseFz53Pu7/KP9Af5SP6fA+sKthPNH8IqZjGhN3s9tT43OukvAyXiHPYTjQmGAHH51/Ry8APqteGG1z7N5sZpxWfGusi3zUrWRd9L5F/kIeQa5qzqD/CW9jD9CAGXAhoDJgW3Bs0HAAjmBjwEJf9r+Xj2Dfar9RIAMhSsKa02ITJdKMwn/CrcKVQlMBwqGOgXwxUoGKEbchpsE8cIzv2185DkVtS7zKPP0NgL39Diiuaz63jxLfRa9Ub10PNr8/z5TAWAEsEetCfVMB43CDgZM7krRCQ0HWQVgQ2CB2MATvpT9M7uOunt4Vba19ND0K7N9c1R0STXqNyc4IDkyOev63PuqPLO9zL8Wv40/s7/SwLPBc8HIAoEC8kHhwIX/oT7uflH917yfflTCkwa2iYuJyQjviS8I04frxz0FHkQABBxDVwSyxfRFq0UUxCmCd4DTPlC7s/pyOg/6+/spO1i7+PwH/Kl8oTy3fIc9DT1gfil/EYC0Al6D0sUbxYZGBsbjRwpG7kXgBJLDZ0InQEJ/L33EfXF87Dw6+zh54Xj+uHb4k/kN+bl57DpaOxf7mDwAfPX9xv8T/8iAKz9mv2J/oIAWgPGAzsC+gE0Ae3/h//0/eb9Hv3++jL36/Vc+tsBsQhUDDgQlhJAFAoVHBNPEZwQaQ46DRgOxQy/DHYNsA08D5MOpgzDCvoH0QNs/0P7ZPgB91H2fPdI+lf8t/ze/ar+vv5x/oj8Qv1L/wEAagLVA/UEPgfTBpkE+QJY/+L80vzb/Dn9mPuT+D32ZfUc9Ur1U/WN9L71oPZY9+z4l/nj+aP6kfrf+tn7xPsy/cr+EQHKAYP/1/2s/Mv7vvwp/VX9l/56/if9/Psr+8v6B/sL+676Cfv8+6j8Af82AtoFxQn9C3oMBg1fDMcLBAuhCoQK7QlBChUKSAkLBw0E9ACi/2f+if2a/Un++f8FAegBFQIKAroCiwPGBCoF2gRqBHEEgQUtB/oHlQZbBCIBnf9j/jL9J/wd+s/4V/hb96312/NB8n3ysfNy9DL1TfaQ9wD5BPpG+8/7ifxP/S7+r/9S/97+c/5R/xUCCAQnBBYD4AFaAOP/+/5U/p/96Pyd/B78dvtw+tL6dfzG/+UC+QRrBnoGPgZnBoUFyAVSBrkGcgfEB14H5QZ2BXUDeQEa/7z+GP/R/4YAEwGbAaQCugMGBPkDQgWuBcAGkQdyB8II1wlzCmUKMgpPCCoHwQWSBPQDCgKt/z/+GP/D/fr6YPhL9WXyIfHz773w8/I68vXyK/Xc9Z/0LfOW9Pz5o/xK/ej6o/rH/Sn/ywAHAB0AKwHQAp8C0gH4AJ//O/+U/6v+cPz4+iH6OvyA/3MBlwJ8AmwBnwAZALcAAQG1AAMB4AD/AusEAATgAgYCdwLbAZgAS/8F/qb/ZwF8AyoHsQmJCjAJvwYjBucFUAXzBYEFjAafCIgJUgvRDJAMjQsgCloI9QXTA+gB6ABLASYAd/8n/qP7+Po++ib49Peg9/f3xvit9kv22fb99lv4WfhZ+BD5L/nY+j/7a/tg+4z60fqP+4r6cPrf+5L9Kf8R/7H+Bf45/tT9zvwe/CD7PPsw/DD9ev7O/lj/OABBAWwC8AOZBGoFpgStAdz/D/51/qL+9v3r/Nf8E/09/gwAswEEBF0FtwblBnIHiwjACPUIPQlDCdQIZQi3CHYIOAkBC+8LQAs2CrUHOAZdBdwCbgHc/mD80vxK/Z/9O/3Q+5j8lPu7+mf6LPkx+Rr5Bvj4+sT77/vr/H/8ev6s/bP7P/rq+AL5xvl9+qz7hvx7+4T6IvsY+lz6APqj+pb8Wvy7+4/6vvqz+2z9LP5b/ykA7f8lAosCcALMAicCXAIaA7oBtv/9/qT9Pf5l/An8Iv1x/n4BggI3AgoBDf+t/pQALgLuBA0G4QYpCSkLWwyMDL0MjA3TDrsPlQ54DVYLQwnPB+gFWQSFAhEBuP5N/X/7a/vf+ZP4JfgP9x35dvd2+TL8TPw3/9n+yP7i/6j/0P8w/dL+zP8j/6YCif0y/Cf9Uf90ABz+0v2c+er7cPov+uX5SPs6+zH75Pt7+SX9FPhX+7D7yPdF+1D7xf6sAUoACP7e/WX7d/tS+uL2dvi/+NH6c/0g/9UBXAFTAEv/av6H/mUA/QDnAxQH3QZ9CAcIqAryDRsQrBE/EUwRMRALDxgOGAzSCbUIXgdUBqYEswLoAMz/RP5//O/6ZvlM+Zv4Evpp+rX7G/0K/lT/Rv9pAMUAjQFCAWwAr/8BAYQAwf98/hf75vq0+vX5jvdg+b78lPtM/Gv7YPmh+m36oPqj+Rj5GPkR93j2OvjG+c/6Bf7CAOsEWATLAKj+Vf0j/gb+O/0Z/F78Wfvk+6X6+/fV9/33ovh4+X36U/wK/pIAZgQzB08KuAr7C5cN2g7hD1kQnBF/EV4RJBAhDq0LCApXB7YEJQNCAcr+bP1V/XX+TgDi/2//h/6+/TD/AAAtAOABmwI7AxYDAwIBA1wCXwGRAKH+nf0R/dH6Lfqf+8n5OPk6+Fb3lfiZ9k/1uvU399j4dfcw93P4bfrO/MD7p/sn/SL+bP40/7b+IP68/qL/ZQDM/zT/of6Z/lP9dPx7+nT4Avkq96v3gfrd+9T9Ff/4/tL+NgHpAhME9wVgB8UK6Q3EEOIRZRJpEaMPwg7jDUwOig6rDUgLTwkvB04FlANlAvQBOQJfA8gC4AGmAiUCuAKzAnz/fv4R/g78G/yS/YD9qv3S/ND7TPqg+DP5MfqM+vf5CPiv9QT2QPjy9yr4BPh496r6oftM+yD7DfdE9eL2Ifh2+qn5wvrq+4H7WP6P+ir6L/tM+ez68fnr9jD3Hfil+f38Y/xC/ej9hP5b/wP+VP6C/Lv6XPsc/a//ZQJCBEoGMgvsEBgWIBnrGjsbjxl2GOUVkhNeEsIRGREFEMYNUgtBCUwG7gPSAcIApv9d/6T+DPzn+TX4ZvcB9xb3w/b/9Qb27vaT+O/6vP3D/00BKgOkAzgBvv5L/Rn7NfrW+Rv7c/2h/e/67vhk+JD42vda9Z/1tfSE9KD3mfgd+qP7VPay8R3zbvQj+H74ifXn9pP52fuP+/P5afrx+6b8t/wD+4X4+/e/91v4H/ka+NP30/mY/dwCOwoXEcYX5R5wIeEi1CQ2JfslmyZzJRUjMyEIHqEasBaUEdMMDggqAw7+mfm+9Zzy2u+z7KXoFeWt42zjxeRF51vp3uz18ND0R/ma/BAAwQR5CIkMiA/UEBcRTg9LDX4M+ApPCHEFXwEE/4v93fqj+e73//Se8r3v3evL6M/mpuXf5xzrO+wa7zHxAPKQ9Oj0jfSo9tr3nfd29zT2xfWd97n4u/jE97j3FPko+m/56vgD/Q8FhhBFGg8fNiQqKpIu3jHfMpAwFy5BK00mgSIsH2QZqhP3DrYKDgncBaL/ZvrB9IjvL+sC5kjieN9z3J3bCtyJ3SLgd+Io5iDsz/Lc+dIAywaXDPYRIxWZF2cZHRqCG9cc4ByAHFUahxV5EIUKzgOj/XP2au9/6jPn5+Rh4z3h+97T3Szdztzw3VngeePW5kXpOeuX7UPwFfNY9kz5lvp/+nH55fjj+PX5HvxC/bH9mPzm+o7+GwdkEDgbfyORKkg0fDlkOro4nDOQLgkqkiV0Irgf7xuTF1wT2g+bCyoFzvzg9DXu9eeo4hPdZdhz1QTUMdVT2LTbz97H4brlc+v58cL4Kv+wBeAM+BORGjEfeyIpJXYngSnuKbgnTyOvHP0Uyg1fBaX8cPRe7Njm3+IW36vcmdta2+XbT9t92ePXYtcH2S7bR94y44roWe+o9Wn5zfxA/wkA2f+x/sX9U/0c/kD+8f2Y/Tj8mgBaCvYU2iCFKP8uqDjEPA49ezuxNHov1Cn2IpMfrByLGRMW0BKqEJsMigYs/+T2++9Q6LDfe9iW0uPOWc3EzdLQuNWo2pHf2eSz6jrxEfjt/vkF9gzSE4IaiCADJvEpAywXLZwsRyolJvAgdxpwEi4KPwEL+cLy7+uZ5erfm9lD1fbRNM/dzwPRUtNb1zbanN3t4K/jQ+it7WfzbfjH+/3+VQFWAocCggHZ/7z+Uf4V/bH8L/y5+xMCJwtWFOIeCCVKLMw1QjmyObw3FjJ3LYEnsiAXHbkaABglFTUURhTtEWQMQgOB+T/xk+eg3S/W69BFzo/NXs6f0SbWctqp3pbjleko8PL2of1/BKELOxOxGkohgyblKZ8svy4NMNAv9CwfKf8jjhyYEw4IF/wo8snoruGb3P7Xv9Wt1NXTwdS/1ELUV9Vd1rfY69vc3sHkP+y38xn6E/16/gj/av5P/oT+6f0l/eb8Evyl+wz7G/mo/akHQRHBHO0jGyokNe45VzriOK0xOyz/JpUglB5HHqAdARxFGTgXaBO8DLIDkfk48SrpiuAO2WzT/M82zprNrM4X0RHUXthL3lDl/+wp9Gb6/wH4CrgTSxwJIzInuSrDLSovDzATL1wrRSdbId8ZQRLFCCr/s/af7V3mXOBn2mvX+9S60mHTwdN81C3XCtkT3A3gseKm5j3rue/Z9Jf4dvtL/bn8Gfv5+A/3h/bO94H53/qo+x36Q/wWBNoMUBjSIRopZzQHPCA+pD4bOp01kTEvKnwl8SNBIlAgdR3CGUYVzw4GBYT6OvKq6YTg1NiO0qfOXcx3yvbKPM5d0vfWE9w74r7pVfFH+DYAdwg6EFMYNR9oJWMrXy9iMbkxvS++LPAoAyRSHukWiA7sBQP9i/QR7ETjvtsd1pTSt9AT0M3QWNLX1PjXGNsJ393iV+bC6pXuhPFK9GP2jPgY+sT5KPlp+ZH5TvoV+6z67PmO95j17/rCBdsSfSDwKSY0Zz/WQ6BDdz/INzwyOywPJockLiSwIqIgNx3mGaIVKA0aAtD24usH4prYudAhzH7JcsjtyJvKAs430irXu93R5NDr2/GX90T/xAdyENgY4B+CJlEs5S86MuoyrjHkLuUplCMGHHITDguWAmX7WPUT7rLmM9/f10vTbNDRzp7PONEW1DHYJdyE4JbkR+ha7KDvLfKd9HX2Ofhp+Sr5avgI+Nz25PWO9gv3yPeQ9g70Fvl0BQwUOiNpLWo16T8HRMVBPT2nNBguzylUJQ0moCnoKq4qGChVI44cZRCzAG3yqeYC3RbV+s4dzBjMiszazLTNSs970M7Rw9TA2cTgG+l48Tb73wXhDigXbB6qJBUrFDBMM3k1xDSkMWEtPieOIEcZnhClCEsBo/lg8vHqpOP13cnZ0daH1bvUh9Sa1aDXhNqc3bLgm+O45s3paOyM7gfwEPFM8qzzyfSC9k34y/ms+7r8BfzE+h34Zve6/kgKehd+JOosIDbQP3NCUkFKPUE2VjFDLFsnBiebJ4kmRiV/Ixsh9hoFD5EAHvNK6E7ek9SszT3Kyskcy7jMOs+G0UnS99PA1rPajOCv5uvtg/fkAF4JiBGpGJ4foCalLOgxLTYEOD83ADQ5LgYmFxyIEegHOgDz+Xn0f+/16rnmEONy35nbhNed0/3QndB+0i3Wvto434vj3uYJ6W7qlOtA7XHvy/FO8xP06/Sq9WT3K/rU++L8Qf1U/usEQQ87Gp8kkStyMlk62D0UPWE5uzMzMaQwoC8aMU4yqzBLLTsnGB9sFaEI/voh8Dro/OHV2xjWBtJBz2jNFszTywnNns4p0UPVYdp24KnmSuxt8pn4Pf8kCJYSLh0oJ3cuojJ0NPAyny/+K1kn0SEyHJUW2BF1Dd0HowFr+//0tu6+6PriPN452jTXXdY214rYvtmS2m7bTd1/32vhluPB5TjozOun757y/vMl9KT0SvUM9lv3pPgA+3L9Af+rBNgOzxkVJMQqgTBAOSA/pj/4PPQ34jQmM5AvVi0bLCopuCU+IXccQxddDtkClfgU8YvqvuLg2qvU2dBpzyrOwM3fzijP0M9T0pXViNn/3Jzg1ucA8uT8FAeBDzEXKh4rI68muCjEKXkqZip2KR4nAyP5HR0Z9BR7EOAKxgR1/lb4ivIr7B/mVeGZ3cfbdduq2//bRNx83Abd3N3j3nvgfeI/5Knlf+el6YvrzOwT7k7wQfNh93D7gP40AZYB1wJTCsgUrx+ZKEgtWzPUOnk9NDxfOKozpTGQL9AsOCyEK2gptiYOIxYf+RhvDuYBH/dO70XohOAg2VjTYNCUz67Okc40zzjPpdBo03LWHNpf3VfhVejI8Kn5agJuCusSTBsMIvYmmSlKKugp+yiTJ1glhCJhH3MckRkLFZkOdgduAEr6hPRP7pXoDOTt4LffZt9b357fmt/P34rgteBv4HTgx+DN4ZTjr+VO6FXrku1i79bx1PMT9pn4M/p5/Hf+CQBSBlcQ7BkvIpYlpCeLLSoxOTFZMKotYS1aL+Iu3C/1McwwDy5QKeoiSBzfEvUGx/zV9RDwz+nb46XfyN3j3eDci9rd16LSPs2fynzK+s1Y0xvZCuKd7MP11/3cA6UI1Q0QEdsSRBWuF5warR5QIhMlHCYkJKIgpBx2FxQReQoLBVoBv/4T/Pn4BPZB8zjwRu2d6tHnX+UQ40XhL+Da3kve9d4H4QHlf+k37SbwcvHE8A/wBPDy72bx9PNS9tP5cvw3/nEElQ1vFvAeaSNPJ8UtKjABL/8syynaKWcreSrWK/stdS10Kx4m9x5wGF0PzAT2/Oz3nfTx8AXsSehU5oDjwd7z2b3XiNfo157XDNhd25HfXuOe5xDsIvFH9r/5/f0gA3EG/AiNCywPSxRtFw8YexhVGfEZzxhxFRMSHQ8jDGAJuwbGBHwC6/4t+/v3MPVB8s7tU+nG5pflFuY45/fneOkw62zsX+1R7BvqV+ic5+zoWOtv7SjwofPa9vn5qfq/+QD7HgBqCUQUvBtkHx8iASVFKFkp6yYMJE4jDCXXJ2spbSn0J4sldiJGHoMYvhAACBkB1P0X/Fn6Gvdj8x/x9+5M6/bltN/V2mfYhNeq2Ebbzd6142/o7+xn8cXzgvTA9ID18vel+/n+EwOjCPMOIxUMGdIacxsDG2QZNRaUEmIPyAyZCugIngeOBpcEfgGH/tj7Tvky9pHyv+/T7QjsJuqw6PPnHehM6AXoXug26e/qbu2M8OTzUvZ491f4Ovn5+db5nPja+S0BlQzfF3wd+BwRHM4cHh19GmoVARMTFgMb/R5gIH0gSyC6HfwY+hOkDiQJlQNq/6/+h//7/t/8wPr3+VD5jPZI8iruYOue6QToEudp55HoFOqL68PsN+6e76fwgvJ19d74tfwyALgCQAW3B0oJewoGCy4LCgz/DPsMygwuDHcLJwv0CTwIjgZUBCMCBQDp/TL8u/ql+Jv2VvR/8SbvD+0I7Evsquxf7bruD/A48Zjx+/Bw8UTzw/Ub+WD82f+oA6AFnQTyAs4C9wWNC/sOmA+ED6APQRCRD4wMXAqzCp4MOg/SELURvhLkErURkw8zDUsL6wm7CEoIWgiuCMQI7Ad4BokEIgJU/wH8LPmM9qb0t/MX807zKfQK9QT2yPa99u72AfcB92r3lfeH+Jz6t/xL/8wBYwOiBEkFPgVLBfsEjASBBKQEmQTQA1MCUQA2/hn8Ifrq+Mb41viV+N73X/bM9B3za/Gt8KPwIvEX8nXzN/XT9hz4W/nG+oj8yf2d/j7/uv/3/0QAGQCjAIsBlALDBOEGdAgVCtcKzgoBC0QK0An/CW4KPQtfDFkNZg7wDsoOww0TDAcKDAh/BqUFSwVUBecFvQUEBXgDMgEW/1j9+Pvk+7f8uP1z/oT+1/3o/GP7xvnq+Cr53fmV+mP7Wvw0/uP/7wCfAQEC1AFNARIA1f4X/sf95v1h/gP/m/+9/yf/Xf6C/df8Nvw2++z5PPlM+QD68/q5+1f8ofxs/AD8j/uc++T7T/zd/K/9SP47/qb9Qv1a/a/9pv1a/Zb95v1f/oX+VP6J/kv/8P+dALEAawCoAOYAEQGCAa8BZgKHA3oDzALvAcMAggC6AJQA3wD8AEQBBQKbAp0CaAJwAi4DdQQWBTcFWwXfBbUGTgePB9AH9wcBCNgHdAfzBvwFJQXcBL8EjgSgA2gC8gHQAXkBugB+/2j+1f0i/Ur8yftV+2D76vt9/AH9F/3D/F78zfsL+xn6W/km+WL5sPk++h/7Ivz2/Fz9hv3b/S7+9P1w/d/8vPy8/FH8iPsH+yD7o/sv/Lr8uv2m/tn+Sf70/RP+i/7X/tv+If+f/+7/+f+o//T+VP5n/dL8Xv1d/jT/5/8gALMA6QGFAuUCDANfA0IEQgXqBToGVQarBn0HWQj/CGMJmAn8CW4KlgqNClgK6AlVCXYImAeYBkwF5wPTAiAChgHbADQAvf8Y/zL++vyw+/P6lvpg+kz6NfoL+tr5gflD+aX5WfpZ+2P87/x3/Qj+QP42/u/9WP0k/Wr9CP7b/nX/xv/G/5X/Gv9N/k39cPwt/E/8kfyU/JT8yfwR/U/9Z/2Y/ej9LP4P/rr9vv3y/S7+IP7Z/b79i/0O/XD8Nvxs/M78vPxg/Eb8Vfy+/Az9T/3M/cr+9v9sAecCDwQ+BVIGXAdRCCYJwAlcCr4KwQrvCh4LOwsYC6YK7QkiCSYIzQYvBc4DzAITAmoBnwC6//L+N/5s/a/8J/zz+wP8Ufya/Mn84PwH/WH94P05/on+Cv+C/yIAUwAMALT/IP+U/hj+zv3x/ZL+av9lADABkAGPAf0AIAAG/7P9o/we/PX7NPxX/Cv8+vvm++b73/tu+6z6M/oU+jb6ePqK+tH6UPu1++z7zfvH+/X7SPx1/H38j/yf/AH9xf3F/rb/NABEAFgA4gDFAaYCagMABLgEQwVfBRoFhwT7A70DwwPpAz4EsASyBHUE8ANGA+sClgJwAmYCYQLHAkcDogPMA9kDrwNAA+QCfgJCAj0CYwLbAloDoAOoA24DDQObAtUB7wBXABsATACqAPoAbAHDAeABowEwAcsAPQCQ/6r+5v1y/fP8n/yv/PH8Tf1z/Ub91vwp/Cn7FPpk+Qv5YvlF+k77QfzX/MP8Lfxu+7f6Svoh+n/6i/vk/Db+NP/R/xsANgAtAGMA7wCmAXcCNwOmA5cDQAPIAmoCQgIsAhwC/QH0AbwBYQHgAE4A5/+8/6b/b/8T/6b+Uf4w/jf+T/6J/rj+1f4a/2r/2v9uAAUBnQEPAlYCaAJoAm4CnQIWA7gDeAQdBaAFywXPBYoFHwW4BIEEVgQaBLEDNQPVAqYCcwIMArUBSwHzAKEAIACL/wH/h/4V/lP9i/wJ/Ln70PsS/H/86/wO/bf8Cfxa++H6xPqu+pj6tPrb+kz7y/s9/I/8zfwT/aT9Sf66/gr/Fv8u/1T/pv8yANkAfAEGAlgCiwLDAqQCSwLFAXIBEwGcAB0Anf9U/zT/J/83/1b/Vv8R/3P+5P2L/T/9Gf0//cz9pP6S/0MAyQAXAT8BQgEtAUEBhgEaAtICgAMnBKkECwVmBa0FtgW7BV0FsgQjBLQDiwOxA+MDMQSgBNUE1QSBBNMDAQMsAmoBowDG/+L+SP7V/Zb9WP0M/cn8hvxn/ET8APyc+yj75vra+s/67Pov+7L7Zfzx/GP9qv3e/R7+av7O/l//IgD2AJYBAwI9Av8BUQFhAJv/MP/b/pv+Pf4T/g/+2f2o/TD9sfxK/Pb77Pse/LH8gv1U/uv+df/Q/xMAXgCPALUAIgGtATsC4AJ3Ax8ErQTrBO4EuwQxBKIDQgMWAywDRANWA0ADDAOZAvIBWgEFAe0AAQEIAd8AzgC1AIYAXgAJAOD/3v8kAJoADAFeAWMBSwEQAbwAYAAtACkALwBOAD0AGQDy/7T/W//b/l/+GP4X/kv+m/7v/jf/fv+V/3X/RP/0/qb+ev5f/k3+Of5P/mf+jf7I/vv+N/9z/3z/R//n/lr+s/34/EH84fvq+wn8TPx3/Jj85vwr/XD9cP2N/eL9jf5Y/wMAmAAHAVEBcgGQAboB8gE5AlYCVAIeAtsBmAE5AfQA1wDfAPQAAQErAYYB5gEsAlQCRAIsAu0BaQHHAFUAQQB7AOQAOAFaAV4BIAHWAGwADAD0/+f/CQBRAHsAoQCcAJYAgACPALMAtQDMAPoAUQGxAeYB4AG6AaQBdQEgAaEAMAD5/+X/4v/X/7r/uP+X/1T/7/5Y/q/9IP3X/N38JP1n/aT9w/3O/cr9pv17/TT9Dv3t/Pb8J/1u/dL9I/5q/rX+DP93/9D/AwBPAJYArACRAGUAJwABABMAZQAbAe0B0gKFA+4DAATcA2EDwQIeApYBZQFwAZsB3gElAgwCtwFLAdQAmABXACAA+f+Z/0f/Bv/I/tD+2f7g/gP/HP80/zD/QP9N/1v/if+O/5T/i/+f/8j/9P/e/7T/m/+t/+f/MgBpAJ8A5gAVARcBzACYAHsAiwCcAK8A2QDiANcAxQCuAIsAdAApAKn/BP9U/ub9c/0w/Rf9Jf1Y/Vr9Mv3Z/J/8V/w//Hf8DP2z/Y3+Uf/3/5YA6gAIAeQAtwCAAIAAkgD0AJgBQAIIA6QD5wPKA3EDyALyARABhABEACcAMgBTADYA8P9s//D+n/5c/iz+DP4l/pL+LP+C/7H/3v/7/x0AAQDV/8j/1f/G/+f/GwBeAKoAyQDoAA4BXwGHAXABRAEIAbwAjwCJAGwAqADWAP0AGwEuATIBJwEgAfEA4gC+AKEAvADXABwBOAE9AUsBRAEbAdcAggA7APv/m/8s/4v+D/77/QH+I/51/s7+Nf96/4f/S//S/nD+IP5P/r/+X//l/3QAEwFWAXwBSgHmAJgAOgAAAOn/4/8QAGAAqgDSAMIAjwAvAND/Yf8K/9f+q/6i/pv+fP5z/lb+A/7e/fT9Of61/iD/Lv9A/0D/J/8l//D+A/+A/xUAbgCNAHkAbgBsACAAyv+Q/5D/gv9q/3z/m/8pALEAIgGAAagB5AHtAcoBjQE5Af0A7wAlAYQB+wFYAoUC2QL2ArwCYwKqAc4ABwBW//D+nf5U/l3+ef6N/u3+Ef/9/vv+xf6m/m7+Rv47/nD+tv4N/5n/GwCcAO8A8QDxAOQAlABcAD8APQBPAEMAQQBrAJoAugDWAOQAvAC3AM4A8wA4AUEBHgG1ACsAq/9S/y7/BP8N/wz/5P7K/mH+6f1p/UT9JP0w/VX9O/1T/Yn94P0j/nH+yv5J/87/OgCoAN0A+AAIAR4BMgFBAVEBXwFTATQBAQHZAPQAHAFPAa8B6QHpAcoBcwHtAHkAAQCy/5n/qf/X//b/AQDn/7//jP9N/z3/Uv+0/0MA+ACPAeAB+wHAAS0BggDO/zX/GP9z/0MACgG6ARECCgLMATABbgDI/2r/Sf+f/1cA9ABlAVUB4gAyADD/Y/7B/Y/9vP0r/pb+8P4V/w3/3v5d/uT9cv1h/YT9w/0V/lP+tv5J/7r/9/8iABcA/f+o/4f/Zv9k/8r/DgB+APMAEAEFAckAdwBIAAkA1f+v/6v/1/8ZAHcArgC+AKgAcAAvAP3/5//l//v/SgB+AMMADAE4AVoBUwFhARsBnAB3ACkAEgAmABsATABXADIA9P+t/1//Kv83/1//0P9DALUA8QDbAJIAJwC4/zn/+/7Z/iD/9v/rAAYC0AIDA68CNAKsATsBwABRAEwAOAAQACcAKQDI/63/bP9A/1H/N/8+/yP/vP5d/g7+mP15/XL94P2k/kn/8P89AFgAGwCX/xP/fv4//nD+Af/G/7oAeQHiAQgCowEFAVUAv/+A/2z/if8DAEQAYACaAH0ARADt/4D/O/8R/9n+Lv+g////oQDOAMMAeQDy/7b/r/+r//3/XgCIANcAzAChAI0AJADr/63/bP9j/5f/BwBaAGsAUQAHAJv/hf9d/1b/hf+U/5T/hf91/37/oP+f/ysAWgA4AGMAIADg/wkAeQCGAO0ABwE5AboBggFpAScBowB1AEMAn/9+/97/AAB9AL4AswDvAI8A4P8s/6b+vP7I/l/+Gv7T/iQBqAPTAmcBbAH0Ad4ChgBI/Bv8Af6V/8r/K/4vAHUDAgTDAsb/d/6z/mX92/s6+5L8IAAsAgoD6wIjBM0EiwNnAHL9Lf0//ab9j/2E/QwBqwMeBBQFagO8CTUOXwUZAHn7I/gF+0T2JvKv9jr6zv7CAJ3+xwDXAoICgP7b+t/5cvqo/BH90P2YAXoFZwdKBv8D+wI3AgEB7/2m/GH91/57AHAAtwCdAcMBOAAc/zb+if3b/en+nf9RAAwCSAINA9wCeQLxAScBgAEiAf0A6ACzAVoC9ALZAs4CvAITApQBEwDj/xAA0P+t/pT+I/8M/+3+yv2q/SX+6P3Z/FP8nPxC/dX9Xv3f/ET9gv5u/uT9vv5E/+X/0f9PAIX/8P8rACsAlP9E/2H/Pv/5/8r/KwAmAA4B7wDkAGkA+f9RAF4AUQDw/87/9v9T/gb/rQLTA6QCOwJyAWwDlANU/pb8Wv3Q/oL9x/xE/O/+vgF9AMj+Af+YAIYADgB+/i7/OgDBAaQCcgEPAq0EJwR8AqYCUQMrCvANmAmCCB8H+wU8BgAAdPoR/fr8o/us+6L5gvws/4b9APvU+bv4u/mg+Pn2xviw+tn8MP4R/+3/NAEFAY0Arf87ANsAMgH9AdMCtAMsBNcE6wRbBKAF9AQNA7UCnwEhBpYKBQd+BMwBQwAMAnL8Pvhm+M73zfjw9yL14/hR/Cv8MPw6+hn60vxy/GT6+Pv//LX+EQH4AKECpwTcBFcFDQSJAsUCCAJGARgDagMGBBQFzQUQBlAFhwPgAfYAqf82/hf8Wvzk/D/8Af3W/Bn9Yf5E/e38m/1M/Pz8wP2x/U//zv+lAEICGgOSAggCfgEpAscCOQKdAOQAHAITAt4BwgB7ABMBaQFG/0L+n//g/9H/7f9A/hr/hACi/qb+tv5d/j8Acf8l/j/+X/6m/3UAHgCF/wkA6gBgAK8AAwG6AO0BvAFRAMMAugDkALwBbgG8AVwB/QA2AIL/cf+i/73/O/+x/jD/fv8K/9n+T/5h/oX+if4R/6MAKQDe/4QA+gCjAcUBggB3AbwC2wIKAzQCIwK/AnMCXAB+ANQAsQHXAL//Bv9z/9UBXQPZAcUAxf6z/agAif17+bD4UPgD+2n8ZPiZ91f5Tvmn+I31Y/RF90n5Vfoq+hL7r/0mAH4BCgFCAYYB1AAwAL//lv4q/+P/aP64/pT9xPuN+2n6DPt6/u8BDQSuBv4HGAyhEDASNhMGE6ETdRQMFKwTmRT/FR0XJBezFGUSfw/OCwEIiQP4/rD6xPdK9Qf0DvM98qrxG/Ex8Inue+zE6snq/OsX7eLuevE09bn52/wl/z8BAQM8BKQERwTgA8QErQVpBlcGsgXIBbIFpwRmAof/zfys+jz4Nfbe9D30XvRy9KH1M/eD9o31kfM88iTyz/GD8TbyzfM99cT33/iI+Rj64/lB+rn5V/kA+Tj5vfrO/b//mQFo//L9QAsvGjAn0C2SJfsl7DBhMEgtRya2HFMiwiKTFgET5BBREfQUfAwPAlz8wvJW69rmYOKY4IHekN3k4ArlTOgb6dbqL/DA8j/zgvK78g344P4nAkcGfglSDRwTzxVtFl0WYxSREqgRVg6YCqUH8ARdBB4EZQHW/Nb5Dff29HDzwe5Y7Azsn+sS6/PqTOsY72nz8fSJ9l32Sfa29nP2aPf3+Of5cPqP+7n7bPzU/JL86P3F/F77XPro+cn5Yvn197r2sfaS9ib4evhm+fz67PtN/nT8t/saBK0TKSSmLSYqXyc5LYkwbTItLbcjtCAjHfQVpRJVECgODQ4JCbYCJvz+8Abn/OAk4Nbggd+k3DfcZ9+O5S/rXe8b9Iz2jvig+jD8Lv+zAt8FFQpJDQ0QBRIrE9gVnhhZGVIYfhScD3cMLwl7Bs4DugAY/ub6bPeA89rwG/Da8HjwEe4J6lDnMei+6lbul/Bi8vT0z/gX/SUBXQNABGIFsAXpBCEDeQHDAZkCEQIkAF79Rfpk+Gj36/YE9j3zTPAb8CLybfKy8E3vCO+g8bz0F/S39Fb2BPpFBxYYsCLTJoQhGh42JYwnLyNPHeoXhhujIEocdBriG7oc2R1OFiYJNf/m9PLt5OzM693prucK5W/msOph7bbuZPDb8qP0kvWA9aj2y/r//6IEXggyC70N8A+BEOYPGA/IDR8MKAg1A1L/4PxF++P4gvXx8hTybvJr83DzmvPd9AL35fn1+rD5bfk8+yP/DwP/AkYBBQG1Ag4HJApICDwEl/9q/eP/GAK4AcIAhf8mAJIB6/+1/AL65/ef9q70iPEP76vtGO6F78rwGfI/88D0RvZl9vT12vYW+Yj76Pvj+l77bP9ZBAIHtQfEBwkIgQaWABj+oAdVGbkryzIOLdMpoS25MeMyWyreHLETwQoFAc36jPYw9XP2Z/WK8oDuYOe74L3fBuMI5p7lzuJe44LqrvPf+hkBVwYVCucLGAulCfwIKQjuBrAGNQYzBLoB0ACOAn0FQAbTA3QAVP5L/Z38lvw//fD+9gC1ARkBiQDWADQC+QK6Abb+y/tI++38X/4T/gf8ffma+fz7bv6GAKYBxQIzBf4GpQeGBywGSwTUAaj9KPjz8TDsYunb6WDrqOwD7ZbspOz47G/t3O7p7yjw7O8z8NDypPUh+BL8bP9jAh4DVQBgBgIYUyvqOVI68DGTMqE2hTalMk8mShpjFGoKqgA++hDyee3v6wDq5umZ5Uncldd+2R/ffOPJ43HlO+z/9Wb/dgYWDc4SMxa+GOgY9BXJEXgMhAlBCoQJwAa/A7wAJgB3AOP/W/9J/i79Dv3o/DL88frJ+nn9rwGDBO0DJwH7/k/+7/4e/279SvvT+cv6Cv6aAAoCIQNtBKwGeQfTBXMELAMpAncBcf+Y/SL8xPl19xH1K/Kb7wPtMusi6svoiuih6d3qNuxR7a/vL/Rk9/D2WvU59Wb4Tf74ASUDagTBBdYImQvpCV8KXBIbINwvUzVWLnQodyZdJmwl0hxZEZQIav7m9U7y4e8j77Huq+0w7x3wD+0d6hDrI+918wz1P/VC+MH9GgPZCMsOARMRFZ0U1xJBEfUN4QjgBFYCiwAT/939O/1//Gn6iPjl+A36VPmZ9qb0nfX7+Jb8uv4D/9n+pP+FApcG+ge4BVEDFwJ1AWsAd/+NAYUFZgYeA0L/4P0D/7//Qv+z/ob9Evtr+Of2qfYR9qbzGPHG70Duwez/6z3sjO077o7t1+yi7Grtwe8i8wb2fvd2+NL6BP/4AiMF8wZ0CHkKOQ2yDWgMYAimAcEC3A4aHwotSy+MKWspsCv8KwcpHx4rEkMI4fvY8hjuTup26nDszu4x8hjxDe2F7Mrv5PQ3+AD49ffa+VP9IAN7CoYRmxXiFe4UdRP4EFsNdgj0AyIANPya+Xz4QPep9n73j/k8+z763Pc399/4afrA+uz7+v2r/z8BIwIgAxwEzgJ8Ar0F0gfdBkQDi/99ALEC+wEZAFr90vrI+QL5G/mM+bL4Gvi9+GT5VPjH9VXztPFF8CHuAewK643q/urO7J7vy/Is9Wz3cPr//IX+c/8KABz/T/xB+gn60vwHAXcBoQAI/4/8gAM5ExckjjLkNMEwHTPENDYzZC8nJFoZqQ/iACH2u/C463vqmOqW6szsI+yX6KDoi+za8X72OPmj+4D/lQS1CQUPchPkFIcUixNiESwORgl1A2H/U/xU+fL2afSa8inz1/QL99z4M/gf94f3Evi7+Nj5P/uG/QwAwQHQAhQE3gR9BRcIPQrtCL0FSwJ8Af0DCwTrAMX9p/oz+UH5UPm++qP7TvuL+1n7TPv1+r/5ffmi+F32ZfSy8pjx6PBL8PDwwPHw8FLvFO8i8Uz0+PUB9tH2q/i9+jn9CP7V/X7/BQGoAen/Tvqc+9cJmx2SL901uTGZMXs0fjWsM38omhlODYL/bvWX7ybpfuaw5ibo8OwL78Httu3P7+f1tfyD/wwAxf+tATwHnQzqENUSmBHqD2sNDgrYBgUC+PxX+Wb2A/Uv8w/w1e7573fz+/dS+h78Cv/eAecDTQPJAIX/FwCfAr8FbweKByEGBgUkBoIHWweKBA3/Yvrh99r2M/iW+t38l/+mAbUCKQPBARb/DP1G+7L5Sfi89qj2zvcP+Ab3YfRM8cjvHO8W71fvwe477k/uwe7n77nxafSv9yL63fkP+L33JvmS/C4BWAPVA40Bif0VA4UTwyZBNuA4jzQ0Nlg46TbCMa8lFxpVEHMCYfZx7izoQOa95mToHuyX7e3rQ+sW7pHzKPhX+k77hP0GAzAJxA27EPcQWxBQEN8O+QttB1MB0PwW+un3lPZ39KryWvMI9Vn3qfnH+qH8aP9+AQ8DygMlBKcEjARiBB8EpAPZAhEBRgCSAfkCbAO4AW7+s/wO/Hn7RftK+sL5vfqw+6z8ofyc+jX5+/hX+Ur6mvp7+4390v45/vf6+/Vi8bjt0usH64rpL+jR5yvpEe0b8Vj0svfq+b76Z/q9+QL6jPqR/CX/rgD/AJL9i/4uDuQkpzkNQ6o9xjrCPok/zTypMWYfDRBs/6TvBOhG4tXe1N8v4oHoeO6i7pvuVfG89nz92QCCAXwCXQS3CDEOvBJqFZ8UORJ2D9kKCQXp/RH2LPEG72ruVu+e78rwavUB/N4CzQf/CHsIUAcIBY4Chf/q+674GPb99En2KPlr/P//BgObBLIESQNqAZIA4/9q/p/8p/qj+bv66/xC/5QA8v9x/rf9hP1N/eb8u/vN+iH6Fvjx9FPx0+0j7MXrx+tE7GPs9Oxt7iTxRPWK+H/5zPef9GnyGfLC8271l/eu/HsBpwQNBZYBFQjvG10wGED2QQo54jeZODg1ezIPJzcXZQmZ90jtzuz86QLoQOcN5xHtZ/GP8cz08/hY/XMBDALZAQoBn/+8ATgGFwrgCvMHyQahCOsJpQlFBqEB2/4p/Db6zfgh9ub00vXe95r6M/uM+sL79P24/5//cP0k+9b5yfmG+gv7F/vs+lH8+f9RA0kF4QWgBewFCQZtBVsFuATHAoIAP/5z/fb9Nv3h+5j6xvgI+I73Yfbn9SL1WvSb9N3z+vG275vtRu227ent5+227dzuUvFE9J/27vZv9vb1Xfd5+tb85f+EAiACdQDS++/6SgjrG24uvzkNOPA3wj13P3c/TziKJ+kW/wPb8prrp+aJ4i3iIOMm5zDrnetm7QfyQPfU+oT77PvJ/BP+EwE6BXIKYg5zDmoNhQxxC+cKuQidBG4AnvsU+Nf2vPVG9UD2m/is/P3/fAFhArwC/QJzAqUAaP6n+9j4H/dA9lb2vfcD+8cAdAZ9CcAJnAgMCZYKaAqICJME0P8I/Sv7IfpF+gv56ffX9yP3CPc198P2UveT9yz2dfRc8r3wv/Ak8bLxAPI28UPwD/AS8XLzO/Z4+Iz5nvkC+bb4+fmR+h/6svpI+ur5JPka9yn/rhIBJ8M3gjxhOSA8/D3xO783/imgGO4HY/Za7Y/rYumg6Orowupf7x/yYPJe9K/3dPpK/C/83fsb/dr/qwR7CsYOng/gDSkM5AriCQEISwMB/qP5gvaW9rr3Uvhb+Yb59/lj+y38Hv3J/Wz9DP0Z/N/6OPrd+cT6x/yg/wgDLwWOBoEHjAeEBzEGagNNAQ3/if1u/er8E/1I/e/80v30/cv8qvvU+cH4+/c99k31y/Ql9GLz5fG38JXv/+1m7dDtce/d8ZzzFfWM9u73MfrS/LH9mPvn9o/zwPPH9QD66vwK/SX9KPuS/iwPtSKlM6E78jZuNYM4rzfgNRAt0B25EP0BJ/a78lfwVO4K7o7tPO9Z8DzuzO3U8AP1fvi0+RD6iPu4/WoBIQYrCuILcgriCPgIBQlPCH8FzADk/Of5Jvhb+KL47vg4+hv8pv2x/rb/HgE5A6gDJAE2/ur7Wfvo/Mr9NP7e/ZL8of2V/7kAggEpAED/iwAuAYACzgO2A2QEjgRSBJMEDAPbAKj+EPwW+on3/fTt8x7zKPJx8OftLexB6wHr8et37e7utu9L8PnxjfQB91T4UPiH9//1FfQb9O32xPkR/XX//f/LAPL+vf+tDPIeby8wNxYy9i7TMnc1zDYjMfUimxTfBdz5PfYO9DHw3O097ArtJu9m7h/uZ/Fl9Zz4ovmX+DX5E/xYAccH+QshDVILxAgDCLAHnAYWBF//MfuT+an5IvvS+8n7av2//50BmwLyARsBqgAD/+r8mvu++ij7x/yY/dv9Xv2j+0773fwD/1oBugLOAicDNQSXBS0HbweOBaECO/87/AL6a/hU94D27/XQ9ef1evYU90/3jPex9rj0t/IU8VLx2PLF853z+vFt8BrwW/D88I/xy/Jn9Lb1lvYz+EP6K/ww/xABwADM/r/5y/vXC4UfjDATN2AyGzPOOD48dz3bNNAkXxUfBoT7T/at8K/rRuqm7BDxXvM28orxX/Sl+GD70fpQ+Jb26/fx/EcDXgheCi0J8QcFCMAHMwfhBOQAs/6f/a39WP6J/U/93P4KAQ0DCAPXAF/+j/yU+5r69fjK9rr1RPY+97v3hfdA+Af7Kv91Ar8D4gMUBPwFvgh7CcIHkgPD/o/81Pu3+ln52fZL9bT2yPjR+jD8yftp+wf7nPlW96H0qPIX8l7yG/Kr8NHuxe2S7gTxzvOH9fL1hPWU9fj1yvZk+Pv31/ZZ9972Qvbi83TxLv2xFTIt9zzSPS46dUC8RrxGmD91LeUYAwgo+ovz/PBG7Avppur57t/yofJv75zvcPLr82Xzl/D57lfx+/Y+/4YGHgqAC3cMJQ5SD8ENRgq5BccBmf9L/gX+sf09/dv+wAGoA9cDDAL9/3X/Wv5r/HL6R/gY93z2I/ba9ib4Zvph/iICpAQlBeADyAPMBGsFbQSzAbb+2fyW/Ln8kfu0+fX3bPch+QP76Psg/LL7y/tV/LP8E/yg+gD5ivcW9472sfQW8tfubuxf7Jbsn+wn7M7qHOs77ZnwefQI9X702vez+w//D/4d+SICKhmAL4Q/aECjO61B5EaRRc4+LS33GTYKjfvX81Dw4eom53HnO+qQ7YntSutf7JDvv/A48PLuwu9K9PH5pgAQB/YKDw1XDg0QCxEPD4sK2gR7ANf+0v7K/14AtP+m/00BYwMzBD0DOwG0/8X9C/td+Xr4ZPgY+LT2pvbM91n5ufyYAJYCaAJYAAP/uv/g/wP+dvvR+Vv5Nvqn+7780P21/d/8DP1E/TL9Y/2C/TL+If/Z/p/9IPxi+r34rfYZ87LuIOuP6VrqIOxC7a/tQO5r7+PwdPHu8fjymvOx9R34ePd+9n30aPY+B7oesDJ1P3U/kD/ERuBIPUaWPZosVBwqDB79ivdl9hf0IvIA8LDvevCS7hHsm+vV6+3qGel96Vvt2fKc+a4AeQfwDBgOvw2tDrYOaA23CRQEswDl/pb9D/47/of+QQAFAk0EigVtBEkDGAKL/8v7yveU9RX2DfcP9wv3oPcx+Wv8VQAMA74CD/9Q+2T6jftK/Mv7GfuL+3n9gP8bAWYCDAJ1APn+c/2l/NT86/wt/e38kfpb97P0XvK/8Fvvhe0w7NLrZewq7v7vyvAN8fzwoPD+763uNe7N72/xCPRU+AL77/yN/ND85gncHmAxzT23Pas7X0B3Qdc/ejsqL/Mh+hPfBV4AIP9g/HL5S/U/8crtJOmr5fDkqOS34lfgi+GT58DwBfuVAzAKqw6yD8YP9w8HDiwLyQcABHACPQGm/yYAdwERA8EEvQMwAcH+Uf0Y/5QB7QBY/ZH4R/YW+Mn6AfwD+6D4PPfw+Mr9fAIaBMMCSgBq/ysAQQBDANYABwFLAUQB6ABpAcEBvgGvAaEAuP5V/Mn53vfy9RXz5e+47FrqxOkk6uHqEOz47MjtCO+T72/viu/T7yzwLvDw7oXuI/Ba8rP2gftu/TT+afxE/9QQ8CdvOjdCyzynOWc+YUCvPh42qCZOGUkNWARsAvMAuP3w+fr0/vBn67bjTt+t3gvgG+EO4ZLksezX9sAB1AnaDRkPNQ0GDH4MLAsDCYMGLgQjBHYEcQQ1BSEFcwQuBGQDhwIQAUb/J/9v/xj+YPvK+ED4jPmr+eD3efUc9I71t/nS/p0CjgN1AvYBAQMoBDUDhAAP/iD95v3Z/jv/Uv/p/in+2/y3+i74GPbm9IL03fNZ8rDw8u/770PwovCK8JfwsvAv8L/vRe9U74HwrvEm8qHxVPCP8LXxa/JT9eX4IPvv+wn6hgDIFWssuzrIOi8yKTQvPKg93jgtLIwg2xvRFRcQmQy8COEG5wNV/aj0fenS4Rvhw+Mz5qnlIeVg6rXzAPweAbgB6gC6AK//Tf89/2r/jQKIBpIJkgvSCmcKiwu4C7gK1gdzA5gAb/9U/1oAGQD0/lP+Hv0C+5n3Z/OK8M3vW/Cw8XDzBvaT+bz9ggKYBrMIowicBooEogNxA2oDaAK6AHr/kP5h/sf95vvh+QL4yPZU9mr1OPSU827z5PPC82vzJPN38hDyLPFd8GTwsPCM8bnygPNl8yjyHfHs8ADxrPKx9XH3zvcy9sz4zQYAGqAppC/gLIktZDMXN4U27S+eKOQkNSA9GiMVdhDBDcAKpASW/Rf1gu3k6VLoTOij53jl4+X16N3srvBr8bvwjfHW8uT1Z/o2/uUCMQdKCqkNxA8eEc0R4RCYD9gNZgstCWUHcQZFBgIFzAJnAJj9kfsP+dL1cvPR8f7wyvD88DHyzvTT93D6mPyE/icBuAMABcQEEwNVAaEAvgDfAGAAPv9l/X37q/nc9x739/fw+c/7Cvw6+tX3tPYB9033Afbj8tbvyO507/HwYPJ084/07fRa9Gnz9vLz84T0T/Qg9JjzLfQB9gv6YQTpEn4fvyYNKC0p6y5eM2czgC8vKTslXCFNGzwXrRU8FbYTuw1QBjQAR/rQ9FvvNuoR5+Xk4OOb5M/lq+ci6oXsJe8A8QPyHPQ3+Jb9lgJZBlUJaAxDD/MQ9xCpEKoQrg/eDWoL/AjWB1kG7QPBATv/0vyh+gD4b/aE9f/zFPN/8kfylPPe9CH2Tffe9xv5EvuW/Ov8O/zi+3z9PQCrAkcDUQG1/uv8Cv1j/oX+Cv5E/vT+1/+D/+b9bPzd+fv1UPIJ8M3v+e/I70XwL/EJ8hvy1PHt8u3zrvO98c7uGu6i8Mf0YPmm/H4AkQkaFmshxiYGJZEjZyWXJ8wnDiTwH54edx3tG/QahBowG+MZSRVQDy0IRgGW+yX2cvLM76HsNusB66brlO0z7ontZe0u7bPtf++p8XP1mvrZ/icCbARDBrcITwqPCgoKBQmTCGAIQQiGCA4JGgpfC58LjwplCIcFlwPMARP/xft0+Iz2R/Y79rH1UfUp9Xz1rfUu9fH0NvWi9Tv2pvbK9p73FPme+kP8r/2x/lb/HgDxAOAB0gHp/9T8lfkG92f1UfQr8zjyUvGy8OzwnvEQ8jTyg/Gp71bu4O0172TyovXT98L4H/km/OEEjxDfGfwbJBjyFQcZKB5HIPkddRtlHM4enB8KHmMcUR0aH6IdohcUD/UH+QREBOsCuP+N+xv56fhV+Sz4VPWw8tzwSe8j7ejq3erV7ePxfvQX9bz0MPWv9hH4N/nq+bn6ofxS/xwC2gRKB50J+AvXDP8LMAo9CDEHwAYHBoMFjgStA9cDXwMaAkoAm/1t+9P5gPfn9WX1VvXv9b71/fUY+BD7Cv6X/1H/2/7I/vL+rf84AEQA4/9E/tv7f/mZ9473tvj9+H/4oPbA9CL08/OG9H71cfVT9Qj2nvdp+nf8Mv02/iQARgJ+A+IC+ADD/woA3gHVBBkHHQgBCaoKiQ3sD0gQPA8WDr0Ntg18DYENDQ7uDhYPJg7iDBoM0wuOC1UKNgj5BTAE2gOtBNMEIwTkAmUBbgDQ/jj8EPqi+B/46/cR96v2FPf792n5JPqr+QL5nPik+F759flt+jr7MvxL/V3+IP8VAC4BFwKhAp8CJQJYAXkA7f+v/1T/1/76/Xv9tf1R/nj/2wApAg0DMwPgAo4CIwI/AeL/cP7b/Fr7wPka+ED32faM9kT2tfVN9V/1+vTm8xLzcvLZ8hn0hfUN90v4Pvno+VX6o/rP+s36+vpQ+7P7Wvxl/dL+bgDeAUQDMwWBB+QJjQsMDD0MiwxFDZUOABAxERcSSBKqEV4R7REKE5YTnRLHEKsPUg8LD0wOiQzOCgkJ2gZQBFgBNf8e/oD9lPzz+v34zved99X39/dz93r20/Xe9Tv2qPa09sz2bPdD+Cb50fmV+t37d/2i/hH/Jf8T/wb/Bv+x/kv++P3d/Sv+of4a/yYApgHwAtcD0ANfAzADDQONAo0B3v93/rj9nfyP+wf6a/hz98X28PVR9eT0o/Sq9CL0a/PC8sfy1/NK9Z32zvfs+BD62/rS+pP6afp/+qP68fqN+6H8Af5o/xABuAL7BLUHGgr7C1oM7QtPDLgN/A/2EaYSIBO6E1QUuBSfFD0UqhMpExsShhCiDroMzAseC30JRQYlAir/6/1n/dD8hPt2+hn6svlD+cT4yPhB+Sr5PvgG92j2KPeO+KD5K/pI+ob6B/uz+y/8cvy6/JL9lv6i/2kAnQBpAKT/qv6H/SL8wvoN+s35nPps/FP+FQAgAU8BOwEKAUgAlP/B/vT9Yf2Y/Cb8Bfz2++H7SvtZ+nj5k/i991n3DffX9tf2FPfn9974nvkr+nD6oPrA+tr6xvpZ+sL5j/nw+YH6Xvts/Lf9aP+RAO0AcwHtArgFrgiSCosL5QzlDkwRNhPVE2EUiRRYFNsTZRMuEwgTjRJGEegPnA5WDWgLkwh0BZ8ChgAh/1r+tf0M/Uj8Svtn+pr54fhZ+Mb3Rffl9u72lffl+Gf6V/u++4H7/PpK+sn54fk4+tr6nPtK/C39Pf47/0oA1AB9AF3/DP4n/Tb9F/4Y/zYAfAHbAtUDGASrA+ACTQKfAZ0AVP8F/mH9Mv2h/IH7f/oE+uz5oPmI+A33lPXD9GP06POs887zmPQB9mr3MfjE+FT55flM+i/63Plk+cr4ZviT+G35Yvs0/nUArAH9AWECYQRTBzkKpAxiDsgPuRA2ERMSdxPFFLEU9hJgETsRCBKAEp0R6g+/DuENcwwTCpwGiQPAARsBAQFBAAj/7f11/Yf9Xv0v/Ez6m/gN99n14PQy9G70gvXl9qb34fcL+I74gfkU+nT6g/rW+gX8e/0g/6oA1AFxAl8C6QFcAUoBjQGUAXIBlAFlAoUDsQNCA50C6AGEAfwA/f+Q/kT9IPyB++P6t/lO+Pb2RPYy9sP1mvRj85zy2fKx82H0/fSQ9dP1c/bT97v5jfta/OT7Gfva+hv7Ivus+pz6tfuo/rwBPgPMA0kEaQZ3CRMMig2uDoEQjRJaFOUU+xSSFWEWAhdLFjcUShKEEfgRkhL/ES8QnA0cC6wI1gW8AuP/1/3o+x36v/je9xH4evg6+M72vvTS8pPxEPEv8cDx7fKP9Kr1IfaA9s73M/qd/L793v0D/g3/QQFdA4MEzwStBMMENwVbBdoEAgT0AvoBLQHgAD8BLgLyAscCqgGb/+D9P/1K/VH8ovmJ9gj1pPWZ9sr1vPPG8oTz4PRq9dn0e/Q29Qr3S/mj+vH69/m/+DP49PcE+WL6IPvW+lz6ZPof++b78/uH/X4Bvwa1CewIowfOCV4PVBTwFQEVnhUgGVEcEx2+G6EaIBvjGYkVcg8IC1oLeA03DX0J+QQlAu0Agv77+Pjy/+6L7dDsQesg6vjrZPCA9Fj1EvNH8RnyifRL9n72+fZO+hH/ugLFA8oDgwUBCO8IFAeHBGYEMQc3CoMLWgsgCw0M1wz/C9kJeQewBVgE7QIkAcX/h//w/lP9wvpb+LT3b/fS9bfy0+8U70Xwf/HE8BTvuO2t7avuPO/Y7+Hw2PLt9K32Sfip+RX7rvuj+xf7e/od+v34LvfF9YL2z/ie+j/6wvle/T4GFA8QEYcL5wULCFsQIhgDGdUVkha8GzcgkyC8HYkclx1sG8gUdg0wCwIPzhKjEVoMhAdrBdEEcwI4/WT3gvKc7/Ltw+zi7GzurfDE8aDwaO6U7V3vUfIy9Hv0NvWm95b77v8NA1QFFgfzBygIQQg7CboLQg5BDwcPoA6IDp4ObQ1LC/EI8AZzBHABO/9n/oD+uv0b+733NPX882nzYPLo8B/v8O2J7Qruu+7X7uDu6+4L73rvsu+4747wvvEm8pPy/vKN9NX25feH90b2I/Z497L4hfgU+NX3c/dG9ir2kv2QDTYcpR+bFkIOhBOjIRkqPia2HcMcjyRbKrgoViSsIkYiNhwvDosBgP39AK8EzgJT/Yr5iPjl98z1bfEE7d3opOSx4tvjCeho7QTxxvLm84f0FfU99tH35fre/jYCSwWNCL4LtA9CE5YU6xLsD8gNZA4tELIQGQ8oDQ8MYQtuCbIFtQE//sf7H/lo9iv0dPMH88fy1vE48KvuyO3B7VTuFO+47+PvYu8W7/Xu6u8b8UfxnvBv8IzxyfSt9+n4dPi79/D3gfk8+nr5PPhP9wL4z/iu+RL6t/l+9372P/xjC2EcjyKCGrAPjRBvHTwo0SZLHtcbNiOlKhIqqiTdIWchmxz7Dg4AKvkt+03/1/4m+gP2gPT+833yb++R673nq+SP4tTiduah62DwWvOs80HzG/Tw9Uf5SP3FADAEDAhoDOgR/hbbGfMZ0xfbFI0T7RMIFRwVCBNFECUOSQxXCaIEN/9e+2j4i/XW8SPvT+7D7qDu6+wk6nDoR+jx6IbqzOtq7BHt9O3V7wHzO/W49vD2l/Zx9q32n/aX99P4ZPmZ+eP4Avg8+En5H/tp/Fr7Wfp9+yT9nfyr+DX49wRiGHUkGiADFBET1iCtLcUsfSHqGhQflCO0IAMauRccGxcasA9GAm365frB/R78c/bn8IztPu1b7nrvFPAT737suenv6ITqou168Wz0Uvbr9gr3Ifgx+9v+dQH0AU0C2gPTBiULLw8gEpQTJBJREIIQIBJEE14R0wzWCM0GHwUzA5EAPf4m/AT5zvRn8RvwbfBJ8LTu4Os96Qfogegt6lPsQu7F7jfvV/DG8WnzOfS+85rzMvSb9Qn4mPqE/Ab+vP6k/if+Uf2U/A79RP2N/O/8A/7t/uv9E/yvAZgRfyG4JR4cJhIYFtIhESdTIVoZ+Br1Ik8l/CAIHZIdEx4oFt0HzfxU+Tr7lvxg+4z5X/df9c3zAPOW8rfw5OxX6T7oZ+pj7nbyKvZx+Kv5a/lQ+JP4rvoP/u0A7QG8AksFqAn3DZ4Pcw3QCUAGWQRtBKkEJwQVAzsClgLnAr4Bmf/4/G36/ffV9EjyxvFy8lzzPfM68rbwVu8c7rztle5q71nv++7a7zjyc/Vk91v3hfd4+Nj5Q/tX+2v7a/wc/hz/uP4c/dD7V/yx/Zn+s/6Z//8AlAF5ATUDUg2QHIMmRiUXHPkYGCGKKiIscSWyHusewCC6HmMbIBkSGH4UxwpPAJX5Lvd29x/3VvWR8mzuMOwI7XTvffHg7+TrKOnA6LXrmvDZ9F/4tPlM+Uf5efqH/coBUATBBMUDmwPVBIYGdgc0B78FtgMTAQz/J/8gAOYAiQC2/tD8Yvuu+VD44PZj9TL03/Nc9FP10vWt9RH1SPSj8+3yafKC8rzyOPOW9K/29/gO+iT5mfdH9+z36fjV+Iz4EPl7+9P+BQHMArgD+wNmBFgCEgDmAJkCWgPZAcb/6geDF3kiGyTrGrAWlR6AJWgm8SA7GwsfqiIqIGEdvBriGgUaMxALBiv+evnq+af4i/aj9DjxLvAj8Fbvr+6W69TojOcx5gnoL+vy7u30tvcS+Q76Q/o9/bMAhgHOAdcBjAORBhcI7AdgB38G9AQpAlv/CP5n/Zb9JP1E/Nv7bft/+7L7u/qR+ED2cPXT9Un2QvV59MP00PV39pL1uPSa9LP0DPT48vzxNPJX84/06/XZ9kv4a/pK/MX+7/6//l3/w/+sAAMBeQA0Af0BHgIpA8MDEQXGBhcKphPtHFcgbBzHFKAVWhyjIBggQhyjGzMfSR8rHWcbsBlOFwcQ8wWQ/xP9wP2a/Xn7oPj59U/1w/TW8o7wou7e7jfwle7Q7NLsM/BL9V331fXq8+3zkPYU+UX6wvoS/Jv+vADOAD8AQQCCAVYDnQKaAHr/0f+mAHkAdf7h+xn6B/kS+GT3ePZu9hr3oPdL9yP2gvVd9m34sPnq+af5wvmI+p/79fua++76Nvqi+av5p/ko+kP7uvw4/cX8hvx5/Dv+7QAwAtICDAMcBIEHiwhyBhIFhQZNDbETwRPZEpATtBiFH04g0R5fHZgbjRu3GCwVKRUYFRwVohMqDqgKNgiBBaECifzw9r70/PO39H306PON9H30QfT48izxL/Dh7x3wGfE+8TjyMvRW9gT4R/i695X3z/c5+Df48Pij+gz8kP1s/vv+AABsAFH/nf0K/LD69flb+fX3Fvf09gb3uvds9xH2jfVR9Zv23Pdb+Dz6QfwP/lH/lP/e/3QAiQCaALwAKQFVAVoBjwHMAY4CAQP9AXABzgBcANQA+ADZAEICGAVZB74IwAhsCQ0NkxAgEo0S0hJqFVcYZBlwGZwYxhe5Fo4U0hJ/EA0OEws+B4UEOQLG/7H+1/zf+937t/lU+Hf2gPQr9KXyUPGn8eXxifM99en0DPTC80j0uvVq9gT2YfVz9uv3C/i9+Mv5V/tY/KP7cvqg+vb7OvwH/Ez7tfo8+0X77Pom+0H7oPqj+Zv4g/hD+a75KvpZ+qP67vo8+/H7G/xP/EH8sfxh/lgAqgGWAn8EBwb1BgAIoQjxCZoJrgdnB90HSAnUCvwJUQs8DWEMgQ2ADJAKSQymCyML2wtBCh4KJwtmCzwN2A1cC8cIigVqA6QC+AE5AZv/LP+Z/xcAiADp/wT/df78/Dr6Rfho91L3qfdH93X3fvcK9xb3tPYM9n72HveV96T4Kvkr+jT7L/sD+0H64/kA+pP6Vftp+yn7u/pr+v76IvuR+sT6iPpv+qX6zfrN+938XP2C/Rz9s/xf/aL+fP8pAIsA9P+U/z7/Df8FACQAav9h/9D+m/5N/9n/1wAiAZoAQgFmA1YF4Qa3BvwGAQnACSkKRgoPC6sNHQ4CDbQMoAynDo4Pdg0CDQIMJQsKCzoIyQYjBuMFNwZtBKgCdQGLADgAZf4o+5H5KPjg9pL2DPXB9ab2FfbI9nH21/Zm+Mr48vch9wb4Hfon/K77Pfsk/Cn+MgA7/87+Iv4P/swAdABU/u39gv3D/qT+Mvxj+yT7OPs4+wP7lvva+Vz6OvxT+nD7Gvkd+vn+UPvl+ov80PspADABHP5aACD/JwAeAtP/PgPbAdQA/QT5AlQDSwTnBG0GQASqAd0BuANzBdoEUgNDBaQEAgcSCEoG4gnJB1IGOginBz8ICgmRCJQJeQomCIYHWweOBjEGfAOzAUYBWADqAPQA0v5E/g7+gvvH+4r6cvrv+3/6sPr1+j/83fy++2D75PvJ+nn7sf3q+8/6xPvx/Cn9IPw7/Fj9s/xR/Jb9zvzE+4D9Pf7N/LX6V/xY/Qn8Yf+m/6H9nPyS/mMAwf6h/j39GP+3AVT+qf89Aj8BzAD5/8P+KwCi/4/7vPyW/Jr8lv47/dL88gHbAY3+wAHZAU0CpwTt/8MBrAfSAuID3wVzAyEDGwBdA1ECCP/0A8EDHALFA9kCbgOOBLgBQgFsA20F6wHB/pIEBARPAdEGvwTUACUEjQKxAO4DKwBA//kFqgGH/00D3v9aAMMDhP3D/K8Bd/zD/aT/7/th/ZH8nvvi/MT7Nfp3/Hn7A/u1+r34EPvm/cL8Xfmk/jv9xvplAfX7bvt8/1H+OP1a/Zf/lAB9AFv/UwLgAtP/j/0RBJkDpv3dAJD+bwP2/KX59QX3+sv6dAYt/N/7ywZj/QX8MQSs+xb/eQI0/HIBvANH/woD6gdu/BgC7gVF+ggEcQO2+WEBRANq/swAJf5HBp//PfurBe38uv7NBTABBfw4AEgC5gC9/24DJwCSA2UC6PvuBdUCMADuBCICXf9RA/UGb//xAY4GN/+JA0cEv/7e/j8CRgO3+47/RAFk+Nf/ov+l+oL/7PmD+X4CWv6L85IEFwH39icEm/2o/XsB1vvK/ooGP/u7+lEL6AEk+ZEGWAB8/RAI9fsH/AIH7v+P/JkCFwC8/9z/kP5yAST95PxLBYb8S/+QAuL+nQBr+5sCUf/q/E0BlP4L+pIAIQOe+j0DWv1k+ekD3fx1/A4AB/y8AJsC+f6//mED/wCR/EQCcf8gATD9nwLnBUj7IwTkAaMB5QVy+2T/bguG+2H8LQj7/qT9+AIsAlr1ywjnA3DxuAM4ASb6VgSGAZn5ngaQArH8+wKkAkv+XQI5AqwAegZB+jIBoQ95/BT7lAzXA539VQaf/SUFHv76/MsRePff+O0LbP4Q/U4FP/p5/fQEI/dABcb6HvxFBhz3BwF+/9b5u/u+/QD6JgB19xn7OQNw/Gj4mwQNBmHteAxkBcTmQQ+BBSzxbAGZApME6PnIAv0E/vpv/5YCcv1A/7gCMfrFAzUFsfdLBFMHLfos/1YKBfux/WsI2QBg8gcOLgJV650RkP8T9G0NsPoP9icbsevs+nIY++SvBMIRa+kvB8oKtOalEukBot0wHdn7NOstEn72j/3iC2r1qgFADaT2kwVmA878/QqO/g//PA8a+Fv/PxJR9kn+TQyX+NAIzgAJ+eMQ/vJaAIIQL/QXAcP9U/oqDMz1Xv3jBgT4KgZH+gb/rgil+Zb8rgfMAUb7YQRA/zMGn/yZ/rYLxPAIBWESIO02/kkV6+urAhAKD+Y3FX74sOi/Hnfu5+9yG4T6uvSmBAMAiQTx/bT3SAcHAFL63AMt/J8Ixfv09BsSuPjC82cK7wCf9VsDkQCp+pUEIfa1Bj/75/hSB+P4g/oUB7P0g/hsE+fu+fFTGmruc+1iIKXzKeU6ISAC9uFRGzn9J/PIDzL/hfjODOH6IwToB5b0Ohnj74X/ixS66hAS8v1D6s4kiu5/850e9efyAz4Pre4/CvwA0PtgBsH+pwS0+fYLJvmRAAUPiuZVEfoHJ+2sBkAEX//GBAn5sQLqB0/3SQU1+VkQoPEj940cvOnN+T0aI+/x+8YWK+v6CGwDMvZNC8DzkAOfAJ74QASk/gn6K/wy//H8dAV290D+TQyx82v54xVn7Cn70RR/6MoLfP6P+ogG6/TPDjT9vfGnDhH93O8RFUr6zO0oEVoB1PR1BOUGu++wD5r9c+4fF5LtJ/60DqbulwaSC7PriBEOAf7x8hOS7VgMhwO+7BgNRgHf+8wAQv2pBeAAvvGGEX71zPYyGz3iXArHE1LfTRbjBxTmahRtBELunBDo/R/x4xVv/x/uLBci/EPymQ51/e3+4flbBU4G6PKIBk0D6/X1BxT5SwP0/iv18Asb+rT6CAoT/lfxPxBs/aX6JQLd+y4N1vFN/wYM8vjJ+wcGL/y8AZX/3fyvDavtKQovDqblrQ20BQ70ZQni/V34JgmJ/8P8agFC/hkJx/O4/S8R4O7dAd4M3fMMA1gEi/5ABWX2qQw1+g768BdS6EsKMQZV+bcOr+80CrYOGekTCdcTGei+AhUTR+gEDP8DGud3G4H6XOF/Iyny2Oi7Kobgn/NWJ27kwfRyG/7oxwfM/s36Lg3Q4/AdzPV46f8nJOD8ABsb2N3hDZwQCd4uFFgLPuDBDWsFpfiH/Zr0dxKY/QLlyB3q/JDkWyEt8yD2gRaT52gNyAUf8fwJCwab+KYAJQzc+RMAVAIk/TcL4/lS8MMcE+yo9rspjtIrCZMh3toYDhkKFvHg/gAOVP945VsYPAf44IcV3P+k9CkJXfjiCCoDgffrA/oQGfHz+p8dxex9+4cWOe9g/OEW4O0x+90aDeYl/5cUZ+lFBQEDy/m8AHIA9/+M+e8Jhfa4A2IG1vC0DNH/NfHYEWrvhwREDBvg5x+J/JfcZCoN+cHaRC/z6kjr4iUP6OHy8Svv4+3hFkuFzXfrQkPSxSEMth1VzWcirgfJ1jkl9AAy4r4jofTh7/MSqwOX9xH32Rsq59QA3iRc0qANNRhS3qkQKAZM8Xz/MhEy7vkFmwke5VQVDQW030wijvbO4nszG9ePB80XmNbfKu/qRO7uL6XWZAfkHFzg6AibEwHi3hUCB/LlpBbAADz5EPtjDEUF9ealDlESsdw2Eh0HZu2VFi/0ewDBA0X5xhCR6n8HPgaX8foP3evFEZ76ZvjSENrmSxTr9hf1lRdS5uUFqwxo5GIfcezf634488xIAo4lZ860Hxv6L+kJIKvtvvXzGAXxq/YZGd3jxRpd7336ACKJ0y8aVQm/5HkJhhjA2FQVww0k0TA22+PQ9h4ct+lQBDkE2fxa/uf+qgJ0+j4DnwLC8yMPFfRmBiEMIOK5IzTyBfo6GL/m/hr97fIC9Q588H8IhPuw+8kQV/IG+Xcb898kEfgB9fcdB2DxgB6H3HIPoxA11fApjfp52NwxEvPa38ot5OzF7owY2vpb8WgNkwRd9kb9ewhz/8f1fQ9O8UkFKwjW6roVbP/D4ngedwNa2lknffnu5BEdif3K7EkVxPlW5KYnf/DZ6QEcNuz3AxIJOPRH/50DpAFa/Ub/OvioEkrpuwiBEIDiehbDAvbq+RVsAQvoKxz9+ODuERzE8GLykCbi5J/zHSnp5tf0rhjE+ezv0BA7ABztZxoj9QbtNSBJ+H3naB8u+OjwhxXZ81/+Nwp4+Rn7TxPu7vL96g/29cr4nA91/JLuzRpS95Trkhts/VbecyY59w/bvync8KvuFxzk7NIB5gadBCTxbwPBHFfPDBpvFCbQtB3JB8PlExKS/8v8//PVEqgBLepgEAj4GA5C9Vv5hRe47OIBWBO75pAOVwB89+cFvgHE+gj4tBgj7nvyQCA4+ojevCu18+LltSXi88DrJiEY8F/wFy3k2gYGihUu5hwTKfUs/gsHjO46F6PowgXxEMbg2xK8A+f3RPwJABUSuOw393Ik6uDK+IQjPOmL8qAX8v7v6R0XxPpA+RQIMPcoEfjz5vRUIObg/AdgF7rZ+xbABhvndBnH8mb2tBhB4ZkUK/0I7Y0Z0eUUDi0Kndw+H176+e/cD0L2HAOVBJHxUhZu6SsBrCOIz0gRmR2q194CnDPtwTUPPSt0x0IbmQsN3HYivP2A2ngmTwNZ1k8m1QOp1Hwvp+5M8mMS3PcCBab8DgHmAScCGPmfEYXuU/vfI8jW1wxMGJTcNAp1ElfpYgQhDkDmsBpo7LsFbBN5z0cvRAMrx9A2qgK0xIM7bvSs2mQxst68As4dvNPOHQgE6+ImI3ToKAQYFuDR9SiF/1/SOzju5gTxNiPQ5H0F+w6160IOxf5G9pgJZQcU6YgWIfil8jAlidBiFz0LeOZNCpD+UQBnAMX9afynBy72PgZ/BBTwEg9p9DIC1ghO8wAHTvqOCxjxDAjDCubgrBgCD63RSiTBBA/TkTVz5cDzSB0h8MDz9hL7A17jShryAVbk1Rvu+Cbxlhyv43YPTQnD5RwV+QIE7cEOrAAR9YwMMvYWBT3/dADiAEP5cgot+0P8OAc3AxjxyxBZBMXjaCXk9GTmEiMl96Dv8xBFBTzmEBpC/63m+CE37ub1ohwj7kryvx7h6kH77wv8+Tb6AARX++kCUAQ151QgMfik3n8ziOEZ8vUwpMxbFZoOFOHGGJr5UfSCE5r0lwPr//775gZe+8ECivfjDAH3bvuzFKnlqwxQBSjyUg008w4JHP9898MLJPxo+f4Gg//SAPX6oAP//sP+dQED/poAYQDWAAgEAfZKEVzz0vrvHODZLxlYAJ7peRSaB+fcOCLQ9tztSx9y8Fr2FwhzFNXaLBg5ARHuExSj/NzvSxeA98z0ChWi9pT90f8vEVHjKRK2DprXzR9wAWfgpSFp8970GREh9j8BjfqLDPzwLQCyEOTgKhVvBLHhKCD18Mn1Fxwb4RMU0P6273UbfuabEjn1Jf9UFsPbRxYCD+HYARy6Cs/VES7G5lf5+R8t130YWwcU37EddvoY9vQL8vWTCDn0ohPh6hIAFBhN4xUJdAdz9jQAGAP4AiX3ZQgPBKfpwh9J8Fvx2inL1Z8K7CCUx2gwBvex2v45rtV3Cr4QGNv4IgD4qeZbJ1folPYJGtP1FPti++IVzekSACEWzuMTC5oHxfNRA24DyvaYCg/5Y/wlC/7vOQslAwX0bQaDBpn2IwJ6Blz76PwFChr5DvuMF7jlcQLSISzURhN0FyLJ3zNT8ljkcS4G3X4KIw4s7agIlACoCYnt/AUiEw3gvxdx/3D0hQLUAUIO7e1N9+4hG+v88oke0Ou7BQ77xQPiArP0HwUgA0v1PQu9+pbzkhxo5IAKwQoI3DI1PNhH9r40gMgND6IgV8fvI+ANC8uPM0nuoO+kFsP1cwVC9HUNKQK55t4ftO8n/YIJx+2LHWLnPPkbJGPc5wQsHZva+RU9AQrq9R7p63P9Bwl2+ZgI2/GQBPUNUuS/D2YNWOXACAUKtf5O6r4ihuhk+eoirOCcB78LWfKDBMMM2+zuBWQMB/LV/7YLvfbNBt/yJw1uACDtARsC8Lf5gBRo8A4C7xEA3XMfGgPb21kenAUx50ALkAyU69ATz+8PBGMJ7/KWCEv2hQSPB27zLv9rDwrqDBRh9on9+wrv62AaG/Gs9OYcKOqw+sUic9WbHBj+iermKpfWwwpAFqvo0//nDjv8J+zVHYPvTfY2HK/jAAQ9FDDvA+y1KwPilfd0H3Dj+gqpBXv53PYUGbrrz/mTIS3if/x3JNTg2/W8LiDblvylIEPq1PPqITDsr/QCIVLmLgVWAYMGpfz48o0U0PIl/+oOC+YOE8j/++8nEvjzHgSt/RQEdfzm/SULtO/FCD4DnvIdF47lCwiiFnnXPRxrACznghoK9VD4iwx8+EcD1/yLAtMCFfU1DOsBoersEFEJ6ODaGJsDzd+4JJHwU/PvG6bjeA29BTftsg7O/a397Pk5Ehfyy/n6GCvpkAHRFUvlHAJxHPXejgXeFZHoA/81Ft7t+vq7Fl7rkwTQE4PfThj1+v30Shp03lIYFf/E8L0MGQYl7wMJ2A921+Ius+wi6KAvet1HBYMXKN+hE3QFkOxJF53uVwgmAI37twn38P0NhPyG80cV0/Ca+lkRJ/Y/+/UFTf/8ANn8DgJ4/4b9eQsV5XckwOt26tI299Np+lkw1tBBCZglRMOFKUsF59VuJfH6+upgER0ABfV0BusDxfMfBscJr+XcF2kAPOXlH8Pr9AObCX/wwgcnBAX6LfvmEKjsiAlfA8LxrA8k/G3yIgtmBdHx3AUkBsX1YQCzEGrvlfnbHO7muP0WHrjcpQ55CXPnER147j75DCJ/1F4crgny1VUpZ/MK938IWfsXCd71vgCBDoHpZg0WDMzjHQ+1EjLbhhKlGbDGkzFQ+6fYdjEN5gb4+Bsb6DAD3wdh9kwJEfbJBoT7Vv78Bjr8O/YQETz5avSuF3nqdQlEA57yvBLD9MT46hr22S0bYAWF3o0lSun0AR8NBu9CCysAsvKpFyjoLAQEF1zYMhtcBzXWaSvl+QfZ8DKg55n2+xcP6LMRyfTTA3UDsO/AGZLr0PsfGAnozAKzEObpEAmADHTnnxSv/TzyShO585EFKwDn/hb5hRZj6vsBVBZB4qoTKQHx+Qf8aQ8A+OD2Ehkt66f7Qh8d3dkBBywkv/8apSgLsYgyuQUk2Ywfi/bk/BD9iQlL/VPxEBFEABzsjxj8/EnmeRxvBUjhng7lGATWdRRcEdrcIhv09Bf+wg8F6G0P6wQ97cIOcgBG9g8DAAhE9yAAPgzK7XAI4wy057wKYg9D4RoVNQTr7SMLeQcY7h4JJxSN2ZIT/RUJ1QEU3h4JvFsx5QX6190gm+8qBqj+tgKC9UwGYAgB7pcFDhRU2ykU4w+J2vwZHgDE8HYFSQut9mX0YBhd7936fRgb3/wYs/sW6D4nfONnAXASV+lTEHX12gN3A07xNht83FIURw8pz9YyMOs+7kUiGu6T+vYJBQJL+FwAhgaf/gb1vhNO8HEC9w5h5Mcbk/fG7pYb2/Kf9s0R+/VzBFr/YPmgDRr2jgRR/X0FS/7w+VILNvox+wYGdwAl+KgJJvlY/6EBSAgS84L+fRsJ2Y4VugrR3SAld+6Q9FshLt6DDpoQgNjiHsgEd9nvLDjpA/SeHgfroAPvAYwDFfZYDSX06gbCANX0PxBy+sH0Fg4XARHsIxwF7ED4zB6b5s7/IQ+A9hX+BgRWAkz6jv97B3j5B/yEENvqEgkYDwnfhBtwANviuSBF997uYRQT/qHsVBTWAKzoJxYdAHXrSRV7+b3wLSFL5FL/8xho5iwM6QQ56xwdvuoBAaERiewADdz2qgjg/oD3Mgq5+W8DHv+J9WUTUPd+7R4jW+nI8egrd9thACcaFueeBc0NJ+U3FEAEAeQoH7PyEPRmFwPyLfxJDZ74X/giECP/GOa/JQLvHer/LWjle+roNFXYOvzYKs/MvB1LATLu/hCE/Kb21gniAfL1GQZzAqv3GwHLDzniqRkt9M/51RTk5NcUy/ToAcoDfv76+kADmQTA+hMD0flWC9P4f/tdDPH8RfCfHMfpSABiFrzh1hZU+Pz0tRPe95j0DQ82/df3dQl8+DQCLAVY9zgBygqI7/sKEQEq8bAX3uwI/3gV6+SBEO/+B/EmGCXr/wGuERDrgPzCIOvc5ghbDtbvvQZ5/TwGku+GF//uGwDYEcvp1wyTBOjyeA3k9OYJq/6E9TQSpPQt+zsR+fBGAuMMa+moEsb61vl3/w4RVemMBuEOg+akE4753v4d/JAOtO4+BrYL1um9DqAGl+5xBJwROOqMBXMLz/jc+ZIJFwI28UsTVvjy9+8Lnvsl/+MEIfHOEjD4r/X8EDjxUgtD8qcNNvvJ8wgbquHOCgUT19tGHlr1l/BJIRPlEwEpEuDus/2bFCDs2PoiGtTq3v9VCJQAffs++rMRNPKG+ooWuuxl+zUdzd/5C2sOxOeIESj7df2OA27++AHv/NsCAABj/XMF8P6a+iQJpfshBM37fv6rDc7zEPpsGtTqVvd1HjbrPfu8EMT3Tvq2DUL0Dgn68pMN5wNe4t0jQ/Bg8nIYuvYs7dIjc+WU9owpBNblDmIHa/H0CjoAu/FRErLySgCMEEvmPBDx+qoCXP3w/ucCMv8S/DYHn/tB/XcCygIg++j8kQfc+D4FB/rBBCH50Ap59NEDfwVd97b/iQl/+HT5mhBr8G0QBekNF9/5BvWZDg32TQmi91gBTgT0A1/uxRPY94r6CweaALL7aQD3BY/0tRFe6gMRvv5L7o0ahOy9BDoHi/J4DXb4X/3VDPXv5ghsAlLwwBdE83Hu8iaD5nH1vCSH5Db6Bh/c5G0FBxHt4HIb9/f/9ZMRhvAVC0D+zvNMGeXuAvGBKznbLP+BIZPY1Ben+wn5jwjI9kcNOvJ8BEgIJvNAA9gQmOOOD1kO/t8hFV0G8uQNFrkFQ97iHOYBTeNyIxTnQv4BGoLjUQkpCWDxvQcoBeXtEhfz8PgAdgWmASH4HQcJAFX6HgqX+NAJ/vFPDIH7PAbb8wcJvQaZ7K0N7gNw9GX9tBQi6oP/1hjO5OIDuhQ86L0G4AyG6FQOaQZi8ar+9Q8Q+XDxNxUU+Wz3GwnM/h/7JQTDAhXzmg/4/Hn0Zgt8AWr3HAI3DnvjwhrD9zH4cAuv9ZYI2/wKAQP7HAqW9bIDPgfr9XX/Twsu9dv+uQ6h6J8L9RCP2DkbJwN/6GwRb//g9dgE1wMd+R4D3/z+BKX53Qh19UADsAg29G8H2PkGDWHtUg1/B1TmHhwn9H7+agVJ/nQAEP0oBfD/8vb9CR4Az/EAGhPmAQkQEU/j2BHGBSHtNgcYDZHzDfbvGsXuR/byH5LitAYKDeTzr/6pD4PuNf8tE1LxTPvPD3TxFwLwEz7cpR848zjzyB6r5AIHFweJ868N4fBSCwL7fvSgF8fp1AfmBnjvVxAh+WD56BIj5+cUwPkY8f8dcuE/E4f/ee17HD7obAT3DRPtEQuT+UcGJADD7Vke4OwV9CompNqvCfYVTt/JE4v+cfa6C3X3ewHUBhX16gjH+kYApAvf6DQSegVk5x0PLA5K6Q8CERO97lcGKQNg8u0TpPTf/MwJLvdaAmYFZvny/aIMnfSO/vUIdPwH+jIKefyH9/AMNgBq7z0St/u58q8VzfLg/V4INv6m9wYNpv567Tsas/MF8nUjKt+BBV0WJeOWEID8wPuMB9H2wAaPANz4UgSAA/38cvxSB/X6D/8PBjT77v+iAmkBaPkrBy7+j/mxCO/+0fbFC0n40PvoEX3x5P0sDu3yEgVjAyn2uw1J7+AL9gLC8AgKeATR9wkA1QSq+m0FAvkQBwb55AIsA3P35gmt9k4Exf9XACn+jfzoB3z41QLmAV78av8ZCOzywQqO/lr0KRUr7HQH3wmJ7CoMegOz8v8LEvogANUCP/uMBo/5DwXy/gb+ZgRc/Yn+gwUA/C8AaQby91YFcADJ+koHRP5F+AQMGfyv9lwQX/f0/QEJE/bPB/r7xf9E/s4CdQEF8a0TYffB+IgJDgJT87UJSAAy/rkAI/kMEUjtOAiZA6r6FQD3BQb5bgJxBSf12wg4+6//EQEX/dAC+P3A+14KivAXCeIAq/WUCab+PvmpB1/9hvrrC+by7Aiy/176hwMACOPySwSdCt/xZwhW/Zv9NAB7CKPyxgR2Byn0mAqG/LX94gFcAjn+yAJB/Yz/KAa6/QkA4gMwAln5cAgIAsT7MgCtBE//XP41Awf9AQPZ/dD+bQTx++383QYI+HsA8wg08ooEZwYO9b0EJQFM+gMCjQHL++YAugH++wEBwwOc/IL+5QVh/en/Nv6JAlMCPfyLAYQHb/mf/3YIPvpfAqP9WQVX+y8Aof4vAJ8C9ftv/1YCD/9N+M8FcPwXAqf3BgOyA530TgiI/Lf5cAqx9nH+VwZo9gYFgALG+qr+FgRd/sUABgRq+MEEvANr+RIJefok/aEK1fdPApcFk/eHA0AFoPojAwz/wAAIASL+rAHZ/p8Bzv/j/+D/3gH3/2kBcf9hAaT/6vysBin9BftZBxX/XvwvBf/89P8RAsP+PwBIAcP/YfxZBF8BLPltBjL+9/kbBgf8s/5VAaT+BQDi/iD+yALS/gH88AMa//T8EwHMADb9DwQ2/aEA3gL8+R0FHgIS+hYDmwIR/ukCrvyhAHAByP/7/roAtv8//h4CTAAl/ikBzgCv/AUCUf+j/e0Bvv4nAE0BtftCA+IAEf6UASkA0vu2ApQCyvjKAf3/df1GAqD/x/7u/48As/5m/10DPfx6AmEChP7JAI7+DwQ7/VECKQHk+1QDbAFW/lUAYQCZARz/Rv8OAWP9+wJjARH9wwF3ALv7ngQwACT7nQH5/xf+EwNJ/gT/LAJ3/lYBXABCAcP95AIDAkD+8AN1/9n9tQab/lUABgUb/H0FTQGo/fsDX/6dAPoAOwC6/Tn/+AB+/m4Asf2o//n+Vv9A/wb+w/6qAFH/SP72/zv+SABu/eYA4v45/pQAEf4tAF3/EgBE/7//I/4rABP9rf9k/1//IAKN++8BWv9l/XsA6/5E/g3/ov6b/mEBa/zbAa0C6PyxAQT/rf78AAEAkgF+AaMBcAHg/7kALAP2AJABOwK8/a0EYQFY//cEWgD2AQgC8v/6AKwBmf/MA18Bq/4NBVr+SAJyAcD9NwPw/zv/IQPZ/icAHgPZ/ZsBewA7/+X+nwEJABr/eQB5ASn/yP+jAWf9hgFW/0YA/f+F/yAA1f+1AMn9bP95AHL9DP5a/wn78fwR/vf5mPyp+oT66PqQ+Jr6HPhy+ez5cfkF+u73OPrk+1D7XPre/cL5EP1DAML6zP9+/lH+ggC9/4X+VgIHALwBbAOg//IC1wLaBfgJSw15CzUP7A5dDTYRjg0iETgRARGWEroStxK+EqwSrhHfDikKNAgLBCoEfP5o/uP/Ivqt+M362fL+8QPzRO9m7oft4O8067nzUPIR9D73zPZZ+mb4TPsD/Fb9nf9SA/QAIwXOA68DMwSdAscBgP8B/4L91f3i++b7ofuV+SH2qfah9cLzx/Oa9D72n/Lh91v2UPIi+/HzK/U/+0TzDfgK/JH4VflK/RD8hPzOAND+rACpA5IAQgFuAcIIlhvRJsAraijzIDskpCSXIHYfUB+lIeklLB3oGD8ZNRXJEwoLpfp872zrHOYh6PznnOZr6QjmP+Qb3yLaWN1O4cThN+Rf59boBfM2+hcBQASqB5UHLwmQDuAJ6BCrGIEY4hzvHBYWKxqwFu8R9Q6rBeEE5gAV/Qn6D/jp9q7zSfBM6R7lHuJE5D/ixeS550LnZu9W7A3uYPL37g/1BvYV9Wj5IPsh/zoFnwI6Bx8IeATcBY0C7QLX/74B1QEkALf9Uv8G/oD89P08BI0TgBy9H0MZ/xPyE3AYoRsPHGYdlCPkIuggoB6FFw4ZQhaSCt4BMflK8STzJ/X89M3yfu817pTqI+Tc3onk5OKZ5cvr2Oax7oz2JPvr/s4BiwC/ApMIrgepDZ8QyROQFVsXghPjEI0QcQ41DqAD4gKm/Zb9+/73+f75qPIL8Q/uQeiM5zPpV+pN7NXt4+757jzxZ/Ed8W3yPPBB9ID3lPUX/if94vs0AuH7n/ss/oL8qvv/AFz7hvx4/2H+1wDM/t4BzANnGGkkkCitJ/0ctRyGIhQiIx/gIyck9ydSKHkcABmXGAMSHAzQ//Xx/+pA6Ffp9+mb69jpGOY24xHd3tuq2rbdh+V76MXqxu8D9q77ywXRBcIHyQkZBs0O4BItGE8cBh7aHo4dTBtfFE0UrhAPDYQK5gEZAKX7S/hq9ILtV+o55OTiKN/k4HfikeIq5g/n4+a160vwJu8K87XyyfTe9iH5jf1p/YsBkAEnAEn/+P3g/D7/bv0d+ZT7wvjz+gv7yPiK99X3Dfl9+rEI1hoiKjUv+ShnG34bMiW8JgEsXy5NLuUyGS2sIokdGRlOEbkI0/dH6H/miOd06uzuYezQ4/Xffdf4z1jUHtQM3A3l++XE6AfwBPgt/doGcgZ2B2UKMw4zFmccbiV8KGkpeSRuG6UXDxQYFkgRkg34ClYBkQAk+971he1q60vnNuIO4pjfFeXI6GPtRu6J7Hztbe758O30Ifjc+ar90vwg/TL8y/s2/V/92/3p9rr3K/VY9Zn4RvVV86HySfCd7eXwA+1e8RzvTPJf8BABDyi2NtFCgTGtIAQnEy5ZMtQy1TFWNjM8ITJLJtAcJBmiF4EFNvLu3XzTeduO3gLlZ+HW14nU+9Ntz6rQuNR92Gnppehq7kn35vpSDKIUThEjE+0S3xApHOwgDCOnK0colSbfICMWahK/DOwM7gdoBVH+jPib9jzulu1X6s7ibd9r3tPcf+Az5VHkKey08JDvp/FB85T1ofr9ACQBUgNFB1sE3AWoA337h//r/Gv7EQG5+yH5OffE8q3v7u+R6ZPodOkV6r/tJe8o8mvwQvTd8u8IFilfP9JG0TB3IlElWzPsO/k7kzs2PqE7dDLUIsUVdRTPDjn+uu1e1uHMbNKW2ITfh94A1Z7Nb87szK7POtZp3wLuEfSw+Nn9TgbqEM8YDx4NHcUb0hyVIA4jjCaNJWAh7h8iGMMNFAgXAZ39H/vZ823wFexp6l/nVuXG5Sfj5OKx40PiFOcj7dXv4PdT/GP+7QPlBnIGVgpPC2ELeBDJD9oOyg6uCS4DRAD5+Yn1n/bi9PXxOe3G6OnkT+W95jnltOTz4uPgj+MC6b7rwvLQ9E74w/w8DbErbUKQSlU9vy4KLTkxGDdHOL41jzz0ObEsrR5QDy8FbgBV8WvhHNVNyDDLUdLA2DXdjdvZ00/SyNQE1KTdQ+tK9FQCLgXpBK0NrxNuG0EhRiK6HkocXx2/HTwiXCMxIFEbQRF/Bjb+1PoW+FT4MPXI77jvnOmj6KDnlOLF4Tbh7+I/6yvy0vXs+tT9nf+3AVoDEwT1BzALwQrUCiMM+QzTDGYOcAhLAYj6wvFx7Rfr5Ota7aDuw+zX5XLiQ+Hn3gniY+Lv4pPngOpU7w71aftP/eIBAwAqDyEqI0IeUZZGtTRYLxA2qjbZOI81jzPbNCgqJBcYDU4EDvu49cPlQNYEzeLIB8792ancPdov11bT6dVb3KXgG+vX947/+gbjDFUS5hiCHWEfyiDyHoQaGRkbGpYdhx85HgkXoA1SB3z9hflM9N7she1i6hzrXOpq5szlceZQ5mDnYui+6jHvx/Pd+cT78QFgBzgHCgoTDFIMEQ1HDgYNWwzXC7YKAwiiBSQBbfpZ95PyN+417WjsDOvE6CXm7eL25Kfmmefn5+/qzOsh7hfyLfMq+lj8aQBl/RMKmSbPQdRQYkIzL00l/ClJMKAypi9qMNMu9CTlFikItv/v+mLyOOdv14/IyMTuyz/XTuH84a3ccd5k3gniPeoQ8XP4WAKPB24Iwg+WFH8arCNPJewgphv1FlsVwxaVFVET4xATDEAF6/65+ETzbfF37ZftjO3a6HbpcOiI6s3vW+8o8rj0+/Vt+f39d//tAUwI1wm4DGkOzwyrDEsNFA0eCjAKBQmwBaYCJPzS9bzyPe0/6Rvn9uTT5MXkyOSB5pXm6Oco6ejpVerd7EHy9PU2+5L+xQLyArIFh/6CCVgnLz4DUC5DVC+pKRUsTiwuL+MppSkiLKkgIBPWBxP+9ffo8vvklddqzPjHtM5Y2T7gbOFQ4E7g9uKQ5/DskvU//pcG8AwED94TnBlNH+IjLyIcHQ0XpBMXE8kRaRLEEFAOmgn/AKD5A/X38Ift4Ouj6ZPpAOhJ5zLqOesp7QbwafLS9HT4rvxzAfcG9gk2CscLhQ3MDVsOHw79C2wKWghZBo4ElwJY/h34rPQ/8eDrBOgP5SzkqeWM5jjnC+c85pLm3ejP6b7rRu3I8ZL1K/p5+wX+DgL5A+QB8wB9GsYzokyiTDc2oylqKBwtpTFUMqQvijGVKaIcsA/3BCf8Xfg87+bhiNURysbKFtXB3mDigeAM3A/deeE55jvuHPcR/m8FCQmmC9oP4hT0Gr0dcBtNFrETvhOeFaUW2xRpEvINKwem/6L5//Mu8Gjviu5P7gHtbuoi6bfqO+057knwSvP99uj6wf3O/+sBdQQgCAoLcQ5wEAcQEhCXDcgLwQplB6UFfgMp//n59vSg8C7tY+q06BHnfOX04n3gSOAX457lMejj6O3qoezn70L1z/jU++3+ZASwBFQG+f4KDKAqYkL/UapAtysCKTcvezMRNhQwmiwAK3oe7A/pAwf8Pvmk9ifryN0O0eTJnM9i2M7b6dzK29nc9uPb6nbwHfmdAHwExAfUB1YKUxEBGgIglSBmHSYYVxagFWMU8xJ2Dh4L0QbgAQb+A/sl+Fz0YPE57anp4+by5fDn1Ouy76PxAfTr9or5C/sy/F3/NQQ7CXUNCRAZEmESXBDrDPoIrQULBMcCTQIwAE78N/ie8oXsledh5YHlu+Zd5x7lj+KY4w3nuelY7JvshOxL7zTzl/mW/CYAJwLLBhIHtQZu/sEDOCJCOcVOy0MwLKUiCCURKKosQSxpKtgrjCGmFLMH+ADA+sr4Ju//40TbsdJH1I7c8eHb4u3h3t7d4DvlIukS8Bb59v0qA0sFnAhBD50U/hejGMoWnRLoEYQSZRO9FJYT0BB+CjYCMvx/+E/37/SK8irwpe+Z8HrvQPB/8VXyJPPU8wr2hfnt/ZAB8gNKBsQG3wdfCqYLXQy4Cl4IRwd4BUcFbwRmAoQBuP0m+ZD0iO+i7HPr9Ot87InqvOnE6OPnrudX57Lnueq9777zYfYw+Lb5PPiT+0j9agNxA88EWv6WCcEmfzn0SRg7pyfRILwkvSj2L6QuJC3HKiofwxIxCJQCwPyv/Iv0O+oq3jXUWdQK3BvhteOR4s3fx+Ly5k/rjPHO9wv7Qv8MACsCIAjLD6sVPhiDFz4UixJcELQPQw9HDrQLpQetAwgBZwBG/9j7k/el8+fwfu+F7mjv6e/18CTzwPTc9xL7e/wb/Sn/5f8TAq4Fdgj2CrMLNwqqBxkG8AMFAokBJAHtAO/+Bfyy97DyiO/97TXuLu8W7prr8OcR5bHlTuih67/uI+/i7aDuEvBc9Bf22vkX/g8FEAYtBhD9BQKlIE822k3CQxQrCyJwJHUnTy//L7wsIS8ZI70VUQriAvz7oPly8Ffmot3004rUjNxG4friseI639bhtuY96qrx2Prl/lQD3ATGBm8NFRQLGIoYNRY0E1gT9BMIFK0TyRGeD+8LQQcVA3D+d/tk+Wr2QvXQ80zy6vCe7yXvBu9U78jwtfM8+LP81f80AMz/2wDxAPkC9AQGBf0EmwQRBYMEPQP6Aab/Jf6q+3T4Cva49N71bPYZ9djxh+z56PHoEOoy7N7soO0C7gXx9fEX8wXzsfR89Xz3tPhL/b4ANAKPAQ/+gRdpK7U+xD3AIgQWCBspJGgvuTRcLV8t3iUrGZINXgY7ALb/Uf1Y9EPrnuAO2i3g0+Xc5ULlMeEt4vDmF+vT7sH2qPuZ/j0AYABEA/UHwwwtD2IQeA6mDakOfxAZEjgR5Q4VDDgIDQVAAi8ARP8d/Kz5pvfd9OHyrPEC8oryGfOL8ibzyvbf+G/5g/py+yL+cAFPAzMF3AXKBDADWAFTAQwCgAIcA+cCCAMZAQ//PfzI9/L1MvU59XX2tvbc9YT0qfD47ArsIe6p77Dxv+9S75fw6PNw9Ev3rfco+9/8pfwC+8/7Pxq4Le5ABDpLHbgTsBh7IyUvqTMNL/AvKSWtFpQK/wPUAGwAOP2d9Mfs1eSh4PvlfOeY4jjgYd3P4IPmNOqX7en09vaA9Uz0TPQK/OoF4A3LEGURZA4zDgMQZRG8EugQjA9nD2kOfA0sCyIIjAUOAPX7tvcg9Uj1Y/YL+fX40/aA9NjxqPJN9ND0g/jm+iT9r/+UAbgDjAQcAzYAuP/qAA8CBgS6BOcEFgUFAkL/KfyM+Mz1dfT29Jj1WPXb8oPuF+1T7EjtOe6D7cjtA+3m7Bjv2fJW9KP5L/oK/d350/nj8qAEfiUrM7o9BSNbDpYTtyL7Lco2CzEcLgMs8hxMER4LVgwxDecMPQGk9RvrH+Yu5kjq8OZV4gXfmd0/4T/kg+ZQ6QvwLO/U8Gvx7fTg/EwF2QmAC6ILBgstDwoTvxXVFgQXVBXeFFESKhCtDYILUgc5BZQDGQGS/u753vfV9Vjz4/Gs8cDyMvYw9yX34/ed9034BPoQ/FP9Zf5u/9sAYwLKAjkBfgBb/+n9svs6+RP3Uva49pb1vPXF87Dx/u9f7nPsfu0z7jzw1PEi9Db0LvUv9AT24PV698f6Uf1PAEj+3/vb83UWeypZOsc2Qg14BmoSZSJrMmM2Hyo9LSQjWhNZDm4K9wwlE68M6AC89Ojo0+Ut64zva+mc5ijf2uBP5DfnFOmv7c3vWO0L8HjvxvfJAREKpAubDHIHxwfDDbMTEBjxFzMXphP/EW0Pfg2CCkkM9gh9CPMFhP7l+vn2m/av95v1X/Tf8430d/X09AP1HPTS9WH2jPdV+h37Dvte+1z8efyY/AP8Yvqj+k77e/qh+xv8sPtR+/74+ffM9xT3N/c3+Ov3Ifn1+O73cfce9yn1efWE9Kb3c/jY+tD7OvzG+E/2We+f9UsVuSOPNkMjGQZUBCgODSC0MLIwdSxILWkhtRihEAkQpRI6FpgRgghg/F7y++xm74zvd+tK673mbedA6LvlPeP75tHluuV46Hvp0fBO+Z3+YQByAcz+HgIXB78LaQ/dEVIUtBWlFvYTcBAzDogOPQwNDvILpwe9BbEBnQC3AOT9G/tS+Un3zva19T/0TPQp9Uf2Ufb49dn0t/JY8zn0KfRU9h/3Pves+cb53/gh+Uv4k/n8+xr+cgAw/zP7ZPg39uX3efrs+zj72/rC+X/4//a89nX3Jvj++d35aPnp9e30xPDwBGcYUyRFKLYM7wBtCBEVuif7MBspiCvXJ/Id1hf/EZERkRf+F0wQQwfS/PL1WvSb9cjwhfAY7Vjqs+r95pbj++Qm53/opuvz6l3uiPMY99z3VPnb+tX/PAZVCbYLXArHCroK6wtpDmIQsBElEwkR3A2ODLUJjwlGCbAHJAbwBM4D7wHX//z7Zvdq9e30dfad96n2fPWa81nxou4T7Zntp+/H8971cPXg9X/zC/I09N71Tvo//bn8zvwp+xD6vfpM+mf83f0p/uj9Z/7J/eL7UvnP9+z3GPnh+lz69/nn9qb22/PSCEgZbx/gHVwB5vtVCeEYLSqBL6YlwSWiHucUghLSE28YWR6sHNUSowkeAL36lvqJ/Fb33vct9Ojx9+8L6Z3jluQR533nGeqX6O/rme/h8VXxtfFt8bj1HvydAKYDPARkBRcI+wv3DdwPXg+CEmUQZRB2ETMP2BGBEA8OtAx1CY4GnQR+AcH/3fwm+zH6KvfT9Qf04/EM8sjwie7G7gvv5+6x7tHt+e048G7yafS19aL2p/cY+Mr3Uvh2+sn8iQA2AlQCKQHl/wH+I//O/2kB8QHkAkEASf5R/CH6y/qT+W/6Yf0YFZUYThrcC93xTPzmD5UfoCqYJTgXrBt4FZERDRVhFUUahR2zFA4LLAK+/eb9wQJ+AEn5n/Y68Lnw0O366SflMupE6/zrI+066evrE++g713w7fNW9eb8SAGOAwoD4ALnAxsH+As+DwsR4hEpFLcQVRJDD94NsA7VDMgNbAsiCK8EhwIkAGP/WvxB+p75Tfj59vb0iPOR8sDxFPEP8Kvu1e2d7Z3uxPC683n0uvQ79YT1x/Xi9oH4L/rz+1f8Qv2E/Aj9m/0Z/Wz94P8VAIn/F/4F/Cj5/fg/+0b8uP2Y+6f4jvX9DBMW3hfzEVz0avhxDhge7ipSKnQadRxfF4YQFRSGF+ke6CM7HQsRlwXk/on97wCbBCX+rvuS9gf0UvGu6/DkxOaz6Ujqluy86Ybrie5d71Ht+e4m8Df1dvqx/dT9K/6GAE4ESgrlDdgOPA3IDp0MYg7LDwcQaBMtEzsS/A6ZC1wI+QURBagDDgHM/+T+G/0T/PH5tPa19ErzNPIg8s/xbfG58AbwL/BH8ZXyMPTc9VT1jfOo8y/00PV6+Uf6ufpi+3T7vvo++hb6cvsT/XD+kP5W/u37FfsD/H/7KfuO+f33rfdoDoUWuhVtEAb3k/oYDq8byiXQJl0dAh6YG3cTARLTF+oftiWRIp4VCgmbA5ICxASeBx4BFv9Q+nf2JvL/6sPkk+c97BDsF+0t6Hjm1OdK6SbnCeoj7bDym/cL+pH41fg6/FT/uwQ8CMMK+wvzD+4OoxByD5AN3w7RDgwRtRE/EcAPagxXCPcEGALkAsYDwQOCASn9oPhE9eD0DvUV9V70IvJL8CTwH/CD8DPweO4K7u7u0e/f8d3z9PNI9O/yXPHh8cz0wfcY+pP6Cfsi/DL8A/uY+g36m/iU+5v9eP8Y/x0Ai/wmD3QZkxcGFa/8uP7/EhsivivgLd4fMh4pHCcU0xT8G/Ik2ilwJE8S+wNL/gEBSgYVDJwFwf9r+KvwkesP6HHl8ejI7q/sgusy5WniE+U16IHnper77M3wv/WZ9vz0SPUw+Ib8fgK0BgELtguSDR4MyguXDEMPmRNxFSoWlhOTEPMO8gwcDDcMtgtkDHcLUweZAg/+BPo++R/5S/fv9U/0dvGk74ft5OqY6lzrEexU7WHt0Oym7RPueO5+79zuB/CV8uv1V/jl+VX69fo/+5/7cvuL/On+tQA3BCcEIwTfAPv+JP1KEUoaqhniE6P57vpUDf0cfCVHJnoYFhcYFaINYg1cFPcd0CSTIFkO4gB5/QEC0An+DrsHHgP8/Dn20vGc71nv6/Sj+a31JPGw6pfoPetW7pTtfu+E8erzwfaU9fPwR/FK9F75ov73/ykC5wIfBdwFbwVUBnQJMw29D9IPwQ2zC+cL0QtfDEIM+Aq4CqcI0QS6ARcA7/6V/+X+pfvn+ND2EPT48uHxk/A+8W3yP/IY8fXuzOyH7aTuMe+F8A7xTPPm9Ov12fXy9WP2APlo+Sr6Wvsw/lwAPQG+ATb+o/2E/In+FQBKE3oV9BPyDOX4+/4+D90Z2B/hIWEWeBhoFdMNhg88F78enSSDHgIPKAdDBksKZxDOEmYNkgkjA5j7OfXo8hD0u/hc+pT02u2g5wLmoej46VnpROu17Lbs6ewc67Lpx+3s8mH3Qfvb/Hn+6wDZAnUDOgUxCMEMZRCGEZgPRw73DdwOxg41DhQOOQ1QDKoJYgZ1AwwDPQJRAbT/Iv0L+0v5KPd+9XP1ZfWt9Sn1SPJm76/uJu8Y8ZbyB/P482f0x/TZ9M3zL/Qn9gn5WvvC/N38xfy6/fn+3P6i/iYA3wBsAo0C8wA7BDsMsgwjDOUDZfsjA3MMVhN2FmAS3Aw3DWgLcAklDGcR+ReJGgoVFQsSBgIGyQq7DxkQ9A2UCnEGpgBj/Jr6a/wgAN0Acvyt9sbxW++K8JPx0vFK8yv0gPMQ8lvvHO+g8b/1MfhQ+d74ePrf/P3+AwGdAeQCqwTPBdYFQwYSBjwHUwhpCNYHswcSB7QGfQWMA/sB+ACdAE4Asf96/j39V/vW+Sr4sfey9+738vdQ9wj2JfY79yr57vl8+O72v/Vj9kX4dPlg+qX7Svww/Eb7KPq3+gH9GwAsAmUCWAKbAYkC1QKUAosB9gFAAuMGSArUCNIHzAAT/csAKgYyC3QPSwwrCoIIJgUABLAEAQkUD98SXhAGC5gG3AW5B+IKXQyLC2cKvge/AzgBVP9aACEDSwSNAqL/eftd+Hb4sfec+Hj5Wfnc97b2S/W/9cj39fgC+ij5Q/i09+f3pPgU+i/7cPxe/QX9t/wT/dL9ov/ZABMBvAAgANr/Pf/K/lH/ggBoAhYEqQMgAp8Adf8w/5EARAEeAsEDlAOxApIBUv/g/Rf+jf3q/C79kv34/U/+Of17+tb5AvrY+p/8jf2U/Sn+qP5h/S39L/zY+5/9Qv+r/6b/if4D/eL8P/xY/BH+VQB5AUEA4P2z+8P9TwGmAzwF2AT3BCUFNwQIA+AExAceDCMOwwwEC24JSAhuCAwKDAsWDTMNSwtRCDMGbQVZBSgFTgSxAp8BbADS/p/9e/yn+wn8YvsC+mD5zvcy9+n3gfiQ+HH5Q/iD+Ir5afnq+Qf72Ptf/Vr+mv0M/i7+Gv/SAO8BBQJmAlMBcgDFAAcBrwGmAswCaAKNAaoAEwC8/+L/pv+J/8H/O/8n/jn+gP3V/Yn+3v1R/ej9Uf4e/7//kv7X/Xv9Mv32/bH+Af+S/xz/Af5B/V79qv0e/gr+hv32/Gn8p/vS+ib7V/tg+4r7mPsS/PT8/fzN/Lr95f70AIIChwJAAhgDfANJBCYGCwcxCOoIrghyB0wHPAfqB48JGQoMCnQJUQi0BvIFcwXzBYIH4weVBmoEIgIyASkBBwEFARkB+ABBAGr+KfwL+2L7o/x1/S79lvz1+3n7dPso+9b7nPxf/dX95P2m/cD9K/4n/qH+pv4B/4f/OACjAGsA9/9b/2X+Dv4u/iX+cP7D/p3+pP7K/hj+r/30/IT85vxw/SP+Zf5G/nD+xf4h//D+jf6f/gH/cf9h/9D+mf7c/gT/sf7m/RD9Ff3r/en+i//7/nX9d/xy/PH84P07/of+RP+i/z7/df7t/Ub+Y/97APEAEQHxAKgAfgBTALUAhAFwAv8CRgN4A9cDMwSyBCMF8wWXBuYG0wZmBjoGGwaPBiIHJAcDB44GWwUWBP8CcQKxAqYD/QNNA4cBlf9Y/m79A/0Z/UL9t/3r/cf8Rvv1+W/5Zvq8+2D83/yf/DL8IvwH/In85P0B/3X/i/9m/3H/8v9PADAAJAA2AHIACAE/ARUBywBnAPL/gP94/+3/0gBlAXUBvAC0/0//T/+D/+3/EAC2/yz/X/7J/aj9zv3Q/e/94P1C/ab8SPzt++L7CfwB/BL86vt2+077cPvh+zb8WPwA/MX78fuR/In9Vv4h/+P/6gCWAYkB/QDmAGcBlwL5A8EEMwWMBbYFGQZBBtgFkAWwBeoFLQZDBucFywW2BTEFQgSOA9ICqAJ3AggCeQFjAVYBHAEFAaoAgABRACAAGQB3AOYAYwFYAdsAfQA0AOD/c/8y/4z/ZQAeARUBDACv/t39d/2m/TD+c/6v/sf+tf6Q/oD++P3m/dn9jf2H/az9SP4l/6T/Tf+X/tT98f2E/vj+c/+r/4P/HP93/nn9MP2Y/Yv+hf+p/yX/N/5p/ST9EP0u/Zb9NP7Z/vb+hP6j/eD88/x+/U3+9P4D/9D+h/4g/g7+aP6x/gz/T/9U/37/0f///+7/FQA4AHUArAC8AKMAFwHHATYClAJLAgwCVgKhAscCHgNUA10DRgO2ArECQgPGA/IDuANzA3cDiQNRAyoDVgPGA0kEHgQqAwwCSgElAWUBnwGfAZQBbAGcAHH/9v23/LH8S/3H/a39Dv15/Az8rvvJ+x38gvwH/bX8EvyC+1f7Gfwp/T/+Sf8yAIkAdwDt/2j/i/+2/2AAeQE0ArMC5QJRAu0BkgERASABMgErAVMBBQGaAJgADABJ/6b+8v1h/VP9ef2j/ej9pP2S/ZT9r/0D/g/+E/4Y/kv+kv7k/iD/T/+m/+L/YACPAMAASAHVAZICwwIRAjQB2wAkAd4BSQJoAq8C4gJjAnMB1ACvADAByQGkAfwAjQAvAGUACgFIASIBHAEXASsBhwF7AawBSwJ8AjACTwFsAFoABwGvAcwBQgFYAHH/4P5A/sz9/f1x/g3/T/9A/+/+aP7i/WH9i/2q/gUAmACNABMAuv+Z/4D/lf8HANAAiwGzATQBZQD9/+X/5f9OALEACgERAZYA2f8K/0n+Ff53/sr+8P7p/pL++/1+/fz8s/z0/BH9Jf1q/Qr9wPzW/Aj9i/0l/iD+1f0T/hj+N/6t/vD+qP8gAD0AWgB5ANsAMAFGAXAB1QH6AdQBnQGNAZgBwQGSATABFwEpAWoBewElAcIACgFeAesBSwLVARwB2QAyARwC3ALbAtMCxQJ6AvEBKwGlALUARgGdAZkBUwHHAKgAcgC2/xX/c/45/o7+uP7T/vL+1/6N/lz+U/5d/s7+Mv+f/+7/TABwAGsASAAAABsAVQB7ALwASAGqAccBSgFyANX/W/+F/w4AIAADACcA6f8a/4f+7f3X/XD+rf53/lb+qP1a/bj91P2H/uT+v/6L/kD+5P3o/Tn+7f6d/8H/Qv/I/o7+sf4D/xr/d//c/zAAJADe/6D/NADQAO0ArgAHAOn/kQAlAVoBYwEXAdYA/QAtAXsB2QG3AVEBywDtAP0AagFWAqsChQLXAfMAggDFACUB1QFAAvYBkgHJAOL/Jf8R/1b/zP///8j/Sf+N/tn9Qv0M/Rv9o/0G/h7+Ef7B/Vj9Cv39/EL9O/7t/lT/lf+O/4n/bP+Q/+L/lgBPAQgCZgKqAvYCYQLbAcMByQE9AtwCTwNUA/0CbgLKAYkBOAHiALcAuQDbAOQA3wBuAOX/4P+4/63/ev8G/7j+bv6k/tD+IP9d/2z/cf/7/pn+Mv4X/hX+2f5S/2P/g/+Q/+X/9/9rAAcA8P8JAC0AUQBRAHsApQD2AXcCdwLZAa8AhgBEACcA7v86APQAPwEwAVcA4v+f/0n/Ef/5/kb/+f/c/73/tv91/+L/tP9u//j+4v5o/6j/AwCH/+7/JwC5AMsAVP+h/gj/vf8l/z/+0P0kAR8FpgQpAqL/c/7H/nf90/na+JX5ZPpe/KH8lv07ANkBeQEdAGX+kP3p/Q/+7/2H/xABIgJhA8MC+wJSAzICcQJuAvkC7gPTA4UDiQJLApIBwgCcAEgA0P8VALb/Pf/2/oD+if5L/rj9X/1y/dv8Uf35/o7+Hv+C/0v/VQCUAJgARAG3AdIBHgLFACQAXAA2AYsC0QNsA5ICcwLgAJYAHgAB/0MAugCvAJgADgB9AAcBGwHqAFr/BP8j/77+zP+H//f/oQBMAB0Aq/+U/zgA0gC8ABIAjv+A/8H/AQDT/9X/vf9b/wT/Sf5W/oT+hP7D/sf9HP1z/SX9fP1l/nn+hP6O/gj+zv0F/pL+Ef9u/7T/6f9MAJn/IP8T/1T/+/9KAJQAhgF1AW4BaQEgABUArADZAPYBugE7AHf/NAAaAroDzAPZAVUBfgL5Ao8BJgAP/3QAPQF3/7b+pP7j/ysBxQA7/03/fv8B/1/+i/2t/bj+Kf9j/9z/TABlAKwA0gAJALL/1f+0/5T/TgD3/6gAUQGbAQoC+gGxASAB0ABlALoAkQDHAFgBIgJIApACygH4AJAB6wCoALwACQAgAK8A4//D/9f/MP8h/zD/ef6o/kb/tf7K/v3+2/07/q3+t/02/pb+0/7T/9H/gP/R/9r/WACPADsAQv+v/m7+Cv6EAMEB/ABsAbwAWAJtBUYCzP4g/tT8gv8I/yD7e/xW/o7/vgDK/gH/DAK+AuoA0v58/Wf95v1j/Sf8zv0XALH/0gD6AAEARAGWAF//GQB8/1r/+/8SAJYACgFfAaMBQgFLAUQBiQBOAMb/hf/K/x4AkQCqAHAA9gDFAZgBdwE/AY0BVAJ1AX4BNgLXAQYCDgAtADUDtAQ8BO0BQv+1AAUCYwC4/4z/GQCoAMz+ofuY+iL7bfsU+/H6hPrJ+ov74vtc+3X88fzJ/Jv9JP1h/EL9fP73//EBqAJbAwgEBATDA6ADQgO2A4AD/wKQApICzgK9AwIE0QPrA7YCSwE+/6j97f2v/hr/NP+//hf+Vf3r/Ln85vw5/aH9T/1n/aH9kv2m/g//8v9TAGEAvABKAZ0BewHgAdcBbgKxAlECfAJ8A0YD6QNxA4ACxQK3AVUAjv+V/9n/yQCkAZkB7QFPA+sC/wKqAkYBFQGfAHf/3P/B/3H/BwGFA7IFDAggCCUFVgUoBJYAx/5I+1T53fsU+0P6y/qP+pj7Ovvh+Jb2IPYI9qH0tfMH8wDzhPRy9G70m/V+9lf4evlO+Sj64/pX+wf9A/47/lH/iABpAR4DcwIVAesDnAhoC+kNMA07DCYRChMrEkgTchKYEtAUlhCiCzALDAkZCAEIvQSiAm4CT/9y/IT6Efii9qv11vM68lnxuO9U71XwhPEU86/0rvTl9i35ePp1/EL9MP+1As8EWQauB3kIRgumDQsOSQ6TDi4Otw5ODmQMGgvdCW0HvwbrBOIADP9R/U77cPuF+XH2cfdz98P26/ZT9KHyTvNc8gLxj/Gw8lb0Pvb/9v/3dvo2/fj+GQCPAG4BSQKXA4wEwgXmB68JEwu6C5kLZguFC/YKZwp9CTIIcAeKBesDrQIwAfT/QP+E/hP+t/0v/G/6zfiJ94z2tvXv9MD0A/W39Er1DPaJ9kX3Nfei9oD25PUi9YT1Ifbs9wX6Xvsk/Lf8Ef39/Jz8cv17/SL+1/5+/Tv/vQbDC4sRqBTEEX4VFRqRGQUbXhqKF1McNBzxFw8XHhVNFC8X+hOeDnoLIQfKA7cBGP7h+YD2EPNo763tE+yu6W3puekf6ePoOOcp5U7n2ek56wrtyO0w7zbzevYo+kD/CAQyCDkM3g0HD24QnxHDEiwURBWFFTcWXRX9FDQU3xKfEbcPvAyPCYcFEAEn/d35vfY29OjxDfCg7l/tBexO6ujo5+e759znR+mW6cnq9urg6x7u3u+w8Vrz7fTu9mj5L/pu+4n8XP6Z/4YAEwHMANkA/QGiAkIDRwO8/13/3we3Dv8UNRcQElYWOR/7IJkgGB99GjcfDiHWGRYXaxf+FoYaOhpEEmYO2QiLAV4Av/4f+rj2VfKe7rTuZu2y6NXmz+Ym56TmJ+TP4JbhmeWu5+3p7euz7a7w1fSB98/64v8lAwMHbgucDWAQfhOoFdgYOxxIHLMbSBrKFyoXahb/ExwSTBD/DBwKdgYRAiP/wPsc+KT0ePAB7ejpmeep5izna+ZL5qvmsucx6qrr5OtA7QnvDvF/83L0Ifag+Iz6ufum/OL8rP0W/0EAqAC+AFv/yv2d/Tv9Ivx5+xD62vr/AGAIvw3+EbkR+hFTGGob4hy6HcMbJRwCIBofTR2MHm0eKiAhISUd7hZwEY8KxgXwA8P/0fr49djwGO7D7Xvr2Og86B/m5uOs4cbdM9xh3cLesOBa5JzmaeqZ7sTyaPgI/vsBCQWlCI0LbQ+UEnEUGxdRGjQdXR8UIEcfuh5GHncc8xloFQkRlQy8CHgE0/90+5X3cPQt8QruJupr52LmOeaw5mvmveUA5p7mNedM6FDpJetS7hvw6PEk8wj0qPV/+Hb7vP6dAWwC5wJ8AhkBBQDQ/3j/vP8XAL7+Zf2z/Mn6Z/ydA5kKXBHEFh4VGBh4Hn8fsCG3Ik4gUCJPJCgfoB6vH1geOiBWH9IYfBR0DhoFpgBe/aT31/N87nbofubb5EPhguCI4PDe8t4w3Xfb/dwC38LfTeP55mDqeu9D83z3df7EBD0J5Q1gEXwUFBkgHDse3CBXIgAjEiPfIWsfnR1eG/kY4hUXEeAL8wYaAiT9rfcm8uDto+p/51rkcOHE3wXgu+Ca4aHhmuH64p3leujr6rbsou418dvzRvbE92j5svvO/QEA3wCYAP3/hgDXATADMwM7AhkAzP5z/5b+nf0y/H74hvo7BDUNuhXqF+AT1hhwIsYm6SgIJZcgmyQ9Jsog2h32GqQbNyCxHsAX5BAqBzQAIv7A+hX2a++05xzk0ORE5PbhEuAU4Nnhm+I44Lvd9N0g4h/nBexq71nysfXb+mEALAbQC98O2xHgFE4XaRlBG5QbLB1bHw0f9x2kGxQZ8Be4FYARZgwWB4sBRP1X+H30JPGW7abq3ueM5a3j/uED4VXhDOLk4hrkpOWj6FPseO/b8nD1yPfA+TP7nPsS/GX8O/3H/okAiwEDAgECBQLDAVwBc/8P/kr9rPtw+4H6u/j191H2O/QQ/LUGeBAiGI4WwRbNIOAnCypKKkQlViZ7K6QnDCPxIHwewCADIjQcBBUwDGcBJvx/+UH0he3O5SLgjN+s4LDe2dzw3cbfaeEm4ZneeN2z4Brka+h37dHvcPMG+ZT+PAWJC94OmBKwFmkYZRr6GrUaXBwnHmoexB64HXUbrBqMGNcUJhEGDGkGNAIr/UP4kvRV8BXsKukw5g7kquIJ4Z/go+EZ42XkVuUd5x3qFe6n8RX00vU59+r41vo9/Bn8V/zk/KL+8wA4ARcAjv8MAMIAOABI/ln6S/iu+EP5rfix9g7xIPPn/xEMKhchGLoSRxdkIjAnQyoNJ+QjcCoyLL8mNiNdIEUhUSZEJLgcaBSuCBkA4vyy+Qb12u0w5bfgSOGc4GDezNyg3GLe8N5620zYgNiJ24HgAub66dHtG/LB9mr9tAT6Ct8ONhJ+FaEYURuzHLMdkR93InQjYiMrIQYe1Bs4GXYWYBJ+DPsFWAD8+un2MvOn7sfrL+kE53zlF+O94CjgsuCK4WHjuuPD5aPp+O2s8sz1sveu+LT5efp9+7f7lPyA/Z3+YQAwACQAvgChAYUC2wFaAHv9/Poz+Q34mfcI97XzIPWZ/xMLLxd0GvAWoxrZIsMm6ijFJQMidSYLJzgjtCHPH+EfQSK7HwcZmhFyBmr90fmZ9yf0b+5k5wzjd+OY4kPg597N3qXfNuDV3Rfbetyc33zkSuq27sfyW/cm/BoCJwlmDlgS9BSIF4IauhzHHdwdvR7CH48gmR95HVwaoBe8FGwRAA47CV8DP/3D9zHzpO/D6/DnIeX94mvhjt9H3q3ev98H4srjbeXo5z/rl+5t8sz0PfbI99b4Bfv6/O39D/9eABUCDwSXBB8EdQRxBEsDZwE2/uz6e/mP+TH40fe89STzPvneBT0R8xl/GJ8TZxm2IOIjJSV0IWsgyCW6JB0g7B7RHhAhWiOpHlYV9Au3ABr5N/cB9vPx3uzR5xjmA+lB6crmXeV55H7jpeI63xHdLeAB5PXoge5c8uT17Pk9/egBUQhHDK4OEBATEpQVOBnQGvIbFh69H0cghx7XGogXPhUeEjUOLwnTApr9p/l39obzjO/f6rLnI+a25ILj6+F24XLipuRE5ujnYOoB7ivymfVj92T3jvcq+AD6NPxG/Tf+K/7b/jIAUQF5AZABrgBR/yP+JPxy+qT4VfkA+eX4LPe88lX0lv6ECj4UgRZDEdATIxzEIHkjXCF8HrkixSX2ImYhnCAjIFcjXiFuGu0QGQbm/Pn5DfnF9VTwFOpZ51DobelQ52XkJ+Ol4tXiZ+Hy3i/gX+Q76hrwdfTy9jP7h//eBEsKfw1MDxIQRhHwE8AX3RrnHYMgeyL8Iq0guhwAGRQW+hLsDXkIwQE0/J73h/Q08t3wC+4X6uzmK+Ry4vrgZODx4F7jVub56APsUu9Z8tD1v/dL+Cr4rfen9xn62/sw/Zb9gP3U/Rj/qP+m/xz/cP0n/C37LPmK9/X3rfdb+eH4QPVU+NMDRQ7EF4MXdhF1FeId/iBwI2AhDR9WJA8mdCLxIYgh2iA8IpsepRaQDqYEFfyn+Q34L/QY70Hq1OdR6QnpfuUe4wHiKOF/4C/extw44KDlmupv777yMPbf+g//aALuBfEISQsLDokRfhU0GVYc5R3eHvIfqR9dHnMcXBlUFT0RxQzQCLsFxQF8/Rj5xfQL8OLs/ukv6Djnm+W24xnjlOOv5Ljmf+hg6unsfu/h8dbzHPUB9lb3FvnL+pL8Vf1f/rT/5gEMA+AD6wIyAYv/ev6L/fH7svsT/B78nPvC+MX1EvzoB1USpRipFWARHxcjHdUf9yAwHsUd6iLvIWgf9R5UHv8eQx++GR0RwAdE/uf4ovcw97Xzku+q63jpIOl/5yzk0OKh4Q7gAt/p3creAeQm6SrumPLi9DX3afoa/hMCwAaLCf0Law57EQ0VMxl5HHwevx8JH0IdKRssGMEVbhOREAQNsQi9A1H/hvs8+E/1xPGF7vrqyOdx5aHjRuNL487jKeRx5B/mPOk57SHxJ/Tw9Zf3KPi7+DX6yfy0/zkBQQGvAB4BSAKMAyoEvwPnAmkBQv9p/ZT8qfqy+P/3Ffbf+ScDKQsKEnoUcBAJEX4V3BU6GOMYShh5HA8fTR3pHbkfZB+lH6YbzhPODJUGhgDb/hb/6f3W/Ob6h/b2893wfOx/6Zfn1eNR4avf1t4g4nXmXukH66/s5O0x8Rv0J/a7+Gf9SAJeB+ILTA8FEzMX7xnmG08doRyAG08bphuzG8ka7BbfEuoOfAo6BYYACvxF+UD2FfP976rtt+pT6Gvm2eQR5AzjneLy4+Xmiuk97LztKO+j8JPypvTk9mz3gffa95r5P/yQ/sX/iQCfACsAvP+X/5L+lv2G/UT8MPya+Sn1YfdEBPgRgByWHLYT1hFUF8UavB3cHTAbzB5FIuMgbSHdIZkg4SDcHEsTZQqAAk3+3P++AScApvwz+Df1A/R68evsZuhJ5Y/jBeI24Dzg6eI457nqm+uY6pjqaOzy7xn0dPjA/MoB4wYCDIEQHhOKFqMZURxdHSMcnhnCGdIb1RweHC8YERPsDosK5QWPAYf9q/kP95/zBPDt7LLpVOfT5VHkBeLJ4Pzgr+Lg5QLoG+lr6fPqs+xH79vxHfMQ9Hv1UPfj+P773f1VAHUCXQNaApIBEAEtAbUAnwHXASABqf+N+838zgoXGloiRSCEEoENMBX6GegaRBtMF7EdayJhHpYb0xwYHcoebBoWDiMGiwBW/9ACWQRjAVP8i/aP88/xfu4m6rDnl+W+5GfiaeC64U3mrOt+7Rft8+oH6//t0PKO9hL6uP2QAVkG3wlmDH0PFxMYFs0X4xfWFoEXZRluGwUcrhlbFYQRzw5QDDgJsgXZAt0Aev6g+kf2iPId8MXt1+oj5+3jxOGW4iHkVuVG5czk4+UJ6LzqXOuU627sou8Z87z2Tvnt+7z+7QHrA1IECgRABN8FEAgQCSYIowfABzYIvwbTAiwCDAthFfAcbRkEDwcKuQ2REusTxxGaDr4TThiKGAYWIBRLFM0WahOQCxoFzAH9A2cHrAemBE0BS/2n+h341PT68UnwMO+U7kvtbuxo7E/u9/B98drvYe1l7E3tKvD18dDz3vbz+nX+QgFxArIDYgaJCdwLqwyMDUMOeBBhEksTNhPZEXYQxA43DTAL1Al0BxIFmwI2APH9xPsh+Tv26PMq8dPu8uzp63XrketY61rrU+t+6xDrWOvv61Ht5e7d8GnySPQn9rv3jvnC+5r9yv7vADACdQNtBEwFtAa5CCIJLwkvCSgIBAaZAQ//gwPOC18TqhJyCnEE+wXkChkPBA4rCygOIBOmFcgUjRKzEhoWRhUbEGoK8AZ0CHgMyA6RDyQP0wxcCXgFYwHt/hf9t/sY+nP3CPWY81jzQ/OK8sHvDe2P62Xq9elI6tDq8uyr7yrxYvKG8zL1qfcF+g77Q/wM/lUAcwPVBeoHrAoADbsNdg2tDKQMBg5kDqsNmQyFC18KKwlQB3oF4AOxAVH/6/zA+kf5avgd+DP4p/fO9lb28vWm9rb37Pe2+Mj5jfq3+678/fwi/rb+Wv4a/pb9RP3i/S7+6f0P/nL9qvw//O/73/s4/ND78ftw/Iv8qPxr/Kz8Vv4XAH0ANgBS//v++f/6ALUBvAI9A58DMwRJBJkDfgKdAdQB0AIBA8MC4gLOAzoF2AU1BfUEsASeBP4EngU3BvAG4QZ6Bj4HAAj2CKoJHAl7CIoI7AdMCKcI/Ad2B+EG9wXEBaYEyAIGAi4BdQAeAKb+Iv3S/AP8ivsO++r52viH+Gv4q/jE+B35yPm1+l77H/uI+oP6lfqM+sT6U/qW+qz74vwT/iz/S/9P/zL/nf5W/iv+J/6X/sr+mf58/oD+qv4V/3f/Sf/2/nr+Rv4l/lb+ef4M/mX96Pw2/Ob7z/uf+xn8x/w//XX9Tf2u/K/8Kf2+/QH+o/0b/Tn9uv2+/Zj9RP0w/Ub9K/1j/Z/9rf1p/Wn9d/53AEIC4gIaA9ADMQVQBtgGZwewCIsKMAwjDUsNaw1NDewMeAx1C08Kfgn8CMUIpwjLB54GLwUGBGMDwwL0ARAB/f8u/9z+h/5c/iv+3v2U/XL9+PzZ/Pz8Kf28/Uj++/26/ZL9jf3J/fL9vP3b/Rz+9v21/eb8lvzJ/M78nPxn/EH8/Pzv/Ub+MP7t/c796f0M/tT98f1s/uL+N/9P/wP/3P7p/rb+X/6S/YL8Gfxh/MP8EP0w/S79cP2C/Rv9lPxP/D38Pfw9/MX7IPus+oH6H/sA/Jz8mPxO/Fr82/xn/bP9HP66/of/6f+D//3+HP8SAC0BuAHJAQEC0wKMA6YDfAMqAzUDbwMgA34CFQL9AY4CagMRBIcE5wTNBIkEoASyBOwELgUABeAESQXVBV0G5gboBpEG6gX9BEsE5wOXA4kDnQPDAycEHwTMA7QDWAPOAksCZQGPABIAnf9q/0f/Gv/p/lT+cv3k/MX89PwT/VP9w/0T/hP+o/1V/UL9Vf0t/Qj9G/0p/Wn9if2+/Vb+4P5C/3H/GP9x/hH+9v0K/kD+6f17/W79i/1T/Wf8QfuV+p76tfpy+uP5gfl6+Yj5dvk8+Vf53/nP+n/7zfsm/Jj8P/3B/Qj+aP4I/wUA/wDMAXcC8gIwAyAD5QKHAloCZQKhAg0DAwO6AqECqwLZAvkCVAJTAagAcgDAAGwB2wEDAlQCnwIpA6kDyAMKBIEEDQVfBWAFIwUuBacFPAZ6Bm0GTgYsBtoFWwW0BEAEEQTXA6IDeANsAycDuAI2ArUBOwF1AGz/Zf6L/SL9P/1c/a/94P3v/fH9of00/er8Af0w/YT9vP3K/fL97/2+/Zv9uP30/d79bP3d/Fr8FfzN+4r7dPtO+wf77vr3+iT7j/vN+wn8RvxD/I38Ef2a/S7+Vv6F/gH/Zv/Q/wEAGwB0AO8AFQHWAGUAOgB1AL4A3QCWAPT/Nf+q/m7+Uf42/t39RP3t/ND8vPzH/Ln8zvzi/O38+Pwg/XP96/1u/r7+Bv94//n/rgB7AfYBhAL9AlQDrQPpAxMEOwSbBAkFngUbBrcGWQfUBzEIawiUCNYIGQn6CJEIHwjfB8kHswcqB3IG1gVDBbsE5QPgAvsBbgHoAEgAjP+k/sf9Nv2R/AD8mPuT+/z7cvyN/ET8DPzN+677jftR+0j7kfv6+078lPzN/OD8x/yd/JH8hvyL/LH8HP3F/Vz+vP7c/hP/If8a//D+1/7H/uX+Cv8R/xz/MP9R/13/GP98/vb9lP1L/QH9wvym/PP8Qf0g/c38cPw4/Dj8Yfya/NT8Ff2H/fj9WP6m/un+NP+g//L/JwBpANIAjQE3AqEC5wIqA5sDLAR/BG8ERQQPBA0EIQQ3BFIEfgSdBJcElQRYBOkDbgMeAwoD+wL9ArYCbgKLAjAD8gOKBGgEvQNGAwYDHAM+AywD+QKxAkgCwwFjAS4BXwGLAUQBiwCo/wT/rf58/jb+wP1Y/RD9y/yf/Kz8wvzD/Kz8Z/wt/PX74vsg/Hf8B/11/dX9bv4Y/5L/uP+k/4z/qf+8/4D/N//9/vj+Gv8j/xr/9P6q/kT+8v3B/br9x/3K/eT97f3M/Wn9Af2z/Kb8yfzU/P38Uf2U/cX94P3m/Uv+2/4p/zL/3P6f/q/+6/72/uX++/4l/0v/Ef+6/qb+3P4n/yH/GP/7/jn/1f90ACcBswEjAnMCrQLgAgoDRAOJAwsElwQlBbkFGQZxBo8GZwZMBioG9QXYBdUF/gU3BkAGLAbwBYwFPgXTBBgEbgO+AisCrwE/Ab4AMACX/w//yP6Q/iL+j/0F/db8B/0k/Uj9lP3v/Ub+cf51/oX+uP7//mH/vf/V/wEAVQC1ABsBEAG+ADsA3P+J/xz/rf4u/vT96f3O/Zv9Vf0K/bH8j/xh/Db8Hvzq+8L7s/us+6H7xPsb/Ij8xfzX/M78vPzO/Pr8NP1l/ZL91/0n/kb+U/5o/qj+Kv+g/87/7f//////JwBBADYABwDV/9H/9v8dAAkA8v8QAFEAkQCaAGUAVwB5AMMA/ABVAbUBHAKNAtkC9AIEAxYDTQPGAzAEigTVBC4FawVqBVsFLwUEBeEEvwSOBIEEjASXBDAEYwO4AmECLALpAXsBFQHJAIQAQwDt/6v/qf+6/9H/9v8VADYAQwBIADoA//+X/xz/w/5u/mr+WP5N/iv+2f1a/cf8bPz++9j7wPt9+177V/tp+577xfvo+xf8SPxw/HD8gPzA/C39qv1C/rr+A/9h/73/AwAQAAUAIABnANkACAEFAf0A+gD9AO8AnABYAB0A2v+6/1T/0v5j/g/+Bf4a/jb+Rv5w/qT+2f7r/hP/W/+y/wEAEAADAPn/JwCNAOoAGQEZASABOQE/ATYBPQE/ASsB+ADrAA4BTwGYAf8BagL5AnUDkANsA0YDbAPGAxEEOwRvBIwEzwRCBaQF8gUYBuUFbQUaBYkECASQAxgDwQJqAvIBXwHgAIAAIAC6/1L/8v58/iD+Af7r/cn9s/2G/Ur9B/3D/Kj8ufzW/Dv9qP3k/QX+8v37/fT94P2j/Uj9HP0Q/Sf9Vf2W/c798f3Q/Xv9J/3W/Nb8Bf0n/UH9Qv05/TT9X/1K/Rf96vzU/Mf8t/zL/NT8F/1W/Yn9w/0r/sf+T//I/xcAZwCoANcA9gARAUoBcAGPAb4B5AEnAlgCdQJ3AkgCEQKqATYB2wCsAJ8AnQCLAH0ApQDMAOAAzACWAHAAqADiAEYBvgEaAnUC2wJLA4kDugPZAwYESwR6BIoEZARCBCUERARLBCUE+wOoAyUDjgLmAVoB9ADJAK4AiwBsACQA0f+V/0f/zv5E/sf9av0t/RH9Bf0u/Xn9r/3b/bH9lv2N/Xz9pP26/e39NP5l/o7+nf6+/t7+7/4K/w////4g/yz/Hv8j/zn/QP9C/x7/D/87/2b/hf+H/2//ZP9o/3X/bv9J/w//5P7O/qT+hP5Y/kb+XP5x/on+if5s/lT+Z/5x/oX+mf6i/rP+xf7g/vv+DP8T/wb/BP8h/1H/kP+v/+n/OwBEAFcAYQB5AKEAywAOAVwBqAEDAjQCRgJRAmYCjgLMAikDXQODA4wDegN+A3oDYwNJAzcDCgPyAsoCtQKmAoACbgJcAikCCgLZAY0BSwHxALcAeQBcADIA6f/K/5T/b/9G/yz/I/8e//3+4v7F/q3+of7F/uv+D/8q/yX/NP83/03/T/9b/3X/kv+0/6//n/+d/6L/g/9k/zv/+f66/ov+i/53/lj+P/4l/hz+D/4B/uv97f3r/e398v0c/iv+Wv5+/pf+uv7l/hP/NP9f/4L/xv/5/x0AGwAVACYASABrAGwAewCGAHkAWABIADIAFwD///T/1f+y/5v/l/+r/9D/7v8HABUAKwBTAGwAjQC8AN0A7QAFAQcB8QDxAO8ABwEZATgBSAFPAVYBTwFpAV8BSgEtASABHgEbAVEBgAGtAeIBCgL/AfsB4AHbAfoB+AH0AdUBtQGtAaoBtwG+Ab4BwAHHAbMBjQFVARABvgBYAAEAuv+O/5L/g/9h/zL/BP/l/qv+hP5E/vj9wf2Q/Yn9fP2Q/YD9ef2Q/Y/9j/2N/ZD9r/3O/dD91P3k/Q/+NP5a/on+qP7F/sf+xf7O/tz++P4R/xb/IP8V/wT/Bv/4/vD+8P7p/t7+xf6r/sr+Cv8+/2T/g/+k/7r/0f/I/8j/zv/u/wAAAwASACYAYQB7AJgArACcAK4AnQCPAKUAuQDtABkBOAFCATQBJAEIAfwA7QD9AP0ABwE2AU8BPwEyAUIBSAFVAWEBaQFnAVoBbAGQAZABqAGZAYkBmwG1Ae8BAwIpAiMCPwJTAkgCTQJEAk0CSwIIAsEBjwFWATAB+gDMAJYAYQAyAAkA7f+//5X/VP/9/rz+if5n/lT+QP5E/jn+J/4T/gP+8f3o/fH9Dv4a/iX+LP4r/kn+Wv5G/l/+cP58/qH+uP7S/s7+3P7Z/uD+CP8B/wP/6/75/gH/IP9A/0//VP9Y/2j/W/9J/zL/O/9A/1L/Y/9x/4v/lP9+/2b/Y/9k/2z/b/+D/4v/lf+d/7H/9P8XACAAPwBaAI8AvAAIATkBoQHxAfYBIgI7AkkCLAIeAhECIAI3AkYCNwIlAi4CCALBAWwBJAHrALcAiABrAEQALwAwABMA2v+y/6b/qf+d/4X/ev96/27/if+C/3H/i//D/wMAGQAiAAkA6//y//3/4//p//L/AwAmACcAKQAFABMAGQDw/+v/1f+p/5T/kv+x/7//0f/Z/9H/3P/I/7T/uv/B/7j/n/+g/73/0f/g/9n/1f/V/8j/tv+k/5X/lf+D/4D/bv9G/1T/Kf8l/yP/Ef8R/xP/A/8B/zX/Kf8q/xj/Cv8N/wz/DP8I/xr/J/9N/2j/gv+F/5//xv/X//L/AAAVAEEAWgByAHUAYwBjAF4AdACRAJwAsQCdAIIAYwBgAFoAPwBIAGMAdABlAGsAaQBlAGEAXgBOADYAPwArAC8AIgATABIACgAbABsAJgA2AFMAbAB+AJwAjwCIAIgAbABnAHAAUwBYAFEAJgAdACQAQwBhAFcASgBnAHIAfQCIAIsAewBsAGMAUwBEAFEAbgBgAHQAYABKADgAGwAVAAAA8v/e/8X/wf+//8H/qf+r/7r/qf+i/5f/mf+k/7z/zv/j//f/9P/9/wAA9v/l/+X/2v/K/8b/uP+k/7L/w/+2/7L/sv+U/4z/lf+Q/5n/lP+b/6L/r/+6/6L/mf+i/6j/vP/M/9f/7v/i/+v/9P/w////AAAOABUAGwAnADAANgA6AD8AQwBTAFwAaQBrAGEAWABTAFMASAA0ACsAIAAXABAAAQDg/9P/0P/M/8b/r/+r/5v/n/+o/6b/qf+y/63/sv+2/7b/0//T/8z/1f/a/97/6/8AAAoAFQA6ACQALwA6AC0APwA6ADYANAA4ADoAPQBBAEEAOAAyACcAHQAKAAUA///a/+L/1//V/+D/3v/Q/7r/vf+2/6T/nf+M/5L/mf+b/6j/pP+f/63/rf+r/6n/kP+S/6T/qP+m/6D/sf+9/9n/3P/p/+3/6f/9/wUAEAAbACcAOwBGAEMATABXAGcAdACPAJEAfgB5AGUAWgBKAEEAKwAkABsAGQAMABsAFwD/////4v/R/63/l/+d/5f/n/+9/7H/n/+m/5f/w//X/9P/4P/i//L/2f/c/9X/8P///+3/+f/7/xMAFwAnAC0ALwAtADAAIgAOAAUACgAOABMAIAAXABMABwAHAAwADAAKABkAGQAZABcAHgBBAEQAYwB0AHkAkQCYALwAvACvAKYAjQB1AGAAXAAmACAAGwAJAP3/6f/Z/8H/zv+2/5n/jP+A/3z/lf+k/6b/rf+r/7T/l/+X/6b/sv/B/97/EAA6AFEAawB7AGkAXgBuAIAAfgCIAHUAcABhAFMAOwApAEEAPwAmAB0AJwAgABkAGwAXABkAJwAmACIAKwATAAoAAwDl/87/zv+t/5T/pv+Z/5X/kP+F/2//Y/9S/zX/Lv8n/xr/Jf8u/yn/Kf8u/zT/Jf8P//b+8v7y/uX+8P4P/yn/QP9R/2z/hf+V/63/qf+9/7j/yP/l/+7/JwBjAIQAsQDfAPMAEAEbATYBOAE7AUoBOAEnASUBFwEBAQcB6ADSAMMArACuAKEAjQCLAHAAVwBKAD0AMAAvACsAIgAwACkAJgA9AEEAUQB3AHIAkQCLAHkAewByAG4AcACIAIkAlgCjAJoAjQCLAGwATABTADIAAQAFAOD/tP+S/4z/bv80/yz/Af/5/uv+yv7Z/sj+Ef8g//b+N/9H/zf/N/9H/4X/lf+F/6L/tv+v/8z/6/8BABMA//8TABAAwf/a/1wA2wDFAIQARAAbABcAwf+S/3f/Lv8N/wz/E/8T/wP/Df8w/yf/HP8a/wz/IP8q/0b/Y/9k/2r/ev+V/7//1//j/xUAGwAZAD0ANAAyADgANgA6ADgAOABMAGcAbACsALMAswDZAOIA6gAKAS4BMgElATIBGQH9AOYAwwCcAIsAawBMADsA+f/y/8z/sv+f/4f/bP9m/4X/bP98/5T/jP+i/73/yv+//9n/3v/i////BwAiACcANABOAGAAawB0AKUAkQCPAKwApQCmAKgAvACmAKgApQCLAHUAYABPAD0ARAAtAD0AOAAiADQAKQA0ABUAAQAkAPT/3P/Z/7j/mf+J/3j/av+V/5f/lP+Z/7L/1//B/8b/xv/I/97/4v/Z/7L/pv+D/4L/jv+O/6b/lP+d/5D/c/9s/2r/Zv9u/4X/q/+v/6j/uv+U/4f/kv+S/7j/tP+0/97/5f/5//v/8P8BAPL/AAD3/+f/IAAVABkAPwAQAC8AKwBEAHcAJwBjAHAARgBsAGcATgBeAG4ARgBlAEMAPQCEAGEAfQB5AGEAawCCAKgAvADbALUA/QC8AI0ArgBXAGkAQQBhACcASgCCADIAHQDp/+f/3v+2/7//eP8w/0T/c/9k/0n/Mv/g/sH+Mv/K/g3/6/4G/0b/4P5S/0v///7w/j3/O//X/0//Pv/M/mj+ZgM0B7QEkgKtAuAAdwAcAWz/nf4P/xP+Zf6k/1r/QwDXALwAHgHDAD0AVQEQAXkACgGhAB0A5//7/t7+Uv+q/o7+K/4T/vr9E/5I/oL+WP5E/o3+gv6S/sH+qP7t/sX/8v8DABcAAAAQANn/+f95ABMANP9N/w//7/7t/kD+WP6v/iz+Bv4X/vH98f0//WH9Jf5h/jL/DACmAKQBCgKkAlsDkgPOAw0EVgR6BLYDgAMEBB4EIwSdAyED2QIYAn4BmQFRAe8AewD2/+P/sv9h/0f/QP8a/1T/qP/T/ycAaQCuACkByQFqAscC/QIGA/8CJQPwAo0CXQJAAhcC/wGUAV4BpgC6/z7/7f5j/nP9Y/wr+2v6PPq/+Qb5fPgN+O73z/e995P3UPfT9h727fVY9sH2H/ek92b4y/nW+mP7Rvxh/U/+8P7w/uX+lP6Q/j/+mv0F/fj7zfrj+cT5cfkU+RT5nvin+IT74gMgEWwddySeJ0orPDHANRc3eTb3MvgqyB/pFGEN+Qaz/eTyn+pG5ePgPdzs2JzYqNm12u7cdOAO5NrmIOkI7f7yivgr/ZkBfwYcDHYRFBZeGhcd9h0EHgQdZxsHGbYUJg9RCWoDr/1i+IDzYu8Q7CTpV+e05vDmAujb6YXsLvA29Nj3afve/lECogXSCHwLfw2GDo4ONQ5xDbwLGQmpBaoBDv46+k324/Iz8GTuDO217BXtuu3l7vfvqfCV8YLyzvNK9eT2vfh7+iD8QP5IAJkBDQPgBGcGYAd0B5EHGQh9CNAIowhIB8gEDwPWBUwPARtwIkIk/CIJI1QlYifnJuwidRo6DtUBtPg980buAOhn4qDfQ98N4J3hkuQ06VnujfPY+Lf9xwB+AqQE0geNCz4Ocg+uD1AP4Q7cDkAP7g4YDdsJbwY1A14Adf0O+pn23fLn78HuWe6A7oPvZvEv9Lj3IvtN/mkBCgRbBmsITwpdC+0K8wlECT0JRAkoCIcFNgLl/rL73vh19uHzYPFU73zuEe+38LfybvTF9dr2GPgx+fD5xvro+pj6a/qG+gL7dvsB/OD8lP3B/XD90vzD/N/8s/y6/SP/uP8QALMAmwG4AlEDEghlFBMjQS0eLycs7yqnKxMsKirfI+MYCglq+GjtdOio5TrhAtwn2k3cPuBq5YTrPfK7+MD9aAJJBp4HLQenBgAIuAo1DNAL/wm1B4gG/AbECBAKqgjlBGEAkfxI+h/4v/Ui86nvT+1G7Q/vo/I+9qX5xf0eAq4GcgpJDEsNBg5zDucOAA5PC8sHGgQrAq8BQgETAID9rvq4+EL3h/Yn9mP1efT080j0HvWU9dX1Vvbt9g/48/jf+KT4hfeH9nX2bvby9hr4/fhZ+j38Iv4pAMMBlwIuA+kC4AEgAJ/9TPsa+VT3wfYG9rH1T/Z29675YPx5AqwQ0CP4NNA9lD35O/U8DD47PSw3kSraGKYDdvHN5vrfddlq0l7ND810zyHTXNgs3wnnce6r9a/8fAEoBAcH+wvoEqUYTRtwG9QZGxh2F/4WkhVPEf0JwQFp+qP0I/B77LDp1ufc55/pluxi8Af0pPfi++P/LANXBdwFCwYxByQJegvXDG8M+wpICdsHAwctBrAE7wFT/gL7oPgl92j2A/bb9ZL1FfWx9Kb0//S/9bz25/c++Ir3g/b49R/3f/mI+wf9wf3B/QH+Xf5J/xUBBQKEAhYDMwOxAuIAMP5R/Ff7Qfom+UX43veg+DX61P23AcwDzQbWD4Ef4C5gNV4ykC0/LJws6CpqJfoaegtV+aHqT+Q94hreKNiF1DPWaNs+4CHmwe0u9aH8WQTvCyQRkREUEB0R7xNCFVMTqw7kCcQF0ALxAUoBqv5S+SvzjO8P7jLtfOzm617sQO7U8MH0XfmE/fgBYgbZCi8PWhGJEdAQ1g90D6QO/ws/CL0DVP8v/D/6ivnM+Lr26PRI9K/0qvVE9hj3g/hM+Yz5dPl7+Sj6/voe/LX9df5G/mr9efxs/E78wPvL+tH4Sffr9hr3gfiR+af5Pvqu+pz7bv2X/rT/7QARAc4BegLVArIDAARtBDcFbwXaBUcF9QRnCbgUDyWaMos2XDPnLrMsHixCKNMfrhJuAHjuj+HM2gDYk9Re0UbSttY73X7kCuwK9Wz++QbfDi4U5RUhFTIUHhXPFdUTrQ5pB+sAffx2+jj6Q/lq9obyc+/p7szv3/AQ8lzzDvX29r34Mftz/jQC9wV2CH0J4QgFB9wFDwZHBzYI/Ab3A8sAjf4T/on+lP7x/dL8JPzo/Gj+jv9d/zn+J/1a/IT73fl291b18/Oz8zj0wPTb9KH05vR39tr4vvpg+1D7+Pvb/dz/agEgAk8CHANhBK0FtQYfBqYDIACS/GL6Vfm/91r2e/W49eP3APvc/vACdgV5CF0PmxsoK+s23zrNOU83HjbFNA0vKyRCFP8Axu504A7XB9HlywzJzMpw0GDYaeDR6MnyLf0xB3oPRBSeFT4UJRPiE3cUXxOpD6YKawY+AzgBYf9a/DD4yfNf8OPuSe7w7eLtb+6Z8BP0yPd9+7b+6AF9BZgImwrKCjYJDgdxBbIEVASoA1QCIgHFAFwBnwIfBEIF0wVLBUQDJwDi/KD6p/k1+ZX4LPdf9azzpfIV85r0MPYL9z321/Q/9JT0zvap+fj7Z/5gAIAC2gSTBnsIJQpfCuQJJgi0BWoDIgBI/az70fkf+Ef2xfRY9Vj2Yfc8+cL6mv3ZABUDkwQNBeYI1xNKIg4uRzFwLV4qKiq1KhYp7yFxFrsHuvc/7HPlNOCC25PX/NcW3cfiKugs7nD1Cv6nBQQLrw3aDJAKVQnSCbwKXAksBtUCRgCC/2P/0P5e/ZH69/d19p31CvWd9Pj0b/Zm+EX6xPvq/Dv+KQBoAkIEvQR4BOsDnQPOAz4DFQKxABr/P/4a/hj+O/7H/tP/3gEEBP4EfARUAmj/RP1M/AH8APuK+GX1DPMo8nbyB/Mt80jzvPPH9Lr2Fvnb+wH/2QGiBBkHWQg8CMgGUgWyBDsErQIbAGX9bvsQ+7f7Cfz++wL73/kJ+sn6ffws/l3+uv/4AYMD2gOUAz8Koxq+K4Y1/DSBMCMwFDDbLMEmXhvFC2b4ZOYj3WnYyNLYzDTKIs8W12Ld/+SJ7q75CwVfDsEWDBteGaQWoBVvFn4VjA9ZCGwC3f2B+5P6TvoL+fT1iPPG8i3ykfCb7ozuq/Bi85n2y/kT/WAAzANjCOMMzQ7NDV8LAQlOB20FUgPtAbwABQAOAMIA1QFGAv8BAwL9AQcBGv+1/OX6v/mI+IX3Ufbk9NnzV/P680L1r/XO9bb1Bvax9+X5iPyx/qT/qgA7AboBvAJdA1IEwwQ1BBgELAM7AZL/0P1Y/az9dfz2+8X7o/pc+oj6L/zM/0QCkATxBqAHeAcwCYsRYiGBMOA2UDOBK1smaSPNH4gZmQ7X/0vvZ+Fj2hfY/tba1s3YZt/T52Pux/Se+1oDMgtpEAETdxKBDtcKrglaCpYKigeNAoT+t/sz+tr4Ife+9FfxE++n7pXvIfGI8hn1hvlE/gYD9QafCW4L3gsNDNMLwwlbBqQCEwCv/sn8g/pZ+Zz5OPvx/Pr9l/5+/q/+DgDHAQEDzgJWAfv/Ef+L/oL+9P1c/Kz5tPZy9EHzivKw8UXxufEQ8271ZvgJ/CsASQTjB2UKiwv9CkgJSAc+BeUCFQBG/dj6e/lV+Qf65vpi+yD7IPsT/BH9Sv3v/In8X/0T/84AEQIMAtACMgjHEzYj/S7zMfIuUysrK8MsTio0InoUqwLN8Qbl4Nwt2CXTCc/dzw/VtNx+5BHsIPZjAagLHBQgGYkamBh8FdkTShJrDr4HdABp+5f46fYq9l31JPT28qXy4fNC9a/1T/YP+D/7qv4iAf8CYQQsBS8G6AeWCbUJVwd+Ax4AmP2n+5r6hPpM+1r8MP2f/rEAtgK4BLUG9QfdB4wF4gGh/rX73Pjw9fbyePB67p/taO6D8O3yP/WX9y/6Vv2sALEDpAVHBqcGNgfuB48HhwWLA7oBMAA5//L97/yo+/z5e/mO+S35D/kL+ff5RPyP/Y7+PQARASsCHANABFcG5QYNBhsJaBNgIu0tpC+IKoklFSNZIZsdSxbBCi37VusX4bTdLt0n3EfcwuCp6GLwmfaI/B4DUwklDo0RfhJnD2wJYQSUArYCwQHB/uH78flx+Bj4vfiR+Yb5Gvii9tP1A/Uv9Lr0fvfv+///0AIJBcIGjQgeCiULgAvXCfMGHgQKAvwA0f8j/iv9Cv3q/Pj8//zx/DD9JP0r/Y39df1e/J763/id9/T2mfbi9Vb1XfUn9rT38/ho+Zn57vkX+/b8q/7e/30ADAF6AmwESQbjBn0FRgMtAZ//Cv6Y++z4rfam9cz1r/bT9zr4zPgi+9n+ZANQBigHoQdKB98HiwlNCUMHmQPgBLwQxh82Kn8rwSYKJlsnkCb4IzYbBw4X/kvt7uS14c/dc9rU137bA+SY6RTvffRo+WEAqwXHCqAObgwKCWsHAwjbCloKOgdmBMUAjf55/Vr8p/vo+QT47vdQ+Fv49Pfc98j5nPxb/9ABdwMEBVUGkwd0CZAKzgmEBzEEBwFP/ob7I/mn9xP3bfeT+JP6Tf07AOACPgUNB6EHewZFBO8B1/9u/Rb6QPYg81DxwPA+8U7yi/MR9br26vj2+/3++ACjAVgBQgGkAT8BTAAV/5D9o/wO/K/8Tf6O/zQAMAA4AIgA6f8G/7H+LP7V/SX9wPtp+z380P2cAFoDMwWnBRgDDgLQB9UUDCQRLUstQClWJVkiKB9MGk0SkQbr99DqheOp4NrekN0b32bkNOu08Hv0ufjk/VQDRAkbDssPGw6tCvMIDgo9C5AKXAgYBRUC3P+P/W37a/iQ9Gnxtu9U7xzvkO/R8YD2x/zHAgIHXgmUCoULtAwlDR8M3wg+A3v9UPmH9x/4f/m7+h78Zf3e/tAA1wJ+BCYFfASUArz/XPxk+bT3HPfO9lL2DPYK9rH20/cG+Qf6o/or+5r7Ovzb/If95f6LAFgCMQS5BZUGlQZABe8CZwDm/Tr7rfjK9rr1E/Zb98T4SPuE/t4BWwUrB98GlwVbA1MCOwI7AU8AAf+d/YX+CgJ+C7ca7ie0LvEtrilgKPAm3yH6GZkNKv+38EbjM9wK2lDY9dcg2i3gmujX7mX0bvsYA2gKpw/AEusTARLzDl8N+QxbDCAJyANd/wf80/l++Iz2Z/S78dfuqO327WHvH/Kb9Vv6vf/2A0gHrwm+Cz4OFxDLEMQPCAzhBpYBK/2a+p74H/fB9iX3h/go+gD8zv5sARYDFAS4A2gCVwCa/bf7ffo4+Qj4zPYV9tL1v/Uj9vf2gPfr96D4wvlQ+9v8Iv6t/3AB9AKyAyUDMAJyAdkAJgBv/z7/IP8K/w3/Uv9PAAcBhgDO/9D+ef1u/Bn74/k4+vX6Z/yd/v8ATQT3BjQHdgYbCUoSpB6yJ+Mo0iOUHm4a+xbiE+MNMwVe+lnvNOpu6u/rCu7T77Hz1PnD/ScAtwE2AiMDdQNxAzMDhgCh/Gv63/op/QX+0PyU+1X68/lF+mD6qvrh+YH4k/jw+Rv8gP53AE0DogZPCTAL2QtlC8UKUQr0CT0JpQZPAmP9UPke9yP2lvUi9cX0x/T99UL4hPtJ//sBegPnAz0DQAI/AY0AhgCjACQAHP/H/aH84fs2+zr6/fiF9zT2N/U09Yz2h/gr+in71vtO/Aj9pv0g/vn+Gv+X/jv+CP4y/nD+U/7b/v3/4ACbASICiwKJAicBUf/p/Vz+9v/WAMoBLgKdAdIADP+ZAXMMiRqbJkoqPiY4I0UhZB98HbAWZg3SAk32++9S7unsBu3V6/bszfGs80j0o/Q49OX2Uvpe/UsBYwJLAgsE3Aa+CmwMCAp6BoQCTf8t/YT6FPhd9cfyH/K78v/zqvWe90H7rACpBX0JZguUCzULTwoXCewG9AKJ/b33NPPl8F/wP/EK8yP1GvjU+xIAlQQ4CP0KtA3+D1oRrBC4DaEJSQVKAYf9tvkN9sfya/AI7/fuafB58kb09vVh99/4KPpO+nv6MfsO/Pz84v0j/2wAUQEKAhYDUAQPBR0FsgT/A7UCBwBV/ez61vgL+Gj3sfer+AT5mvqL/Hn+nQFsA0ADAwLAADoHIRZ3JXov8i5kKRwnYSVcJLchVxl9DhIAgvLy7EHqeui35+zmcOup8WP0m/eX+Zb7mf/QAQ0EAgXFAdD+w/1+/scAVgGcAP//l/6J/bn8f/uK+hj5h/fe9nz2//bs+LX7kv/nAs0EsAUbBTUE7gOZA68C/QDD/cv6S/np+Dr6IvzQ/R7/kv98/2P/qf/WAMUClwQsBWoDRABf/SD8Af1N/r7+RP4X/Sb8mPtO+1777vpp+Tn3E/Uw9Eb0w/Tk9VT3hvlg/Ab/jQEuA5cDkgPbAk0BR//b/GD7MfvE+7H8of3X/joAbAFAAmgCBQKUAIv+jfzY+iv6Xfmc+LL6sf1gAOIBBgNqDe4g0zISPf46MTOLLr8o3yJAHRwSXwR18wblquKz46Tj++Of5Fbri/JI9Bf2DffM+D393wD1BQMJsAZ6BUEHRAuhD5wOmQpUBrcAYPyw+PL0rvEP7l/sCO508fT09PdR+3r/DQNZBbIFTgRcAkQATf9j/xz/qv6J/kL/CgGqAmoDxQOiA1QD8AIgAh4BUwDg/8j/w/+i/yn/gP4G/oL9MP2m/D37q/np92z2n/XS9Dn0EfTv8/zzZ/T09J/1tvYj+KP6E/5GAR4DqAMuBHwEdgQzBD0DpAEw/3D7k/hd97H26fa29+r4bfoC+8T6K/tV+4H7dPzb/jQCxgSlBsAHrgcLBq0E4AorGjIrBzbJNI8sUSXVHoIajhesEX0JFf6a8nXuNe5U7tzvo/HK9V35S/df9EjzX/Rd+OT8RgGOA6wB0v5o/sUANwONAhMAvv17+9L6iPtT/U3/O//i/nj/rf9R/1j+3f3p/gAAhADtAFwBIAInA2YECQX5A6QBDf9K/Wf8IPso+ob6bfvQ/CL+D//MAFQC9gITA6gC2wHFAFT/7f0g/XT8fftn+pn5XfkQ+cH4Ovh494D2/fSf8wDzNPMv9A32Sfkl/W4A5QJkBNgEugS9A5ICnQEI/8n6mfYZ89LxPPJD86b1Sfhp+mn8+v3y/u3+0/7b/tH/zgGAA/kF6Aj0CT8JiAf8CZMWnSdMNHI2Uy2lI9MdFxkUFzcUpA4JCBz+Bve49UzzsvAN7+LuV/E87+PoMuVY5WzqrvK3+vEBigSoAhECXwRjCKQKXgn3B/AGJQVRA8cBXAFcAWsAmf+A/rz71/eq9Jb0Uvf8+Yb7ffx3/fj+OwERBNYGFwgoB1YFnwPXAU8An/+x/8r/kv65/Dj85PwD/vv+ov82AEMApP8y/zv/Ff8a/qr8IPvY+c34CPja98z3z/c3+Ab5hPqE/GX+l/86AFUA5f8l/6b9e/u0+WL4hfer9+v3nffy9wT4rvhr+mn7YPxn/Z/9e/2h/Cb7IfrA+Sv6Xvsl/dX+qf95ASoEcQasB/UHNw1RGzYsyDcfOFwuJCPzGawTpRF/D8AKJwNI+gT2BPYp9UTzRfGT8G3wGO366GnnaenK77D4JQKLCR4L8QjmByIJtgvkC7EIsASRALz9J/15/dT9O/3x+4T76voA+X720PQD9jH5RvxA/hr+Ff1j/Wr/pALsBOID7wCf/bn6cvlD+RL63fvD/aj/xQGbAx8FRwbTBugGRQatBHkCxv/Z/Uv9af1B/T/8nPrj+JL3DfdS9573qfbm9Pbzh/Tn9d73gfpW/ZL/BQCt/14AKwFpAUYBwgBPAIX/zP2R/Mn7ZvpL+fn4pfl0+tT5QPmD+QX60vqf+z39AwD9AYMEYgefCPwHKgcnDd4cySzdM+UuKCIbGOQRLw7aDhkPrwxDCBwCZQB1AZ3+2Pq699f1FfVf8Mnq3env63TxTvlh/94CPwHD/Bn8BP/nAlAFWwVfBXoFMwVqBSEFDwTDAVz+yfvh+ND0G/Lq8U/10fqS/rEAiwE4AUkCMATRBb0GXQV3A5cCZQEQAJT+Of2a/XP+2f7T/nL9qvuE+n36kvwe/5gA6ABm/2H9vPsC+mT5ufkF+sT6G/sH+8f6MfrR+Qf6YPoZ+5T7DPsA+sT4bfia+cn6Y/vh+4/7afue+8T75Pw2/f775fr++a75U/qK+nb7d/2v/o7/jQB5AdUDBgZBB3kIMQhSB1kGkgRhAoP/zv/1CF4YwSYrLFYm7h3NF8MTFxPAEusRFxA3CqAESwKy/+b8M/qV98P2TvOb7N/nl+bz6anwxvau+4v9JvwO/BX+TwEaBG0EfgQCBRIFNwUNBY4EyATyA3MC8QDD/Qz78flI+kz8sf1y/a/89vs6/Aj+zv9YAAz/Ufw1+s35U/v4/VEAkgGWAaEAtv+f/vv9CP7Q/gwA3QBjAcEBNwLIAucCnwIMAi0AJ/2g+Un2VfS18zTzhvNw9Fz1ovY19x/3YffY9474RfqG+6P8XP2t/aj+AACqANYAawB8/9f+4v2W/eD9IP6E/vv/ZQHwAlsD+wFlAIX/Jf/i/84AcAEKAmwBbAFZBeEQtCBlLIQsPyM4GOsRABDCEH4TnRU1FRARtAvNB+sDRP0897HzDPKF7x7qxuUH553rk/FJ9+j50fm09/D1fPi6/ZYBcQQ+BgsIAwn4Bw0G6wTFA9MC2QHbAPT/l/4B/uD+MgCfALH/uP1R/G77K/uh+2n8P/2z/uv/vAADASAATf+X/pv9bPwF+2L5BPmc+YT7Y/7DALUB4gF7AVEBeQE/Ac4AKwBN/yn+Lf2J/Mv7KvpZ+Jn2T/Vz9MXzWvNI9Er1bPbK90f4hfj5+Cb5tfqh/Ab+6/+CAeQCZgT5BPAENQWyBKkE0wThBCMFDwWBA94BzP8j/wcAXgHkAngDHAJVAXMDWAs1F/0eOh92GUMSQg5JDYUN5BCkE00UfRJ2DuIJkQWk/x78i/vm+nr40PNF8LbwJ/OE9bv3sffM9VHyve+V8Gfz6/Vr+P76av5hAHsAwgC6AQQDygMnA5kCeQKHAckB0gI5BEUFegTVAoABnf/p/eL8J/zJ/Cv9A/19/AD7v/nG+er5t/pX+5b7ifyP/Zf+hgCjARgC8gEeAckATAC4/7z/hgCsAaoCTwKCAZD/Of1a+7n5dPgn9970VfOo8sLyxfP69Cn25/cj+XT6Hvwu/X7+Of/Z/48A8wCdANQAGQBjALkAYwAmALH/N/6+/mH/HgBYApsDcQR4BTMGhwvlFo0hbCcZI/kYURGiDjMP4BKdFGQVKRO5DaEI5QNY/qn5W/YK9lv3pvUb857xgvLm9ez4APr5+b/20PPs8kT0avf3+fr6tfyP/bb+FQC5AFYC1QM3BUcHowdyBkwFWwMlA4kDJwPMAiACMgEeAt4CfAJfAfv+Qv2d/JT7XPqc+e74M/my+Rn6Nfov+o/6vvs4/U3+q/4w/1v/fv/a/+f/BQBs/zn+cv1C/RP8e/sC+x/7ffu0+h/53PcE90/2uvaH9xD5ZPrd+mn6FvrL+cD5Fvqq+vj76P3M/+gALQGfAasClQRdBvUGWwaDBaIE3AStBVcG5QbxBrsFWwOxAIsAYgVhDYcTxxNzDr4H4gPVAy0HxwuaD+YQ7g//DFoKXgf5BP8DpgQ8BYUEiwEw/m78L/zb/ND85vpC94vz/vCw8L3xLfMX9OT0K/Xy9eT2TvjC+eL7mf7SARgE8AQIBRIFBAZvBzoJAQppCTwHtgVzBRIGrgWMAycAMv3++pH5Yvkk+QT5rfj99yj3Ifc397j4Evtz/b7+CP8l/mf9m/13/mAACAIqA1sD4gIRApgBwgCjABcA5f4i/cT6c/hU96v2HPfM+Cj6KPsv+6D6e/ro+u76V/sJ/FX8G/wF/Ib8Nv7y/9IAkgDr/87+d/5J//0AOQIuA5ICXwHtASoGAhAIG1QfzRqREZYJYAglCw4Q4BR2F4EV+BAkCkUE4P8//Dz71/wp/lT+T/w8+S35JPqB+0P8Uvq09l70afJ38wj2ZPfV+J75Uvlw+kr75Ptz/Q//KwFHBAcGzQZ9BzMHTgdkB0wHAgc+BmIEdwOoA0AERAR1AoX/tfzN+oX5j/n++WT6sPqw+iH6qfkQ+R34IfjY+CH6AfzO/KP8RPzA+7P7jfxW/U/+QP8B/zD/sf/I/8j/qP8R/yn/+f4D/oD9Af1c/KX7hvoW+cb4kPjP+JX5K/qw+iL7p/uf/A7+b//8AIkCsgNYBCUEfAQ1BRYG6AapBykIuQjWB2IGVgVXBaAGyQgIChEK2whVBqYEWAOLAl0DgQZNCiMOPg4PC1cHzAQ+BL0F8AaEB70GUAS4Afv/T/94/yD/0P34+0z5W/cp9mX24feI+e75B/qp+Jn38Pax9qL3EvpV/Ev+cf+d/7UAIgIqA78DiQPwAvgC7wLlAtcC0wIPAwIEkgRLBIUC9P/K/d38zvwi/bn8t/u0+t35sPlX+Zv4C/hL+HL5Bfsm/Oj8Gf2x/Pj73/tO/Kb91/4gACUBuAHmAG7/Gv4i/hb/GwA2AHz/Sf7k/Jb8+Pzt/b/+Zv9J/7r/df9v/8P/FQChAM4BAwKEAgEDagIOAh4C9wO+CDcOVRDPDjQK2AZtBpoItgt9DrcP3g43DIYIBgWmAlEBEwG4Aa0BxwCZ/nX8wvpS+hD61Pnd+fP5C/oC+pP5rviD+Nj32Peb+L/5L/uj/Az9mv0I/o3+6/40/yz/Mv85/6n/ZwBNAWwC/QKdA+MDsgNkA6sDnQNJBFgEJwQjBIwDmQLFAZQAxf9x/4L+yv3J/IL78fq5+n36wvq5+lX6Bfpv+Uz5PvoL+837IPwV/O/7QfzU/Pj8P/2m/fL9sf8BApQDHQUuBY4DogJLAT0APQDO/4X/rf/B/pb9U/y5+rn6YfwK/l3/mf6s/CD9IgFFB8gMOQ1XCVYFkgMvBskKog7oEH0SdBLsEDMNlAiiBVYFSgYvB/sFtQKq/u/7V/uY++r7wvpy+Vn5Pvme+Oz3bPbt9cH29ffU+dj7wvxs/Qz9NPx/+9v6hvod+xP8i/3S/if//f5u/r795P1h/l//mgCvAdsCIwO4AjIC+AGOAtADZATpBHgEQAPJAR0Awf5d/pv+ov+lAAgBhAAK//r9Qf3d/P/8F/1p/Dj82Pt9+837xfsM+2L7VfuB+yb84fvs+6X8af36/cj+NP/w/6YAqAF+AlgDSwQCBOsC5AEnAAb/P/6C/YD//wLzBQsHEQUXAeT+SP5A/xsBRgJcAp8ChAKkAe8ARgC1AL8C6QSFBUsFHwRhA1AE9wULB7UHKgcZBvsFXQWkBBgEDwPZAvsCSwJzAb3/yv2P/Iv7Kft9+5H7J/x5/Mv7Wfs4+7v7Vf1u/j/+6P23/Mn79fsH/LH8Qv4T/+3/TwB3/wT/pv66/tD/DAFfATgBFwBH/xz/Qv+D/7//vf/B/+P/4v8BAKj/Ff9u/g7+7f3x/dn9rP2t/a/+3v/AAPoAJwAW/wb/tf6o/jf/5f4D/03+zvxM/H/78fr6+8781/2v/sf9o/2W/vD+iwDdAT0CMgPBAnUBqAEKAvACbQR+BBEE4wMcA9wCQANYA3cD5QIuAjACzgL7A8wE7ATXBP8DYwNEA8EDkgQ+BVAF8gREBD0DqAJLAgMCfAGSAEf/fP4F/rX95v0r/lT+jf6F/vT9jf3z/H381Pxz/eT9GP7V/Z399v37/hsAVgEKAgECvAEcAY0AJwBEANIAkAHdAZQBhgBv/2z+cP32/Pz8/PxC/RP9YPzo+1f7NPuC+6P7u/vW+6X7xPsm/Ob8r/1C/mj+if5q/m7+Mv4R/rj+4/85ATICvAF3AFH/fP6X/u/+T/8wADkBCgKAAqwBhACZ/4D/dACSAb4BiQEVAXsBfgL2AiMDDwMEA3MDuAOrAwgE0QPQA8UDKgPyAgYD4AKgA6QDJwP0AgYCbgFLAUgAn//4/sz9Z/0T/ZH8dfxV/Cf8dfxn/MP8mv2C/jX/J//F/nr+0/6M/1UAAwFsAVMBIAHrALkAJAHBAT0C3ALDAiACtQH2AIsAkgClAPEAoQGWAT8B8wAQAGz/Bv+N/o7+N/+o/x4AAwAW/9X9f/ya+6P7bPx8/TL+2f0I/eb7K/uy+7f8fv47AAoBRgG3AN7/+f99AFMBggKmAokCGAJRAUIBhwHxAaQCyALXAaMAQv8R//D/vAD2AFEAE//v/Yb9N/4q/4f/df+N/oX+6/9jAdUCvwPQAxYELASOAykD5AIcAx8EqwQnBB4DfAFaAJEAtQB+AFUAN/98/m7+s/2N/aj9Z/3B/a/9zfwT/BX7bfoC+7n72fwV/uD+Y/9E/9v+hf5W/nH+3P4P/6T/3P+x/zoAlAA2ASkCegKWAqoCHAIRAtcCYQOQA+cC+gGtAdcBRAIwArMB/wADAP/+8v0F/ar8qPzb/Bn9zvxa/BX8vPv1+678af1A/sj+0/4N/0b/kP8MAGsAwAAMATIBCAG1ALcABQEiAUQBGwHkAKwBWgLbAj0DlAKHAeoA9/9o/53/3v+NACABugDr/zn/If8eAE0BAwL7AUoBgADF/7H/TgAiATACGgMuA+ACFwL6AGkAPwBXAOgAHAH4ALEAEgC2/1L/Ff9N/47/tP+d/xP/if77/Yv9gP02/T39Tf1e/df9Ff4K/vH9yv2v/RP+i/7X/hP/4P6O/lb+MP47/pL+4P4R/9P+RP63/Zv9Af5f/pL+pv6S/q/+I/9v/woArAApAf8BKwKHAZ0AbP8c/9r/pgCJAfEBwwGbAZYBpAERAoUC3gJHA0cDNwMhA8gCYQIiAvgB1QHJAaMBhgGEAXUBJwHmAG4ABQB4/8r+i/6//jL/tv8vACsA6f+4/1v/bv/Q/wEAewB5APn/aP98/uv9Cv5P/tL+X/9m/7T/CgAeAJ8AKwGWAR4CRgIrAiwCHAIeAiUC5AF7AWcBrwEMAhMCmAHoAEMA5/+J/3H/uv+t/1b/9P4i/qH9c/05/S79MP0M/eL8wPyP/JT8ofzL/DT9pv34/f39zP2S/Yn9tf09/v3+if/Q/+X/BwAMAFMAqgDJAOQAoQBKAC0AYQDCAFoBxwEYAi4CGAK4AUIB9gDzAE0BtwH4Ae0B6wHSAccBtQGLAWEBWAFsAYQBXgHQABIAUv/F/oT+gv6m/tD+8P4Y/zL/Y/+b/8z/+f8yAAcA6/8VAHIAFQGZAZsBWAEcAd0A1wDkAOQA7wC5AGUA7f9o/1L/n/8gAF4AIgCD/+v+ov6x/in/jv/F/+n/pP9m/4z/5f+PAAwBDgHoAKMAJAD2/6j/WP80/w3/DP8Y/xH/zv6A/iP+Bf4a/jf+cf6v/sH+3v4E//n++f7D/n7+WP5Y/oX+tf4p/8j/NgCRAJgAggB5AHQArgDzAA4BFQHXAJYAhAB1AIkAtwDkAPQA4ACaAFwAWACRAOIATwGNAW4BNgGuADAAEgBlAJQAsQBhANf/sf+p/87/MgCoAPoAcAGJAXsBbgE5AVEBcwF3AV4BJQHdAJ0AYABEAEgASAAiAPT/uP94/xj/yP6x/tf+Nf9Y/1r/O//7/vn+7f7r/iX/bP+t/+X/AwD9/8z/h/+C/4z/kv+r/5v/tP/D/87/0//X/9D/wf///y8AUQA/AO7/w/+t/9f/OACEAJoAsQCUAF4ADgCS/zD/Kf8+/zv/RP8l/yr/J//e/sX+r/53/oL+l/7B/uT+Ef9k/7T/GwA0ACYA9v/g/9f/+/86AEYAcgCCAJEAzgD4AD0BeQGSAZsBkAGHAVwBSgFeAYsBowGdAYYBPQHWAFUA/f+//5T/ev9a/yH/Cv/g/rz+yv7X/rr+tv62/q3+2/4D/0D/if/n/woAEgD9/7b/sv/O/9z/7f/T/7H/vP/R//b/KwCaAN0AEQEeAeYAzACJACYAyP+L/2b/Wv9h/5f/4v8DACsAIAD0/+P//f9OAI0AmAB9ADAACgAQAEEAkgDFANkAuQBVANn/ev9U/1r/c/9o/03/Of9C/1j/Xf96/7z/CQAvADgA5f+g/3f/Wv+f/8P/zP+6/8j/8P/l/+3/2v+8/+n//f80AHsAiwCUAIYAbAA4AO7/7v8bAE4AhACfAL4A0AD/ADABSgFqAWEBPQEgASkBJwFRAU8BFQG6AFEA9P+//5T/g//F/7z/vf+J/0v/NP9P/4L/m/+o/2H/MP/7/vn+E/81/1b/Yf9o/0n/Xf+d/9P/BwD//97/rf9x/13/Wv91/6v/xv/V/73/l/9d/yr/E/9C/7T/AwAZAAAA3v+y/6n/yv8JABMA8P/t/9P/vf/a/9P//f9VAI0AxwDMAM4ArgCxAJYAiQCNAI0AqACYADsA3v+g/2r/ev+A/4X/jP9x/1//Xf9m/4X/lP+C/3X/jv/B//3/NABOAIAAwgDzAD8BagFqATIB6gDCAKUAowCjAJ8AjwB3ABcA4v+2/53/yv/l/wAA/f/r/9r/4////wcA/f/n/+L/xv+o/4f/c/9s/3r/jv+f/6T/m/+d/3z/Yf9P/0T/VP96/6D/0f8JAEEAeQCGAI0AWgAZAOP/vP/V/wAAJABIAEMANgAnAEYAggDUAAcB6wDDAH0AIADT/73/1/8FACAAGwD2/9z/+f8JABkAEADp/8b/lP9s/1L/LP8u/1b/qP8AADsAOwADAKn/Yf9S/2T/lP/Z/wMAEAAkADYARgBBAB0ADAABABcAWABlAGsAYwA9AEMALwAmAOf/yP/R/7j/zP+6/6T/qP+o/63/q/+m/8H/6/8VACcAGwAbADoAaQCGAKoAswCsAKwAqACfAJ8ArAChAJgAggByAHcAewCEAHUAaQBBACQA9v/D/8P/sv+Z/5X/ev9E/yf/9P7l/gj/IP9J/1r/gP+m/8j/9P8VACQACQD7/wMAEwATABMAGQAbACAAGQAOAAwAGQA/AGEAWgBMADQAOwBeAIIApQCxAKMAnQCIAHIAYABOAFgAUQA6ACsACQDQ/7r/qf+y/+v/DAAdAAwAAAD0/9f/sv+J/1//O/8l/wr/9P4I/x7/QP+A/6j/r//T/+f/1f+//6T/rf+y/6T/xv/Z/+7///8OACkAIAAMANX/ov93/13/O/80/1T/fP+m/7T/zv/r/wkAFwAtAEEAPwBTAGcAeQClAL4AvgCuAKMAbAApAAAA2v/l//n/GQAnACkAMgApAB4ACQD//9z/w/+9/8X/4P/0/wUAFwASABMAJgBaAJYAswCvAJoAiACGAKgAtQCvAKgAiABgADgA7f/T/9H/2f8DABcANABKAGkAUwBEADQABQDg/8b/v/+r/6T/n/+S/5T/jP+S/4z/i/+i/8r/6f/7/wkAGwAmADoAWABhAGwAdQBsAGEAXAA/ACQAHgD2/8P/r/+Q/5X/pP+k/7z/ov+y/7H/lP+F/3P/i/+V/5f/if9d/1L/Sf9P/3f/ov/F////KwA4AFoAggCSAJQAbABaAFwAVwBMACkAMgBYAGMAZQBVADYAEADi/87/v/+k/5D/mf/I//L/GwA2ADAAJgArACIALQAnAC0AOwAgACsAHQAHAPn/0f+t/5X/fv+A/5T/ov+t/6b/qP+f/6//yv/2//v/CgAyAEEATgBeAHkAdAB9AHQAWgBgAFgAPwAiAAkA/f/7/+P/5f/a/87/xv/M/9H/5//0//T/6//e/8j/pv+v/6v/2f/p/+3//f/y/+P/0//O/8j/1//w/wwAEgAZAP//7v/r//3/DAAnAC8AMgBVAEMASABIADAAKwAeACIAMgBIAEYAPQA9ACYADgAAAAEA6//i/+D/1//G/7L/v/+2/7j/tP/D/7//yv/F/8X/zP/Q/+n//f///wcA9//O/8b/1//e//T/FwAwAEwAVwBGACQAAwD0/+3/6//y//L/5f/7/wcAHgA6ADIAGQAQAPb/6f/y/+7/AwASABkAKwAvADYARgBGAE4AYABaAGMAWABTAEYASABnAGcAaQBTADIAIgAvACAA9//p/8j/vf/K/97/6f8HAP//2v/B/6n/sf+9/7r/r/+d/4v/h/+r/8P/4v///xkAHgAJAPn/1//Q/87/tP+X/3f/Y/9u/5X/q/+//8b/1f/i/9r/yv/X/9D/0//n/9n/3P/X/9H/4/8AAB0AKwAwACkAOgBGAFEAVwBXAFUAXgBaAEEAMgAeAA4AEAAVACIAJAAbAP//2f+//6j/pv+x/7b/xf+4/7z/4P/p//v/AwDw/wEABQAKAAoACgAMAAwADAABAP3/BQAVAAAA+//3/8j/0//M/+P/CgAZADIAOABBAEMATwA7ACsAKwAyAE4AYQBaAGAAbABeAGkAcABnAGkAXgBjAGUATgBXAEMAKwAnABUABQDa/7H/nf9+/37/av+D/7L/1f8DABcAEwAFAPL/4//t/+v/4//2/xMAIAArAB4AGwAnABIAEgABAO3/8P/0/wAAAwATAAoA6//w/+3/4//D/6//nf+r/7r/uv/G/9H/0//l/+v/9P8FABAADAABAPf/5//n/+n/8v/r//D/9P/r/9H/w//Q/9f/4////y0AQQBXAGUAYwBMAE8ATABEAEgAOAArACYAEADt/9f/xf+y/5v/hf9x/3P/gP+F/4z/l/+X/53/vP/F/8z/2f/r//v/FwATAAoA//8FABIAEgAkACAAGwAnAD0APQBDAD8ARgA7ACIAHgATABUAFQASAAoADAAHAP///f8AAPn/AAAAAPT/9P/u/9f/xf+8/7r/uv+4/87/9v8QACQAJwArAD0ALQA9AEMALQBEAEYASAA9ADgAIgAgACYAJAAbAAwAEAAFAAEA/f////b///8BAAAACQADAAwAGQAnACIAKwA2ADsAOAAiABAAGwAZACcAPwBDADsAIAAFAOX/0f/F/8P/w/+r/5X/ov+k/6j/rf+d/5X/g/+D/4D/g/+U/8H/1f/2/xMAGwAvAEEATABPAFgAWgBTADYAJAAQAA4ADgAdADQALwAtABIACgAHAAwAEwABAO3/9P8BAA4ADAD//wMA///5/wcAGQAKAP3/+f/2/+f/+//n/9r/6f/j/+3/xv/K/9n/3P/c/+f/3P/c/8r/qf+m/6b/ov+v/7//0f/w//3/BwAOAAUAAwAHAP//+f/7//D/AQAOABAAFwAQABUAAwD5//L/3v/g/9r/4v/w//D/6f/2/+3/4v/5//v/AwAMACYAMABDAFoAYABsAFcATgA6AEQARAAwAB0AHQAbABUAKQA0ADoAKwArADAAKwApAB4AGwAMAPv/7f/g/+n/5//X/8j/uP+9/7z/qf+v/5v/hf+O/5X/lP+o/8X/1//3//f/7v/3//D/4//2//f//f/r/+3/9v8HADQARABPAEYASgBGADYAFQD5////9P/5//T/+f8BAAAA///u/+L/3P/R/8r/1f/T/9f/1//X/+P/xv+2/7//vf/g/+P/1f/O/9X/3v/y/w4AHQAiADIAQwBBAEgAPQA4AB0AGwAeABIAHQATABMADgD7/wkA+//2/woAHgA/AEwATwBBAC8ALQAMAPf/8P/l/+L/7v8AAAUADAAQABkAGQAVAAoAAQD//wkA+////wAA8P/0//D/AQAMACAAJgAwADgAOwA9AD0AOgAgADsAPwA4AEEALQApABAAAAD3/+3/4v/O/8z/uP+y/8H/v//I/8b/uP/R/97/2v/t//v/CQAkADoATAA/ACQAMAAiAAkAAwD2/+7/2v/V/9H/0//n/87/3v/j/+3/AAD//wwAEgAOAP//+//y/97/1f/O/8X/yP/G/9D/0f/M/9X/xv+r/7b/vf+x/6n/q/+x/73/1f/t//n/9v/r/9n/8P///wEAEAAFAAMAEgATABsAJAAkAB4AIgAXAAEA/f///xMAEAAQAB4AJgASAAcAAADy/97/0P/X/8j/3P/t//f/AAASABsAJwA4ACkALQAwAC8AIgAeABsALwBDADoAKwAQAAEA9P/p/+7/4//y/woAAQADAPb/6//t/wcAEAAgACsAOwA6ADAAOwApAB0AHgAwADIAOgA0AEQATwBEAE4AQQA0AC0AHgAXABcACgAFAPv/5//T/9H/0P/F/8j/zv/F/8P/zP/T/8z/sf+g/6j/tP+9/7j/uv/I/8b/+f8SAAcAHQAVAB0AIgAwACcAKQA2ADsANAAbABcABQADAP//8v/X/9P/xv/B/8b/uP+9/7r/vP+x/7L/uv/M/9f/0//R/+L/4v/e/+f/8v8DAAoABQD9/wcAAwD9/wMA7v/u//f/9v8BAAUABQAJAAkAAwDw/+f/6//9//f/CgApAC8ANAA9AEMAOwBDAE4AVwBDADAAHgAbABcAJAA0AC8AMgAkACkAMAAyAD0AMgAbABcABwD//+3/0f/a/9z/2f/i/+X/0f/O/9D/0//D/9P/0P/M/9r/1//i/8P/xv/g/+v/9v/5/+v//f/u/8z/zv/Q/8j/yv/M/9X/3v/X/+D/4v/j/+f/5f/a/87/1//R/97/9P8BABIAFQAnAB0AGQATAAcACQAAABAAIgApACsANgArACIAOgAwADAAMAA0ADYAPQBYAE8AVQBKADgAHgAbABMA+//w//D/+//u/+7/6//n/+f/1//T/8j/vP+y/7j/v//D/8H/v//Q/9z/7v8BAAEADgATAAkADAAFABUAJwArACkAMAAvADIAPQAnABsAJAAiABkALwAvAC8AIAAiACQAIAA4ADAAOgApAB4AIAADAO3/1f/j//D///8FAAkADAAKAP//7f/t/+v/5f/i/+f/4P/e/+P/2v/l/+D/2v/g/9f/BQATABUAJAAiACYAHgAXABAABQAFAAcA9v/y/+v/4//e/9z/3P/B/7b/qf+m/6j/nf+v/6//qf+4/7//wf/O/8r/v/+9/8H/tP+0/8P/1f/r////DgASABkAEwAbABcAGwAQAAAA//8MABUAGwAdABIAGQAJAAkAEwAeABsAHgA2ADsAPwBDAD0ALwA4ACkAFQASAO3/8v/n/9P/3v/V/87/wf+x/7b/vf/I/9r/8v/p/+P//f8HAAoABwAQABUAHQArAD0ANAAmACsAHQAMABMA9//9/wAA8v8AAPv/GwASABkAHgAgACsAEgAbACAAEgAJAAAA9v/5////AAD3//D/9v///wEACgAXABcABwADAAkAEAAZABMAIAAwACIAJgArADIAJAAdACIAJwA9AEYAOAAnAC8ADAASAAoA7v/y//L/9v/0//b//f8TABUAEwAKAAMA9v/l/+P/4v/w/+P/6//j/+f/6//j//f/8v/9/wkADAD0//D/3v/a/+7/6f/r/+P/6f/u/+n/3P/V/9f/4v/R/8r/yv/K/8b/2f/M/73/v//F/8X/xv/I/7z/tP+x/7z/uP/M/9H/2v/y//3/+/8FAAwAGQAwAC0AOgAwACIALQA2ADoASgBIAD8ANgAvACcAIgATAAwA+//j/+P/4v/p/+D/xv/B/7j/tv/O/9X/2v/i/wMADAAAABkA9v/2/w4AFQAgACIAKQAvACsAIAAeAAcADAASABAABQADAP3/AAAHAPT/9//w//b/8P/n/+f/8P////v/AQAKABkAHQAdAA4AFwApACQANAA4ADIAOgBIADYAOgAtABcAJgAbAA4AAQAHAAEA4//a/9f/1f/B/7z/wf+8/7r/wf/D/7j/r/+f/6v/sv+2/7b/vf/R/+f/CQAOABIADgAXABcAEwAOAA4ACQADAPf/9//0/+7/BwATACIALQApABUAHQASAA4AKwAmACkAGQAgACkAJwAvACAAHgAtAC0ABwDu/woADAAHAB4ALQAbABcADAAHAAMA7f/2//b/3v/t/+X/8P/t/+f/9v/l/+7/4v/e/+P/4//X/9H/yv/K/9f/0f/R/9P/zv/Z/9z/2f/i//f////5/w4AGQAtAD8ATgBKAEQAMgAQAB0AJgAvACsAJwAbAAUACQD0/+X/3P/u/+3/9P8ZACAALwA9AE8AWgBRAFoAbgBuAG4AbgBrAFoAWABOAEMAKwAbACYAHgABAOv/zP/D/9n/0f/g//D/+//y/+v/5//V/9z/w//D/8P/r/+r/5v/n/+i/7//yP/F/97/8v8AAP3/9P/t/9r/1//I/7b/uP+y/7L/w//F/8b/3P/i/9z/5//9/+3/7f/p/+L/5f+//9H/0f+//7b/pP+6/8b/wf+4/6v/qf+J/3H/i/+Q/4f/qP+t/7j/0P/V/+f/+//t//3/EwAvAE8ASgBRAGcAewCJAIkAfgB5AHAAfQByAGAAUQBIAEwAOwBDAEYAMgAdACYAHgAdAAMA7f/5/+v/AwADAPT/9P/j/8r/uP+2/8j/0//Z/+3/7v/u/+v/6//5/w4A/f///xUAFQAZACkAOwA4AEQAQQAtAC8AMAApACIALwA9AFMATABaAFoAQwA2AC8ANABBAEYAQwA9AEwAQwAkACQABQAZABUAAQD//+n/1f+8/6n/jv+H/4v/lf+L/4z/fP+H/5L/m/+X/6L/rf+4/9r/0f/w/xIAGQAXAB4ALQAyACsAEwAHAAwADAABAPf/+//0//3/AAD9//n/7v/5//D/6f/w/wMAAAAZACIAJgArACQAJAAkACYAJAAyACcAHgAmABIA/f8SABIA///3/9z/xf+2/6n/pv+d/6D/sf+k/6v/sv+x/7b/wf+//87/0//R/+L/4v/3/wMAEgAdAB0AEAADABIADgAbACsANAAvADgANgAtAEYASABGAC8AKwAZAAkAEgD9//b/9P/3/+v/9v/u//T/EgATABMAEAAJAAcAEAABAAMACgD//wkABwAOACQAMgA6ADgANAAwADQALwAvABcACgAdAAUA6//T/8H/0//X/97/wf+X/5n/gv98/3z/df9x/3j/jP+S/63/xv/a/wAAAwAOABkAJgBBAFgAVwBaAGAAXABhAFoATABRAEEAMgAyACIAHQASAPn/1f/Q/9n/4P/u/+D/1//r/+X/0//e/+D/+f/9//3//f/7/wUA/f8QABIADAAVACIAHgAZACQAJgA7AC8AGQAdAA4AFwAVABUAKQASACIAOABDAFgAbgBhAFMAVwBKADYAJgAbABMACgD9//L/zv+9/6//n/+D/3f/Yf9H/2T/Sf9H/0n/Sf9Y/1j/VP9H/1L/Y/9z/5v/rf/I/+f/+/8bADAAWACRAKgAswC5AMMAwwCxAKgAmACmAKwAowCLAHQAXgA9ACsAEwAAAP//4v/a/8r/vP/M/6v/sv+x/7H/vP+8/8z/yP/t//n/+/8dACAAJgA0AGAAcABuAIAAggCIAHkAcgBaAE8ARAA0AC0AIAAVAAwABQAVAAAA5//t//v/8P/j/+3/8P/t/+L/8v/w/+7/2f/a/9f/rf+V/3r/ZP9A/yf/8v7B/rH+jf6E/nD+U/45/iv+Ef76/fv9+v3y/fH9Bf4P/if+Uf5s/pb+zv70/hX/LP9G/27/gv+p//n/PQBlAIYAsQDvAAcBNAGJAcMB/QFaApsC9AJUA6ID+QNLBKcEBAVHBZoF7gUtBmcGjwa7BrsGzwbJBpEGfQYsBsYFRwXeBHYEAgSQA+0CWAK+AQoBSgCH/8j+Ff6C/eL8MvyR+wf7mvom+q75R/n1+NH4sPiR+Iz4nvi7+Nj4Avk1+Xr5svkC+mn60fot+3/72fsV/Fr8kvzQ/Bz9U/15/Zv9vP3Q/eL97/0G/v39/f0D/vr9A/4T/in+NP5R/mr+nf7Q/hP/Zv/G/ycAnAAIAZQBMgLFAmwDLgTlBJAFWwYQB80HiwgyCdQJSgq2CiILXQuHC7MLoQt+Cz8L2QpzCtAJLQl0CKMHxga7BbQEqAOrArgBrACi/7j+1/0F/VH8vvsi+6H6LfrR+Yr5W/k++Sj5LPk6+Vv5hfm9+fH5Lfpv+qX61voM+0r7gfuu++L7+PsX/DD8RPxe/GH8cvx5/Ij8hPyd/Jj8mPyd/Ib8dfxe/Er8J/wb/Pb7y/ul+3f7U/sz+yT7CfsC+/r6C/sp+0j7gvvA+xL8bPzH/Dn9r/1G/u3+m/9OAAwB1AGdAnwDWwRZBUUGPAcxCBMJ+AnXCsMLmwxoDQkOkw4HD1kPhg+XD44PQw/fDjgObQ2UDIULdQpDCQsIsgZMBeADVgLqAJL/Qv4V/fz7+voZ+lD5pPgc+Lr3b/c89yr3Ofdh96T39PdQ+Lv4M/mi+SL6o/oi+6X7E/yE/Nv8MP2A/bf95v36/RX+Ef4T/hX+Cv4F/uv91f2s/YT9Zf0//RP94vyj/Gn8Lfz1+7f7dvsk+/P6xPqK+l76LfoO+gX6AvoE+gf6H/pT+oH6wPoM+2n72Pta/Pj8kv1W/iH/+f/gANkB2wLgA/kEAgYQByAIJwkyChML5AuyDEkN6Q1oDsIOCw8SDwkPyA5zDgIOdQ3VDPkLEwsRCvYI1gegBnEFPgQIA9IBpgCM/3z+i/2l/ND7Jvt/+vP5dPkU+c/4oPiI+IP4l/in+M34B/lJ+Zr56Pk1+pz66vpB+5H75Ps7/Hf8wvz0/C79Yf2G/a39vv23/bX9rP2b/YD9Vv0e/fH8t/xy/DT84fuR+0j7+Pqj+mL6L/rz+cL5oPmK+Xb5bflo+Xr5kfmw+ez5Jvp2+s/6LfuU+wn8f/z6/Jr9Jf7S/pD/cABPAT0CSQNOBGsFgwaKB40IlgmJCosLgAxiDSUOtA4sD48P0g/jD90Puw9eD+EOPg58DakMvAu+Cp8JawgrB+gFpARmAzkCHgEAAPj+E/4r/WH8tfsH+3b6Dfq3+W/5Tvkz+S/5Q/lm+Zz53Pk8+pX6Evt/+9v7Qfyj/AX9Pf2J/bj91f3t/e39xf2Y/VX99vyf/Dr81PtX+8L6OPqr+RT5jvgP+Ir3Cver9l/2HPbt9cP1r/Wd9cH1//VL9q/2FveD9xH4tPhM+fr5tfp2+zb89vze/cz+4P/xAP8BFQMLBBIFRwaTB9gI/QkRCyMMHQ0bDv4OyA+WEC0RmBHLEd8R7RHhEagRSBGVEMYP2A7DDaIMdQscCtsIjQcCBp4EKQPJAX0AKf/S/Zj8j/uc+uP5JPmZ+Df44/ey9473oPfK9wv4Xfi/+Dr5qfkW+oz6APtg+8v7Nvx//MD86Pz8/Az94vy6/Ij8MPz8+7z7Y/sf+8n6e/od+qL5M/nB+En48veB9zX3+fav9oz2ZvZJ9iD2I/Y39k32qfYI95f3Jvi2+Ev53flp+gz7wvuu/Lj9rf6t/8IA6AERA04EkwX3BlUIqgneChUMXQ2QDuEP7xDAEXQSMhPOE0YUhRSNFIkUSxTTEw4TKRI2ES8QDw+QDRwMcgqoCPkGIQVYA4kB7f9T/tL8bfsZ+uH43vcT91/20vVz9WX1WPV79cn1Kvad9jv3z/do+B/5u/lm+gz7tfsb/Iv89vwQ/Sf9Af3b/KX8Z/wi/L77afvj+kr6vflF+cz4VPju93j3CPe09nX2WPZA9gT23PWS9WP1QPVN9XX1x/UX9mr21/ZH9873Vvjh+KD5Yvog+xD8MP2//mEAOQLaAzwFsgZGCC0K+AvhDbAPWhGuEo0TehRNFUUWBxdMFzEXpRZWFsUVLBWmFKITYRIUEVUPdg3MCwoKYwiwBr0ExQLkADn/0v1l/Af72Pmr+Kf30/Yy9tv1q/Wq9bz13vUG9m/2Gven90f42vhv+fr5o/op+6j7Jvx0/Mv8Bf0g/T/9Qf0k/dL8ffwt/KH7TPu7+vn5ZPm2+Dr4zPdb9/v2gvYE9qv1VvUg9RH1BfXF9LH0wfS89Oj0RPWL9QP2aPbc9lD3yPdq+An51vme+s/7Z/0l/wUBtQJsBFcGJAjzCd4L4A0NEPYRjRObFHwVuRaaF/sXPhgSGKIXSxfGFrYVpBRsE9sRaRAxDvkLBwrkByYG9wPJAeD/Bv6S/Cj7ovmV+Hz3kPbg9Xz1FfXt9Hz1uPUX9pT2Sffj95v4QPmj+ZP6JPun+1r86/xh/fj9bv66/sP+3v4E//D+n/4F/u39gv0e/f/8JPyN+wv7gfrC+fn4WfiB9yX3gPa49Sv1mPR79F/0JfQD9Nvz5PMr9K/06/QG9c71J/Ya9yz4Wfk9+6j8Ef5W/4IBuAN2BcIHTAkGCycNtg7oD9IQrhI5FOQUqBXDFPsU+RUuFg8WsxS1E+YSQxJDEYoPXw6iDPQKOgmiBr0EIAP2AQMBw/6z+7/5GftV/fH8iPlf9ZT01fY8+I73J/dQ+db6Hfr9+IX4YvlS+nj6UPpm+tT7Kf3J/Gv8HP3H/V79Jf3r/GX96/7w/yn+wPsr++z7DPzc9zbyNvG19DX3ffP66qbmf+iE6y3r/Odb5YXkRuWe5Sjm0+eS6x/uau2J6y3sQPC8+ykMexi0HlgbqRUEGOoiGC5DMu4wdDHMNsg7ETqoNP0v8SsTJ18dLhSUETATyxJHDEoBjviW9BbxG+v/5H/hM+Cy38XcNNoc3HDgn+IA4GTc8NzK42Pt+PRA+PX5o/14BOAL0BBlE+AVBRn6G9AdzB6gIWcjqyBMG/sUtRBHD28NEglJA4n+dPq09jjy5+yV6UPnFeXA4w7iJuHd4c/gxN6h2t/X89dL2zjfT+Ew4g7jlOPM5Nbm++Yt6h7tQfNz9/X74v5wAbYDJQFT+8sGOyUURLJNsTYeHGkZvzGYRBJFgTuiOopD0EVsN6kq2SQmI5EZJQSW9TL1df1zAaf5T+qZ2wXS/M8v0OfSetJ302jVYNfm2oHdxeFZ52Pr6+w37371+wO1EagafxrLGMEbYCE3KDgpGykCKJkllSFfH9UdMhxwErQDTfYb8YTzpvND8OboTeOw35DcDtsn257cH9+u4BrjtOYS6ADoyOQM4jThyeEu5+TqaO7F7jvtRuyJ62HrtO/H84r4g/pw+9P+1f2e+0H0fgmqK7VGhUkgLNcVQyEIN61Bzj60Nw49FkR3P6gvIiq8JF0d6g4p+9LyFfPS9Av6E/ea6tfc287Ky6fPPdEn06zW99w24tDjauXf6dTy5flB/YABbQiOFMAgEyfAKd4m0yWAJionaSpvKPokiRyNEZQLgwW9/w33xeqN5MPiK+IL4UTcP9kt2NrXFdgi2wLgzuWW64rule4L7nXtSuzV7iHv5e+28HLxNPIt8tHxX/BE7sPtp+/e7xvyRPP39033E/aC7Lr/tiV4RQlP8i7SE6cZ1TGHQBtFsjs7PltE8z54M60tsyLIFiYJKvg98nfuE+158lv2J+xA3BTM/8ckz9HT9dRc2yvhmeZB6tXra/Kc+cr+9wNRC+QUthy8JPEpcisuLWsp+yY5JrciIiIKHvgUFwtCAWL6FfPG6JDdkdjM207dztvk157UCdd12vDcaeF15vjsVfOy95n4Efcp86fxQfJI9Pn1Y/dA+BH3T/T57ojpueZb6Wrr6e6j8Jbz0fG18erpK/tuIx9CJ1AvMaMSpRjfMuJHFE40P2k6Rj5DO4s1ZDDWIqgTigbn94vyFexn45LllOza51vdcc3vxi3P+9Xb2ELdpeA85q/sF/MQ+7cBvQdzDN4UqBy2IIAn4ixqMFsxYipsJuklhyQhIaIWmgmf/d73Ffbd8bLpndxs0yHU7Ngw3WLeFt2Q3PDcnt8X5CXtg/ZZ+vX4/fTI8ObxYfSz9tz3m/aq9e30QvRm8bzsUekF60DsQOxj6rDqRuow7Ufo8fmcINhBFlR1Oeoa+hg2KxU/mEemP8Q8sz7aOvY1IzJHJgsV5QK18rXrnOYf38Lgo+n46afhbNIRyOfJfc5e0ejYjeHL6LvwEfifAaYJJwxfDEMRZBgRHvAmSy9qNUA4/jF6KTIkNR7kGs4VeguL/uPxW+5+7mrrEOLV1Q/SHNSV1wHbqtvT3DfeV+F46GvxVvjU+hn6GPY68c/wlPQq+kz7FPeP8LruP+v554vl6Om67oruN+d549rlO+rd6hHnNwVwLuxX014kPRMfjh7jMKhHTk8rRjpDX0CnPF05ujA7HYcKi/bW6C/hO9od1trdMuVj5LzadMwZxTrHm8y/0+PceeQV7O31IQPYDzoYLRmBFioXwBtLJugyBDknOKMydS1jLDAmIhr1DYACKfz29AbuhOkY5fHfM9fU0KnOW84a0j3Y9N2A48XlzecP70L4g/9CARX+7vaq8qXzqflKAGUCof3m9GXsXOQH33bdLeFB4/nnb+jJ6qLnVOWm3OvtNBv8RqRmmVFsLKMhZi9pRMVSykiGQ9lFvECgOTYywiIBEkb/AesL4ZXXC84Az/3ZgOFs4XzUr8hBx9XKac/J11vfgebn8Jv9KA7mGzAf9hwPHg4j7ijbLdIuHi/LMUoz/DO/L8Igtg0y/OrvbelR4/3dJdoi2EHXIdVP0krP5c5o0qPa6OJn6XTwf/ooBdwLMgmjABf71vsDAa4G6AZPAdP4evBj7EjrC+mX5bjkCeKa4OLcJ9yv2/rgDd5M8TofIUyma/5VXS7eHdEoGT3gT+9OY09KUWxIyz2/MTAfNgpQ9wvoPuAQ1ynKzseo0vvcuN3r1IrLJMhNyozOLddX5kHxjPneBMAP8htbIbIfCyDoJDMpZDCENN0zXTLkLDEp5CM+FyQGzPRu6c3hbtun1jvTvtLi0NLOkc4zz+vRANek3bjlpOw787X9vAkkD+QLvwKN/SsCNglADWwKrwG69pzvp+gW5c7h2eGP46/lUeAX27nWpdbt2HXdFQM1L2Za7l6xPoEpeC+bQQZTglE7RqdF3kGRPgxAKTZbINgGEutd3HPRncFVuwLFoNNg3u3bbNPQz5jQcdMY24PkT+rK71z7/Q1KJM8xLTKbLsApOSSYJVspriy2MMUsFihnJKAX5QZz9Sjmp96x2CzTMNAzzg/Ncs33zrfRbNTv2OTgj+n78Mr1F/0JCDEP0Q5pCPYC6gXACgYM4QfH/lP1rPGw73ruGOfr3P7UqdO716Xed+Qn5TThPdjJ8RMftlEJaVpQOjQ1MZ47z0pcTWZB/UHmPu82qjVTLOgZ8Abl7drgZ9kCxj+3jrnox8bcs+Sw3sna+tcm1z3cFuUo70P51wOkE+skpC7yLeoqAy3BMFsxdS3iJgUkNiK5H/8bTRKBBHD0b+YW3rvYetRc0pbPz8+G0QrTENcn2jreb+VT7BvyxPf7/dAHiBBsEVkNjgYRA10DpP9w+7z0Ee/v6yvq/OiX5mzicds2183Wr9wk4UTjRuOi56AFQTLlW4RrTlb2OIwwuTnKSGlO+kTMP3Y7bTOcLO4gRQ/q/BDosdkQ0YHCp7T5s63CbNnY5k3l+t/93A/fvOSB7s/5tgNNDQkZdSfxMjY1CzIuMUcwnS1fJiMcKhf3FREVAxNoCgP8luyT32vYZNPuzNLG0cNeyCfSQNzw5Fzpuuva7uXxsfUQ+s4A1womEosSfAxfBbYF6wq/C0sFpPVo5UTbNtg92BLZL9ln2nHeWuI35NrgLN8S3obrSg88OtNcpmJ5TuY/SURJTbpT/UkFO7Y2ezOVMRwviyJ2D6j7hueb2cPIabLjqLCxbsjh3W/lF+Sa4fPg6eJS6Izxy/wvCYgY3CbRMCI0iDLSM3w3xTbyMFwk7BWgDnENFRErErsIRflu6Yfb89BcyOXCk8OSyLHQYdmV36Tjg+bJ6+zxgvQQ9ID2FQEXEYAbiRqaEUYINwUxBagDlP088u7nOOKW4X/he9/S2krXt9Z+2VLc3NuP2YLYWOt5EzVBFWCnYAxQt0aaRwJK8kmyQWU86jxFPI89MzpZKmARRfdg4mHUhcJarpam/68kxfPV1dwd3v7edOD84bLlqOty8u37/wqWHVsv6jk5PhZDXEURQao1biT/FJsMowrfDusS1A5fBET2Wefo2BDIlrhZsky2r8F/zivYGeBH6YTzA/s8+/L1YvKi9lIDmBAfGSscTRucFwUSIAmJ/hz1vO1i6K3jKN/53ETdDd6H3uHeUN7D2izTotPx65UWC0KKVolRhUkBSrZMoEwZRSo8pzvqObY2IjSCK6gdJw0r/dLxauNozMW2V62ztH3E19A/2j7fpuJJ5snoZu1K8vr0vP12DQQeLSxdMAYwVTPdNb42EzV8LdIj6hlcENcJZgPR+iLyL+mw4ATWVsqSwrO/pMI0yK7Mt9DC1Vvdt+ry+FgDcglPC10NxA70DU0MrwueDU8RQRMJEdIJXP7j8o/oW9+12MLVl9Vl2QXfSOLJ40fgI9vL6U0MQDGFSU5GAjnvPNBF8kmJSghBjzwiPGAyKCv9JGYWpQic+5HxN+wT3BfHaLojuXjCfMxL1B/e2eTm6eXuOvHB9QD4oPoSB1sXKSVzL2kzCDjJPFc6hjRpK2QhDBrpEvYM8Qfi/u30xesp4jDaptFhykjHkccPycPK/czi0czamefe9Kr9jgORB7oLuw8QECoNbAphCVEJ+ggNB9MDtv+T+8P22PCK6ajhi9sr2PjZ/t1T4irmI+bL6/IBsiFUQLpPZUmAQGU+ED3mPSY7cDTPMSctJyZuIk4aeA3xAP/0vOyh4ujR3sKVu1G+Y8ci0dPbIeVs6sHuFfPY+CP+Zv9JAnsJthNxHvYlbCzONbw9wUDwOlUq7hbEBz0A+f42/uH6g/a38arsQuWs2gXQHsdXw9bEe8kQ0WXbsudw9ND9mQKBBGQEeAWnB8sJKwvLCSgHygXhBX8GywVcAhn9i/X97FDl499h3Tvc4NyG3yLjV+bG5yLsV/t3FOsvUkOfR65E6UFuQB5BHkAsO9k0ySxxJZwhIxxlE+oIzv5H+IHwi+In0h/FGcBJw7rKVNMe3Azkuup68L/2svv4/iADIgiQDqIUHxfWFzgbjCGgKbEu8yu5I4gZoxAtCqAE6/3c9W3uB+mg5uXlWOSY4Bbd0trM2arZodoS33jnIvKn+mT/YwJDBZMHLQltCPIFKgTOAgQDgwRtBLEBd/1A+UT2svLi7VXpVuag5E/jA+QN5ibomulh68f0RwcgGnEo+y+TMtk3YDyfPE48wTcsMH0p9SHnHdAcnBYjD40IfgGR/Ar0Pui74Enc8dmf2gLcUt8u5MjnGuyY8b32UvkL+nL8X/+LAaICWAIoBJYICAw+EGoUsRWyFV8UJBJ9EMEM7AZwAbX8FPmA9t70c/QT9GTyfPAI7+3t+Oxf7K/tIfC18YvyGvU4+rwA+QTTBasGKAdDBjUESwET/0n+/fzC/Ob94v0A/CH4SPSE8qrxqvGS85L1HPeH9zf35/a+9XH1g/m1AnwOVRcBG+IcOx7GHvYdoRvxGBQWvhJHD7EMxwqUCFAGtAVdBrAGtgWJAjv/lPy0+dr3BPeD9u72ave5+I37Ff0X/YL9hv1j/ej8z/tI/Oj9tv6U/3kAnwGFAzwECwQeA0QBY/8//ej6+/h199j3gfkZ+m/6svl6+IH4N/j99+f5TvyO/sUARgHDAcEBiQAV/xj+Yf0b/RP9HP2s/cv8G/sZ+hL5g/fK9Tj04fO49Br2KviI+5b+AABDAPb/d/8q/9v+K/76/Qr/TQEPBWUJegtCDF8MEwumCvQLpQ7vEUQTyxEkDywNSws9CRQHeAVCBS4FsgTTAxgDcwNoBRQHyAZABfgBdf6a+8j5Bfo0+6z8Ff75/h7/X/5K/Hf7Ivwi/ar9MPzb+tL7Dv4VAFYB0ADp/6T+P/2S/X7+QP87/2z+F/5L/rf9T/yw+0P7KPvx+mj5evhH+E335PYK96n3ZvoX/Bn8B/wX+xD7U/wD/XX+2QAPAxYFIQW4BMQEegP0AZwAT/9BAPMAKwCJALL/JP0p+1D60Pv//i7/d/5v/58BVgWWBwAIXgepBkEGzwZ/Bx0HIQeBB9AIywnYCGcHogb5BvwGHwYjBSgErQKtAVwAlv5u/nv9w/zV/cj+kv/X/13+MP04/Wf8ffuc+vn5Qfqe+8f9SgCmATQBHQC8/nD+lv5I/uX+2v8VAP//0v5q/eb8rPuN+ln6svmB+RT6f/lN+En4oPjE+Zr73fzc/roBUARZBkcHVQarBEcD6wL5At0B6f80/rH8j/tG/D/8Dvyc/A78HvyC/Ej8uvxp/Uj9Kf1h/Mf7Gfzv/Ev+qP/MAS4DVARdBYEF9wXYBskH8wgQChwKywnWCKwHAAfUBkAGMQU+BDAD2wLcAgEDFgMKAzsDmwKLAY8ABwBj/5/+fP4l/9cAaAJNAroBaQEdAPb+of2a/Gf8qPwl/VP+Gv+h/qz9J/y1+uX5BPo8+vz6cvwe/UL90v0c/jL+Of97ANQBeQIVArMBiACO/6j/OAAgAEL/Y/4e/rf9SPwg+zb6yfkA+cz3jvcq+B34rvhm+fP5Mvz6/HD95/7j/z8BBgJaAcUAFwEpAi4DmwTwBUoGWwd7CMAITAi9Bi4FcwT+BPAE6QPpAlwBYwC//zX/sv+CAOAATwFyAdABUQIDA4sDwwNABAoEXwTlBH4EegQKBNoDyAPHAggCaQCy/zT/Uf0D/Jz6k/nT+cT5j/qI+/z7gv1z/on+bv5Y/Qf93f2S/TD+n/2G/dD+cACWAmQDsQFs/wz/IP9nAAAAZv8//RP8efvh+xj/3v6N/nf9xfzA/MX7Vfob+lr75vyf/kv/fv+p/3IAXgAOAHkAY/9gANIAvgCCAsgCIwMBAv8A2wD8AJYBrADF//T+gP5l/qP9uP1q/kD/9ACoAggE2ASQBW0F2AXoBigIiwjqCOII0gijCKoHQwjoBkcFPQNuAPL+cv1I/Mn7F/tr+3b7C/v6+lP7Y/xB/Hv8E/61/nAAugDj/8cAMABOAK3/5gB+Al8DqQQaBZsEdQKi/wj+XP1p+/r7P/un+/L9Qv2t/Yb8vfpy+aP6x/tr/AH/RgAlAXAATwBC/3IAgAEpAB0AqP9s/6z9w/ys+277XvuI+/X7IPxP/Ij7wPuf+yL8EP02/vL9Zf4V/uT83/xu/TL+ov+YAPYAtAMhBaAHAwpmDMsO4w6XDjANNQvkCa4H6gWDBRwEagPTAo8BlADT//3/cgAI/0T92/qn+I748PgZ+rv6nPsu/az9HP5s/nX/WgFxAjAD+wL9AlsDDwNGAc4AmAAkARwBiAABAIT+3P5+/UT+/fyY+q75H/vr/Lf9Z/2u+wP9X/3//7H/w/9k/6b9Tf4K/uT+7f4g/+3+hP7l/kv+E/23/EP8EvyU/TD9U/xi+5r7/fwX+3f7UPvU+678Qf2A/YD9J/42/aj+iwCSAhYFAgc9CKgLtg1rDkAPgw2JCwMKngdXBRYDewGGAHP/vf+0/7b/Uf9G/kv9K/wp/In8bvx5/EH9m/4OAK0BMAL7AhoE4wTIBSYGpwT0A2oD1wG4AZIAAf8R//n+i/63AG7+GP5R/Ib7p/td+TH6gPco+7X6Q/x7/cf8nf2C/Df+Tf1f/Sf9BwD2/nUBEQIiAJABE/4V/q/+n/+//tT6x/ti+Qf7HfxT/NT99foT/eP6Cfp2+2n9Kf5YAO7/xv+SAgMChQQABLgCbgLgAUYBOwI7BF8FPweLCCAIBwmjB94FzwZvBlkGdga1Bo0HqgchBhgFeAR2BNwDfgKPAUEAZv/g/+n/sQBNAb4AOAB3AGEAKf8j/gz90PxE/Oj7MPzZ+/H7G/0c/c79WP+D/4D/3v6X/vT+6/6CAO7/uP4/AHX/GP8c/dv60PvT+aD6zfja9+r4V/nj+af3avh6+Ln79PwZ/AH9qvyN/IL9mvxy+1j9OPy3/bj+xf3c/l3+Y/5U/kv+SP5U/gUA+ACx/3P++vzf+3L8Ff24/tsCsAbyCvIOmhDvEhEVGhWCEx0R/QyfCe4FJQPKA/YD4ASkBQYFIQSqArH/ef11/Hv8qPxl/RH++PsW+nz49/bY9+j5n/uz/aL++P4j//j+3P7K/nj/sf9IAWkBLQAIAWwCBAUSBk4EdwKdAl0COQJnAJb8mPo8+UD47Pen+DD4Fvjc+Cz4tPjn+Gj26/Wk+FX6Bf46AKUAogJUAt4BrwBm/xj/pv2I/JD9ov7i/u3+U/2W+7n5yvg6+FL3Mfgh+PX3G/kz+aH6B/2Z/qsCGQgNDTIS4hUMGQ8c1RwcHF4ZahWREZEOGg3eCwoKlggDB2oFiQT0AXn+9vtr+aL3YfY79InzgvMn85L0vvXi9tj4Vfql/Cz/ewBEAQ4B5ABuAZIBvwJ1A7gDUQPQAGP+vv2Q/RP9Zfye+gv6p/pF+t/5gfht+Dj6K/oF+iL6hfli+mX7lPsd/HP9IP/b/pj91Ptw+sL80v5+/vT9mvyg+mD55/h8+NP46vin+Ij5u/kH+Xz4MPc59lT2kPW39LPzrPPt9cv7DwR6DHwV7RuBIdwnZSuSLe8tMyneJJwhbhyIGMcUMxDXDPwIHARgAJr8qfio9QHz1vBv7oTrFOmr50nniuf15yvpvOsW72fy4PRN9z76+v03ApcGsQrGDRkQmhAsDwAOVgwcCmIIfQaRBdEF9QTIA3MB+PxX+U32PfOq8dHvLO0B7V3uBO9o8HLxIPIw9YP4kfrO/CL9av28/l//6/+C//v9pvz4+/z6K/oi+mf6Yvpy+RT4lPYG9pD1lPSL9Cv1MPXL9DT0v/YW/woK+BS9HZIkkyvNMGkzMjQfMvguoCpjJLAfQRvMFQARogvqBukD8v/8+gH2svDV63Doc+UV48nhx+A/4XvjJ+ZQ6Bnq+usJ75Tz2PeT+5v+hwGlBRUKXw1DEO0S+BRoF/MY7hfBFegSeg+2DCIKyQZHA+P/zftU91jzOu+36xLp/ubG5W/lcebq6Fjsle8O8mP0ifY1+Ez5qfqE/GP+Of/r/lr9L/s4+TX3QvbX9Q71ZfSW85bzifQV9Zv1evZN9iz1zfLc71XyY/ulBw0WRiITLGc26j1EQUtBnz2CNywwViegHuwXNhJZDcAJfwdLBf8B7/wI9rjvMury447dedhb1aTUa9aI2ZfdEuJE5j/qY+6B8nz2Z/qk/r0DzQhqDa4RExYdGmgd2h+OIFkgkx8EHqMbPxgBE9wMAAemAEz6TfR07z/s6OmX5+vkuuKl4UriA+RQ5uHorOsE7/7yn/b++DP6vfpc+0T8w/zQ/O/8av03/sj+0/7v/Sf8Xvoj+S74LvZM8/nwpe9h7wDvGO7h8XL7cgfXFFIfESfYMFY4Wzx7P909gTm7M9YpdCC+GWgTTg79CR8G9gOoAY391/ch8S3qO+Nd3YjZH9fB1VDVGNbF2B/dTOLh51jt2PKZ9xT7fP7dAYgFrQoDECkUyxcrGj0cxh62IOUh2yGBIP8dbhq0FZgPGwgwAIr4QfEl62LmY+Oa4vHipONl5OTkz+WO50jpc+v57aXwyfPa9jr5Wfsr/RH+Y/7k/T39Dv25/HX8YfwA/EH7Tvpi+WL4fPa19PryePGl8D7u3uyN8bX64wfeFpoiLC4qOUI/jEKDQYY7oTTYK6UihRwjFzgSUg7/CcAGOQSo/075SPI0677kFN9C2ozWVtTZ0srRs9Ke1fbZC+Cb5oPtsfSK+rz//gQDChsPqhOgF8sb1x7KIJEi8yOiJa8mlCWaIice7xhwE8wMcQTP+nvx2OlC5JPgTN583QneAuC34lblk+el6XDryexS7nbwQfPE98v82QCLAzwE7QM9A+YBQQDZ/uj9qP3r/C/7+/jR9lH10vNB8iTwkO2G6xDpXegn7RH2rQLqEF4cwSd2MwU7BEDrQHA8+zabL9AmtyApG18V+BDlC5gHagTZ/2L6ffQj7sLnnOFL3G3YONY+1pbXNtoo3ifiZuZr6gjuKfIy9gT61/1NAaUFPQvYEIUWuBt4H58iqiSkJSAmziSEIeYcUBfxEb0MoAYHACb5ZPIE7QXpxeW444vi4uH+4WfiWON35W/oXuyP8FP0uPc/+jj89v3H/nH/bAA5Aa8BEQF8/1r+w/3Z/H37nvmb91/2RvXf8lfwlO5e7LXqF+k86LPtyPiyBnMW6CJcLQY4QT7pQHNAoDpVM7sqvSAyGkQWzhImEOkMhgmOBuQBWfvS83PsDeaM4BjdXdt12rbaT9vr3MbfIOJP5Mrm3em/7iD0Lfm1/oMDxAfDC3EOGxETFNoWMho0HXYfFCHuIG0f0xwoGFMSdQxVBqMAYPtJ9vrxm+6u68bowebO5ePlUufo6PrpeeuF7UfwffN89r34qvqs/Gf+w/+YAI8AIACV/6v+gv1R/Ej7wPqY+iv6oPgM9pjzB/FE7x/uT+wS6zzpjugc7lT5ZwjjGI0l4i9zOWU+YT+YPMM1ei4oJzwgLRx9GUQWTxJMDsULeQl9Bdf+WPYP78DoP+IP3f7YD9Z81R3WYtik3LvgZeQb6APssPBA9ff4lPwQAIcDngfyC8QQtBUUGiEeXCHZI+kkHiQ6IvUe3xm+E/8MIQZXABf7vPbL83TxR+/M7BTqqeco5lTlPOUT5pnncuky7Jvv4/In9pn4ffrf/Ov+JgCEAAAAbP9+//n/aQCIAKv/1f1D++732fRr8gnwq+587knukO5u7ZDsOvF2+tEGChQNHkIoiDPNOro+7z2JN+0vfCYTHTEYMBWxEgkQAgxGCYEGFQEW+ujxtepb5VvgWtyC2aHXitfN2PjbBeGA5afpUu0h8ILz6/bn+cP94AGcBbcJkA2CEZAVOBl+HFYfiiFuIr4hYR/8G8YX4hJJDRsHJQHA+1n3hPMU8DLt0OpR6azoaegi6NPnAOhH6YLrh+7E8Sv13Ph3/Fb/8QCUATsBVwBC/979j/yL+7D6P/py+pP6f/rI+Uv4oPYv9G3x4u536y3oneSh4u7nhPPIAqoTKyFRLYk5h0CtQpJAxjnoMdooDx8QGecVdRNVEZ4OEw2dC48HfgB1903uZOUf3TPX49Mn05DUq9bm2qngzuUx6mztAvAH8wb2wfhD/BcAbASGCecOvRTJGXodXiCVItck3CVlJGIhNx1MGNkSgwywBWj/kfly9GDwVO2Y63nqVenY59flCOTD4uTi9OQE6IvsnvGi9mX7nf4XALEAhAA7/1P9/vpk+V75nvpK/PT9S//Q/y7/5vxt+W71p/B77BvqV+iV55zm4OX46p31/QIiEgsf9yqON3M/LkKMQdo7RjRZK+MgeRrcF8YV3ROsERIQVw/7C8EEi/vE8X/oBeCE2R/WYtWO1mPYHNsE33nikOXW6D/sg/C89Oz3u/vt/9oDTwhEDCQQqxTGGLUcgSAbIw4krCIqHxsbwRbEEV8MmgYbAYD8TvhN9Nbwb+3G6fXmFuWh4+vioeIe45Xl2ugV7J7vDvNs9or5f/tr/Dr8qvq/+B73kvaO92v51vub/jQBBgMKAyABo/3J+dX10fHg7oXsXuv16jTq9Oxs9VEBlw/VG/EkyC5jNok5nDlaNXUvvylwIk8dIBxYHBodpBxlG8UaqRdTEB0GtPpi8AnnjN7m2IrW7Nbt2KrbrN/Z47Dmb+gL6c/pHOvQ6wTtnu9p84P4Lv5UBGoLWBJBGKEcOR98IAQgGh5GHMca/hhCFnUSdg6+Cu4GcAJR/Z73b/FY66/m3uOA4oLihePT5TTpJezr7XrvFPHA8jD0/fSr9X72m/cC+bn6lPzJ/SD+K/5I/kj+qP1E/JP6KPkI+Hz2kvRE83Ty5fEf8YrvUPHj+JMEhxK6Hg0o1zDdNr04ljeyMr4srSY1IJkdbB7MH98gsh49G0cY9RGPCCf93fBD54rfptll1+zWFNhf2rTcf+AP5JvlN+ba5UvmKugg6h7tl/Bu9H/5wf6XBIMLuhF8FyccqR5bIGYg6R79HGUawBfIFFMR4w1uCq4GJQJu/NX25fFu7dDqTOmu6EXpo+kv6pHrreym7aTuiu/38GDyTvOd9DT2AvjG+Qv7gvz//Qj/GP9a/hv9nvsN+pX4vfcR+H74sPiZ+cD5p/np95T0v/XN/GQHhBOmHOAjcixxMhk1nzQhMHkrTyYFIX8fux/7H00f2xvWGBEW0g/JBh/7/e5L5QjdW9eg1TzWAdnw3KngjeSZ5tflIeT24nDjbeUq6MDro/DO9rz9sASSC5ERABYXGaEa9BodGi0YBBaOFIATJhKIEEMO3Au3CToHUAQtAZv9Bfoe94L0BfIb8GPufO247UDuNe/W7xrwX/Ad8VzypvNh9LP0YfUq9un2AfeF9hH2DPaz9rv38vhK+kb77/vL/O/8o/zU/Gv8sPvY+s34Vfkq/30IIxSSHuslbi0DM4g0gzK3K9cjUh1AFxMVfhZXGHQapxnTFh4U5w1CBLj4quxx5MLf/dxo3RTfVeE05Lrl9eYx5yflTOLq38vfcuLV5pDsIPNS+voBhgiZDUwR9BIEFKgUQBT6E5gTUxNUFIkVSRYsFmYUrhEdD6AMsQnRBR4BHfxH9ynzsO9U7W7sh+xW7b3u+++i8Hzwr+/37njuHO5Y7kLv3PAi8zv18PZ8+Df5LPnW+Gr4h/gt+XT6EPzQ/Z//rgDdAEQBLQEpAPn+IP1w/gAFww31FoId+x+sIsAkrCMhIcEbXxbHFEYUzxV2GSQbrxv+GYwVfxG6C5QDiPv886/vnu7O7eXtNe4f7p7uFu7S7JLriunC597mw+YZ6DbqEe388G71UPqm/u8BpASrBtgINQvRDOANrg5vD8QQKRItE24TNxPfEtsRcBC/DUEJRQRx/yv7H/hK9bvyQ/Fp8FLwOPBh70buQu1u7PHrt+t165LraOzg7UHwAPM/9Rz38Pin+k785v3Q/lH/Yf/T/lr+LP4G/gP+x/7V/6oA8wCy/9X/5wM/CmcRqRb1GB4bDR2kHNQaRRc0FMoTNRR8FgAamRxLHeYaaxYbEhgNpwap/5756/Zq9jX2Qva19V/1GvWI8+Xxk+8y7APpIeao5G/l6uY96Xzs2u849E74U/us/SX/nQAOAjsDbQSaBS8H6QkqDd0QRhTPFcYVYRSIETwO/wk8BSIBIv6E/A78Kfwy/Dj8f/si+uX36PT58RHv5+yW6yXrluut7B7uze/q8QX0+PUj96L39/ca+Iz4/vhZ+bT6rPyb/g4BJQN+BNEF3AViBWgE+wHrAE8DCQluEKgVGxeIF0MYPxjRFsMTUxGJEawTExYAGO4YyBeLFLkP0ArYBk0D9//V/cX9Lv+RAD0AAf5Z+yj4j/St8Ejs7OiV51TnR+hD6kDsE++h8SfzyfTt9dX25fcQ+ff6yv2aADADFgY6CcEMCw+hDxsPuA1fDCMLnwmcCDQI4QcJCN8H9wbKBaADpQCb/Rb64Pbv8zzxXe9H7hruce7F7mbvfPBM8drx4fHd8ajyzvMe9WP2xPdV+SD7pfxd/oIAjgJHBAYFHwW9BLIDZgLAAF3/X/7z/IL91wFNCckRcRejGCgYjhaiE0wQjAzJCvsLdg5eESwUGhaQFqAUZxCkCygHSwMTAIb9J/yn+1H7x/rN+W/44vbO9HnyOvAq7jvtQO3l7ZnvCfGe8o307/VQ93r4V/mI+t37Tf1Y/4YBxgMNBrcHVQnJCokLtAtUC2wKhgmsCNsHSgeXBp4FRQS+AggBfv/4/ab84fuL+237M/vs+ij6OvmX+Nj3jvfD9/f3z/h/+bf5OPqj+jj76Ptp/BX96P1N/qb+Df83/2T/Pv/b/uT+I/9C/0b/D/8G/wr/1/6J/jn+F/7x/Yn9Tf1C/Y39kP7M/z0B5QIhBAsF5wXjBb0FuQXlBawGZAewBwUIiggnCcMJJQo7Cv8JbgmLCIEHhQauBaYEOwOmAWAAT/+F/i7+O/7V/tH/rAD6ANcAFQAE/9n9sfzf+6X7xfsn/Nb8wP2Z/vn+mf6v/c78Gfx3+wn7NPvH+9b86/2q/lr/rf+b/13/Jf8W/xP/A/8R/0L/WP9S/zf/Gv8I/7b+Mv5L/Wv8wvtM+xX7OvuI++z7d/yS/Cv8aft5+hv6cvpT+6H8Ff58/68AcAFuAdYAw//r/l3+D/51/hH/4//zAAMCugI5A/YCfgInAnUB5gBeAEoAagEyAyUFLQcKCaMK2wv7CyIL9gnWCBsIjAflBpgGdAZABvUFTAVmBKQDzALxASQBCQAa/zf+qv2S/Uj9EP3L/Lr86PzZ/EH8Q/sd+hr5h/hx+Mr4sPnY+iL8gP2Q/nP/AQAdABMAFwA4AKgA8wDiAL4ARgC4/yn/sf55/tf+W/+o/7//df8D/4f+6/0n/bf8lvyR/Kb8o/zU/BP9Dv21/EH8Mvxh/Jb8ufzL/Af9Tf2A/ab9uv2d/Zv9vv3O/c79kP1q/Zb90v0r/mP+hf7Z/mz/KQA7AWECPQPQA+IDogN3AxUDoQJsArUCqQO4BHEFAgZiBrcGYAfsBzwIigiGCGUIEAiyB1MHDQelBkEG4QVbBbYE7gMcA24C5gFKAcwAdAAiALT/9v70/fH8+vtc+z37ivv6+2v87/x1/dL9yf1q/db8V/wO/Or7Evxa/Mv8MP1P/Vr9X/2s/QP+jv74/jf/W/8c/5n+0P3x/Ej8IPxr/NL8F/1h/aP95v0T/tX9hv1E/R79F/0r/Vr9pv3v/VH+5f5f/6b/vf+X/2T/bP+L/7H/4v/w/wUAKQBhAH4AmgC1ANQA+gApASkBEwH4AAUBdwHMAQYCXALbAosDRwThBDMFhQXsBWsG1AY0B3gHggdTB/wGsAZkBvMFSQVZBFYDXAKCAaoA0f8T/4D+F/6m/Ub9F/30/Or85Pzg/BD9E/3S/Jr8WPxh/K/8CP2E/R7+pP4R/0L/RP8e/+v+wf7Q/hP/Qv+o/9H/vf+f/z7/8P6X/n7+ef6Z/uT+/f4a/z3/Uf9N/wr/rf5Y/jL+Mv4w/jT+Rv6H/rz+yv6o/jf+x/1E/df8efwk/Ob7A/yd/IT9pP6p/3sA+AAQAeQApgCoANYAMgGkAScCrwIcA18DhwOoA60DogOVA34DMwPKAkgCtwFKAQ4B3wCqAHUAKwDj/4X/Rv8I/8r+hP5f/mj+s/4e/3r/4P9gAN0ARgGjAaYBhgFhAUQBgAHpAZQCZgPrA2gExATIBK0ESwSdA+8CGAIpATQAZv/F/jf+2f2J/Xv9d/15/ZT91P3//Rj+IP4D/sn9nf1p/Uj9S/1s/bj97f0r/k3+Z/5s/oD+lv6X/nX+Nv7e/WX9+vyE/Db8DvwA/C38dPz2/I39Jf68/iD/Uv9f/2j/R/8y/1L/w/9MABUBwwFUAuACHgMeA9ACcQIiAvQB7wEuAqQCBgM+AxgDnQLQAfMANgC9/3z/g//D/xIAbACoAK8AlgBpAFoAbAB9AI0AjwChAN0AKwFuAagBzAHdAQYCGAJIApkC3gIGA1YDmwOkA3cD9AJsAv8BvAF7AS4B7wCfAD8A1/9z/xP/CP/5/vn+Hv8y/z3/J//2/pb+MP7Q/YT9Zf1P/Tn9A/3C/In8U/wS/Nb7qvuI+2P7Qfs9+z/7gfv1+3T8G/3D/Vj+5f5L/47/lP9N//n+mf6L/un+pP+EAGUBOwLOAkcDeANYAyUDxwJ1AisC1QF3AS0B5AC3ALwA6wA7AZkB6QEgAjACBQKbAQ4BXADI/3H/Xf+x/zAApQAOAVEBWAFBAeoAdAAZAMz/v//e/yYAbgC3APQA+AC6AEQAv/8+//j+yv7g/j7/ov9hADsBCAK+AgoDEQPrAqECXQIYAvEB9AErAnACjQJlAusBWAGWAJ3/vv7v/Tj9xfx7/ET8Cvzm+/r7P/yS/CD9mv32/WX+of7D/r/+x/6//qb+fv49/g/+Bf4B/if+if4p//D/jwAkAcABSAKEAlQCzAETAU8AjP/5/pv+av5u/p/+3v4T/yP/DP/B/m7+Pf4n/kT+bv68/g//Y/+t/9r/AQD0/yYASgCCAOIAMgGYAfIBKwI3AlQClgLwAh4DPgNHAzIDFQO+AmMCHgLmAb4BqgGWAZYBmwG8AQoCPQJfAocCkAKFAmwCQAIBArEBWgH6AKMAZQAwAAwA8P/K/47/LP+W/vv9cP0b/f38Ff1I/YT9x/3x/QP+A/7U/bP93v1U/vT+gP/7/xcA2v+M/x7/qP5c/lH+h/7c/iz/Y/9W/xH/vv5s/iD++v32/Tf+fv6x/uv+Bv8a/y7/Kf8q/1H/if/R/xkASgCJAKoApgCSAHsAWgA4APD/wf+L/2T/S/8w/zX/MP9b/3X/c/+d/8H/9P8/AJ0AEQGqAU0CwQIEAzsDWgNqA1oDRwM+A1EDhwOdA5ADdQNLAyEDzAJWAq0BDgF5AAkA3v/e/+v/EAAZAOD/df/D/gX+Uf2u/Hv8nPwi/cf9av79/mH/h/9q/yz/6/68/pL+n/7i/lj/0f9pAMkA6gDfALEAcgAZANP/mf98/1b/W/9Y/z7/9P6O/h7+7f3X/cD93f3Q/eD9//0a/lT+lP7b/kv/sf8mAMIADgE4AT8BNAERAc4AbgD5/9n/7f8ZAEoAYwCEAHAAQQAFAPn/+/8DAB4AOAA9AD8ARABeAHQAlADDAO8AIAFCAVYBVgE0AeQAiAAZALz/bP9C/2P/lf/u/1UAlgDLANAAswBRAMz/Tf/w/rH+kv7S/hH/cf/c/1oAwgAcAT0BIgEQAdAAnQBcADIAGQAyAJEAHgHSAWMCuAKZAkgCpAHUAAAAQv+//oD+ef6h/uD+Fv87/0f/LP/y/r7+c/40/tD9kP2Y/bz9+v0c/iv+T/6N/pL+r/74/nH/CgC+AEoByQEuAiAC/QG3AWwBLgH9ALEAbgBjAEMAJwAJAAMABQA0AHsAswABAS4BJwEZAfgAuQBlADQACgDt/9D/v//B/8j/zv/K/9P/0P/l//3/CgAVABIADgAAAAoAxv+A/1j/Nf9S/2r/c/+V/8r/HQB+ALEA6wAKARkBKQHrAJoATwAVAPn/JwBXAKUA/wBKAZQBlgE5AbEAHgCF/xH/w/6N/o7+w/77/lH/lf+//8z/r/91/0n/IP/p/tX+uP68/v/+QP9u/5//tv/R/+7/3v+g/4n/av9d/3j/bP9v/3j/eP+D/47/6/9eAN0ASAFuAaYBowFwARUBiABeAFMASgCdAO0ADAEnARkB4ACRABMAjv8a/63+l/6x/s7+Kv+D/9D/CQBBAFMAUwBDAO3/5/+//7j/6/8QAGcAqgC8AMAAowBjAP3/pP9j/x7/HP8p/2H/sf/g/woAGwAVAA4AIAApACsAPwBXAG4AiACPAIYATwD5/7L/h/9h/z3/Uf89/xj/Kv///uX+wf61/rH+3v4c/x7/R/9m/4D/m/+y/73/2v/a/+v/FwA2AF4AjwDbAAgBOAFsAZkB0gH7ARcCKwJEAkYCLAIVAtABdwEpAckAcAArANr/rf+O/2H/R/8g//3+0P6h/oD+U/49/in+Pf5d/qj+8P4n/1j/m/+g/5X/pP+f/+P/WAD9AHIB9gFAAkACFQK1AVEB/wDUAKwAqgDSAMcAoQBTANn/ZP/Q/mf+N/5A/nn+1/4Y/zv/MP8j/+v+qP6S/pL+5/5P/8z/PwCmAO0AKQE4AR4B/wC+AIIABQDi/6v/Yf+H/4f/lf+r/7H/sv+f/3P/b/9R/0b/Uf9R/2//fv+2/+3/WAC5AA4BUwFjAYABbAE2AQgBAwHgAOAA+gDdAK8AowB0AAwABQDp//L/HQAnACkAAQDu/9z/qf+b/5n/uv+4/+f/BwBpAJ8AXABMADIAEwDp/3X/+P7w/h7/Of9m/6j/OAAcAYsBwwHFAocEmQX0BLYC1//A/dT75/nI+Kv4EPqN/PL+/QD/ATcCxwFMALH+IP3W+2n73/vX/Kj+bACNAfgBBQLxAR4BGwA+/9D+v/43/6T/FQCuADQBhAFzAfwAeQAQAKn/fP9o/2z/lf+//wcAFQBjAIkApgB3ARoCLAIuAswBTQF1AZ8Avf+8/3H/5/8kALH/qgBRASkBgAH2AAEA9/9x/+v+r/6v/sP/lgBRAUgCZQJhAocCwAErAYIAev9J//b+HP/Q/97/bgAgAcsA9ACJAIL/g//S/on+6f56/gb/xf/R/4IAiwArAFEAr/+C/zD/qP4e/wT/Df9h/yH/wf/MAF4AdwBjAHf/ZP8M/1b+NP6i/sH+Uf+O/97/XABaAGUAyP87/yn/5f4n/3P///66/5gArgDSASABXAC3AJv/pP8p/xj+Nf8kAMX/zAATAXcAJQGcAAUAO//r/gb/0P5j/9P/SAB7AbwBnwBcAPb+jv5h/qr9I/55/qL/5gCYAYcBowHvAYYBvgC//+v+kP7p/h7/+/9lANX/JwFBAdkBxwEHAfQAFQCNACr///ym/Xr/qv4R/078WP9OB6AHIwZfBNUD7wdwB5D+JPx1/H384Pxw+sb4Qf1PAYkAY/+m/8j/OwHoAJ39qv1k/97+GP8p/wH+AQHQAbMBHgITArUB5QNvA6EC1wIeATIBAQHw/yL+VP6z/cX+ef5y/SX+Xf5o/lH+8v21/S7+df7p/jb+c/58/6T/GwDkAEMAAwEIAj0CIANjA0EBNQMjBEgC1wHT/q0DzAnvB/AG4QSoA3kHkgIb+hD58vaO9l/2f/Lh81n6r/0w/Xn98/yE/on+PfsG+Sb6e/yj/Xn+0f8qA88FPwdKBpEFhQWSBDsDcgHLAK0BCgI/AnECVAMTBO4EygMqAysCHAJsAS0APf+m/hz/+v2C/c38E/07/Vj9dfyu/N39Ef43/r79Bv7k/iz/1/7r/gMAOwA4AAkAQwB3AcUC3AJ1AmoCHAKsAaoApP+2/9kAiQBH//b/7QL3A3EC3P4M/h4AVwCu/Kz5efpq/tQA7f5R/Qz/qALrAlcAfv3U/Tv/BwCk/Rv90P77/yIB7wC6ABcC9gIwARMBgAABAMH/2/7V/tr/fv+8/9H/PwDXABwBeQAVAa0ByQB1AA//A//B/tL+1f4T/6n/GQElAXkBjQJuAhgDggIQAYkBnwLXAmMDxQKbAoMDAATMAoAC/QLKAqICcgFU/2H/R/+x/o3+Nv6W/mT/fP+Q/3X/WP7g/dL8x/xE/BL7cPq3+uz7U/1n/gb/xwAlAlYCMgJTAf8ANAGxALj/yP7H/fj8PfwU+1r7TPti+9T6nPm7+Fb45/db93P3CfhX+Zb6DPy6/Pj9BP9d/9v+i/2q/FX81vvq+wr80Pyo/ZD9+vyb/W7+QwA/ACn/if9rAEYCvAK1AOQCrQzwFKQbbBsrGTUe9iNuIucdMxfdEsUT4Q6WB2YF2ARvBXoFfgCY/KX6mfW08KDtNOp66NjmWOVM5yvsr+5Q8Wf0Qves+h38M/vo+3H+swD4Am0EIwZBCUsMQw5yD3IPkQ7RDDAKgQcjBYUCAQA2/rP8p/tZ+iX4SfYP9aT0vvPW8trxNvFp8eXxSvKG8pHysvLb85b1N/dX+Cb5XPrz+6H9c/4a/9r//ABJAq8CXAIcApACfgP7A1EDKgM+A+AD9gNaA8oBdwCt/wj/Kf/e/4IADgHBATABegRCDP8TLRlpGcEWIBljHbUcpxnDFPoRoRMxERMMnQm9BwAHmgWmAFP8uPgr8xjvee3k7GjsP+tP6l7sj/Cu8pjyefOL9WL48/pn+wH9AQH5A+oFMQc2CJIKlQy6DOUMgwwcC9AJ3Qf5BXEE5AHQ/ub8Z/sv+kn5svd89vT1DvUO9M7zU/Mg8y/zKfP689T0BvWJ9S73dvmw+uP5FPk8+gH9QP9L/+T+ov+8AC4BdAC0/1cARgFeAbEAGP+W/Uv9yfy8+0z53PWq80/zWPRE9Zb2rvgU+7X98QDjBW0PbhsFJRcrLyzdK+Itzi4BLbgoMyF3GsEVtQ9hClsGOwKX/6r73fTK7d7mueAE3Y7bJ9uq2xHcW91G4WLnhe3E8iX3/Poc/34C1QRFB0EK5Q17ERcUIxaZF7AYeBlaGd4XKRXoEAIMKwfZAeL8VPhC9B/x0e5G7XPs+Ou36/rr6+w87kTvo/Be81D3Afzn/z0C6wNmBY4GzQYfBpAE0gJyAXsA/f8KAEQAYwCjAPf/aP6A/EH6PviU9hX1//PA8qLwDe9v72/xkfOm9EL0vPOz82zzafSr9qf32vjh+s782v/xABYDOA8gInkzED2rOro2WDimOQY56DMjKJ0ctRHNB8oDUwDh+sP2i/LG7xPtieUd3X/YcNje22LeG94I3iLhoOhD8m37OQK/BVEImQrsDA4QThHsEN8RmBPFFcYWehR7EoASExIOEB4LHAQa/hD5SPX+8vHwku7k6yLqV+qU6yDtBu/P8aT1Rfgk+bb5wPpu/QEB4wNtBsQHgQdlB8IHgAgHCeYHlwUNA+f/w/zq+Wb3QvXm8vzwoO+07uTtLO2J7W/uzu6k7jfule5/8DTzbPaM+cn7av2C/ir/HP8P/1L//f/bAa0DUgQWBOUC5gZ8FRsp8DncQII9WTsSPbs84jjiLhIhpBRgB+/7Lvbs8TzuIuti6EPorebE4AXbAdmW2yDgj+Il5DPnT+xj9Cv+6gd7D50SMBOCEwQUYxRUE+MQMQ+eDlAOdg0MCysI4QaOBmAFUQI4/cj35PNF8Y7vkO4y7cfrbutw7MHu0vGm9Fb3Ivrm/Jv/YQLnBNMGUQhBCSAJyQdqBT4D7wGRADD+xvqQ98X1LvVI9WX16PRY9OHzzvMQ9A70Y/SS9cz23PdF+En4Dfms+az5B/pI+nL6f/pO+t362/tV/B785vtw/Lr8Tf13/zsCbAR8BPcERQ4sICoyZzxHO3I2DjYiNuUy2CueIKYVQAuF/872R/Fh7K7piOg+6PHn++Nk3n7cDd/k4+Hn7Okp7B3wIfbg/RQG5Qz3EHkSBhMeEzkSKBCODZALZQotCcYGIAP5/9z+5f9nAZwAOf06+fT1B/QF83/xue8s7iPt+e2a8OvzePfL+tD9sQDvApUELAbYB4QJ0gplC1QLlgpKCQMImAabBI0BOf2Q+PH0AfOR8vzyRPOu85j0//Wy91v4ePf79aH0O/SA9IT0zvQB9tP3Hfrh++L8mv0P/nH+ev6o/dD7uflQ+RL63/vO/ssA2wGEAckAAwgtGMspsTaiObw3qzldOyo5fzOlKFgczQ8uASr2Te9g6HzjTuG64XnkHuQr4Tbh9OR96m/vMfJz9E33nPp+/9YFcQtgDqUOBg4jDg0ONQwnCcYF5AL2ADT/Yf36++P6qvpw++37f/tg+jr5JPl0+WL56vj39zP35fYB91v4dvp9/NL+OAFYAwsFywVnBtgHTAlnCeYHOQU3AkYATf9T/iv96voG+NP1WvSf8+TzZfTH9Cz1SvWf9bj2ovca+H74iPj++AL6j/rE+s/67Pq5+6H85vyq/Fz8SPzY+/P6y/nY+C/5Lfop+3v90//XACsB2QJfC8Uc0C9nPD8/cjurNys1LzGNKl0goRJEAz31T+xO6UPo6uYH5+jpfO3D7kjtVuym7l7yvPT79cP2q/ci+v3+NQZ8DZYQZw+eDasMjQsQCMUBj/v/9vTzk/Jy8hXzUfQn9rn5Sf42AYIBPQBk/3H/of4//B35DfYF9Cv07faL+5f/0AGQAy0GXgnRC5AMEwyfCkoIQQZLBSYF4ASkAwoCdABI/lP7UPji9R707PJu8ovyAPOW85j0c/ZL+Ab57Pjq+GD5Bfp4+qP62vru+jP7/vvt/Pr8eftr+R/4S/eJ9k31ffT89GP1PvYC+Tj8Rv+NAHECPg1dIDw0qUHNQ8VASj9ePTU6KDSQKEEZPAfS9QPr+OQD4JTci9ut3pjjKOb358XroPFL+O38bP+RAOn/wf8PAjEGAQqACisIdgblBc0FLAWzArj/rvzN+TH4FPev9Yv0YfQj9o759vyV/1EBgAINAzICCQBP/EX3qPJz73XuBPCs8iD2cvpz/isCrgUrCf8Msg+sEBQQ9Q3iCngHbQRxAnUAbv2V+fn1cPOw8kjzVvRE9Q71TPQ99M700vUa9yH4Ifkk+sn6wvvo/Cf9OP1+/Zb9t/2a/G36Cfme+L34Vfm/+Sb6B/tB+y/7a/wV/k3/xf5b/x8IKxq/Ll48/D7HPNE71DpsN2MvHSP5FBwE5POh6XHk5OFV4Ezgr+Sc6mHtde6B8O/0ZPph/UD+5/4w/8b/AwKuBZ0JPwslChUI2AVUA7L/bvsh+OL1J/Tv8nvxrfAb8lH1xvrWAO4E6gZ6BnMEogLWAIn+y/sh+MD0u/Lx8ejyaPUd+cr9iwLTBnMK9wyZDlAP3w7GDb4Luwh6BSMCCv8t/BD52/Vc88nxBfHN8AXxj/Gw8n70ovYS+TP7OPya/P38MP1l/QX91Pvx+p76G/tw/Iv9Cv61/WX9Rv4B/2z+x/tq+Gb3ovhi+sP85v3d/fT85Ps0AkQSDCXAM/A4WDeFN/03xzV8MU4oPxvpC0f6N+3q5nfi3N9V3wriyOip7kPyzPYp/JkBgQU+BjwF0wKL/8n9CP5x/2wA7v+m/08APwGkAUMAuP0o+5f4uvZL9Rz0QvR19fn3vvuy/4kDRwYDB2sGrQQaAjX/hvt+9wj0y/Ga8S/z0PWB+Ub+HwTACWgNEg9FD54OjA2QC20IhQS0/8D6jPZK86fwju647aDub/CL8rj0yPYE+SL7CP05/7wAtQD3/7/+j/2A/FP7dPoo+j/6ufrC+5H8lPwF/MD7hvul+pn46/VM9CvzC/Iv8971wfhV+nD6lAFJFBsriz1tRB1C4kB+QKM9VjjtLHMcMAq69mXpUuSW4EXeW95i4c/oMO9Z8r/1V/nQ/HP/yv///k39Jvsx+3z9rwD0AjsDKgP2AxYFRQV+AwcA4ftO+BP2lPSs88Dz9vRr+Jr9xQLlBrUITwgQBygFGgJq/R/36PBz7OLqOewN78/ycffb/CwDiAmkDp8STxXrFZQUZxFYDC8G7v8Y+kr1yPEL7/Tt8u4W8eHzxvZU+Ub76Pw//mj/iAC5AA4Aev+t/jT+1f4G/xH+Gfwz+Wr3WfcT9zv2CPXk88vz//Tt9hb5svuG/eT9Gv9OAHIApP9Y/VoAwQ3RHnctmjTLMyA08zWhNWk0jy0oIJMQ9/9u9EPwQuxi6IjmeObJ6nHvofGC9Df33fnJ/Br+Nv7v/IH6YPkL+qj7Zfwf+yL6mvo6/Dn+gP5u/SL8lvoi+nb67Poy/FH97f5IAasCRwMMA+kBVQGCAKv+T/wd+Vj2GvX09ND10fa494/57/y6Ae4GEQugDQ8PuQ8sDyUNrwmBBSUBIv2G+SP2OvPf8MHvhfCK8gb1nvdS+iT9KwDkAkAE5QMKApn/fv10+wn5ePZw9Arzk/J/83P1b/do+Mb4rPkg+yv8JPuI+S/5cfmK+rH8bP6//2j/GP+eBlYWMyepM6I3SzcIOZs5gDctM38pTRzPDVH/HPaa8JzqUOb/5Cjni+tG7sHvbfLK9Xj58ftj/I37G/k+9zD4kfo//U/+pv1s/lEALAJ3A50CnwCo/qj80Ptp+5r6W/qT+rv7Yf1N/gz/ov/u/1UApP8O/rn79/fg9BfzXvIe8zj09vWu+Xf+vwMXCUINWRD8EdkRXBBiDfYIgAO1/c34+PTq8dzv1+4T78Dw9fJ+9Q34Hfrv+9X9l/8tAD7/Vv19+8D67PoX+677KfzL+9/7hvyL/U/+Dv2g+pf4OfcE91j3sPhm+tv64vv0/RAA7QF5AaIDHQ6hHC0q9zFrMvMyzjTFNAM0WC7qIrQVBwfq+8727vFE7Tvqkeg061vuTu/n8FzyK/SO9hj3QPfZ9jL1dfWV95r61f2z/u/+hADdAREDHgMkASf/EP2l+8D7sPtp+1H74vsF/v//rADDALb/Z/7//Fv6lfd99PnwM++w7xfybPYU+y0ABgZLC/oPURPXFPsUMhMtEHMMuQfKAjL+Nvq099P1JPTY8mDxjPD18CjyE/TZ9ff2cfjs+c/6j/vA+5T7K/te+vH5kfq1+2f8x/yP/Pr7qvua+4T8Rv0I/Rf8lvq5+ef5Hfq8+639Cv6G/aH8n/9GCx4baCmBMvczKzTMNeQ0ozKNLBQh7hQgCFj9Tfgr9EHwne4L7h3w0PK18qHyLfMv9Cn2yPZN9oL1cPRd9fD3wPpR/e39//1o/7cAtwGjAWb/pv3N/Pj7Hvzx+6X7Q/xy/SP/OAGWAhMD8ALyAVUAqv3J+YX13/Gl7yHvLPCI8in2Nvv9AMQG6wupDwgS8xJPEtIPrQs4BiAAtfqi9oTzNvF070DuWe5/73DxcPRk95X5Ivs6/IT95f6V/5T/BP/i/WD89foS+sj5+fmp+tb7w/x9/Cj7l/lQ+Kv3r/aF9TL1NPS69JL3b/oI/fH9gP87ClobGytYNow4sTdgOqc6BDkmNV4p/hpuDEL+ovdG9Crvjewn6yvsjPBZ8hnz7fSh9TD3Wfj59mr1qvLd8J7yd/WI+K76o/vX/bUAIAOvBJADZQGf/yn+Gv6o/XL8A/zm+xz9tP+8ARYD+wJqAQUA+/23+vL2HfOy8PnvCfBc8e/zyPdE/YUDbgn5DVMQKBE0EfAPOQ2wCA8Dn/1/+P/zNfBW7fbrOez57dbwbvQm+Nv7Xf9mAsQE8wXnBYoEgAJEABX+IvwC+lb4bPdU91L4R/mj+Xj5evi09yr3l/ZU9jT1RPRs9cb2xPis+QX6RgIbEiQjbTH6Nj83NTr+O887WTqMMRkkTxUJBkL9L/nA8zPvNOyE62Pu1vBF8jv0hPWi9i73c/aY9Ffx3u7V7vnwEfTF9Yv2jviC+2T/1wL2A+cDYQJ7AOv/Qv+4/pn+//2v/k8AGwFTAiADmQK3AUb/kfvB96XzsPCi79Pv+fCC8g/1kflU/5MFFQuVDnAQpxCrD80NbAoEBmEB9vw8+Wz1j/Ec7yju0+7z8HvzvPYC+mf8gv6AADIC6QIpAoIAfv7C/IL7Vfr8+Qv6o/lb+Yz4kPfD9rr1rPRc82nyYPK18r71JPpg/Lf8Evr3+skHkRkQKrw0WDbiOEE+jz89P9E5dSwPHhQOrgBg+wr24O/d7KPrYe5r8VLwyO8S8EfwPvHd8FDwGPAE707wE/SO+JL8Cv6b/1oCVgSeBVgE/wBx/vP72vql+6f7cPwc/tX/CgPWBWkHggiMBzwFOwKQ/Wv4iPOe71Tuve4H8Ivyr/Xo+RX/rQNyByQKugu9DPYMaguLCBYFfgFx/sv7yvix9RvzQfHP8KnxV/O+9R/4APqo+zD95/5IALEAQQDv/u381vqp+B/3w/br9rL3Dfgj+H/4lfiH+Jf3WvZK9X3zd/MG9XX21/fZ9jH57gbjGVwsCDm9O08+D0PEQ/JCzzyxLmofAg9uAQX8b/ec8kvw/+5c8Rv06PKp8f7wivAH8bTvse287Ovr8O2h8kL39fqs+1P7bPxR/Rf+7/11/NT7nPsp/Mf+ggGtBLMIqwvDDUMOmQzrCtAIiAWGARv8YfZt8bHtWOyE7Hftu+878/v3SP23AVkFKAivCTYKqgk4CNgFDwIG/oP6mfdq9bDzefJl8grzFfTr9Tz4sPoH/eL+KQDMAFEARP8u/t38nvsQ+kv4O/cf95X3gfjh+K74NfhC9xX2ofT/8wj0pvP/9Fb3+/jc+dP4YfyWC0Af+S/MOEc4qTgSPKE8mDuINZUomhowDDsBif0Y+s71SPOG8Try2/Kr8IXv1e9v8DXxLPCV7h/ulO6I8dL1OPlR+5P7t/sg/X7+m/+o/xX+E/3i/NL9SAApAj4Eewd1Cs8M3g0jDScMhApTBxUDrP3l9+PyLu/t7Yfuju+38cv0svhE/cUAoAMxBngHgge5BukEaAI1/7v73/hG9m7zB/EC8KXwZPLL9KT3vfpl/UT/wgDiATYCJAHn/s78dvv8+tT6b/ov+jX6efp4+v75Kvl492j1+vJc8aXxIPIM8871UPjx+hP8gPxMBRYW5SbfMhc1pTIZNTk4HTmtN9UuvCL9FnALmQV+Azf/UfsA+Mf1QvbM9PHx7vAq8Jzv0+6x7EHraev07NrwPfVx+Of5Svrd+8n9//7v/iv9DPy8/Df+fQBmApQDpAWCB/MI6wlDCTIIBQfGBHkCRP9c+734X/a19H3z1PFK8UPyhvQl+Ar8Pf+dAqAF8weuCToJPAeHBJoAqvx0+LHztu8g7Vzs/e3z8BP0xPdn+5b+WgGEAmUCRgF8/8X9SPxp+9b6KPqe+Wj5yPm9+gv7gfrh+YP4X/fQ9X70HvTh8orySPT99Zv3/fcA+6gIexx1LXA2LTZKNjw7fT76Pb43bivKHloSHwiOA7z/Rvto+MX2ifcs9/zybe9A7nzuN+7W6orn1ubj5y3rjO/482/48fpe/Nn+hgAkAVcAFf7O/Zn++/5GAGkBrQPAB18KxQvcC6YJvgcPBicDiACj/Pn3MPVO87vyQ/Np84n04vZe+Tb8av44ADMDEgYtCLUITAYVAyQANv0J+0L4wfQX8srwVfF98xj2zPhG+yD9d/4G/6v+Gv4i/WP8CvyR+4/7O/xK/UL+d/7J/Y/8G/tp+QT3F/RZ8Xzv4e8q8Vfy2fSV9x/6L/yG/cIFcRbrJy00lDYDNN81sjnhOrM3xy2YIYwWVgwhB6IFXQNrAHn8qfkW+b32TvKe7lzsRute6cjlMOS/5Z7p0+6A8yX3rPme+qz70P2Z/ycAuv7H/AP9/f77AY4FPAhTCokLKQteCrEIqwUeAr79l/nR9pL0ifN78yvzbvNh9E/1BPcH+f766/xA/pv/ZwFGA54EbQRmA44CPQGF/0b9EPpt9/n1VvUV9mb3mfg++tL7Af3F/bX9xfwr+zH5bfc59pL1TfXZ9cz31Pqa/XH+Pf0m+974Zve29dvzV/K78BnxCvS092L7Tf3OAIwMwx4xMFA5gDfkM1w18DjwOdoyLCYXG3ASwQzfCXsHaQZxBVgCKv8H+6H13fA77ProweZ549rgSuCz4proC+/H85L2WPdA+DP6x/ty/C38AfyE/VgAlAPfBgEK4wxrDxQRThF2D7wLggeSAxkAa/wl+Pj05PMy9HD14vaX99f3nfeH93H4sPkf+gf6Zvql+1X9lv5E/3f/O/+C/jv91PsU+vL3DfYO9RH1vvXI9jn4k/lk+jr6b/k1+ZH5GPo2+or5D/k3+Yz5efqw+5/8RP2c/B37l/lv+Fv4TvjY9yb43vi7+sD8Pf3w/7kIJBdCJ8YwrjHyL5Av1jHUMlouRiY1HRwVzQ93DCwL3gs1C5MI9wOY/Rz4ufPg7xftrun/5SnkQuQY57rrwe8d81j1LvbO9h/3nvcP+cD6j/xE/of/LgHQA4wHDwxMDwkQhQ7yC1oKggkgCNMFQgLk/mv8efqT+Vf5Sfl4+UD5rfgN+FD3kPYD9l31HPV+9Un2tvcv+TP65fof+zz7H/us+sD5Tvid93b3hffO9+v3k/iK+ST6p/rY+rX60fp9+uH5+vkJ+jz61vr4+qX7e/yz/Nf80Pyj/C398f3O/pn/8P82ADoAQQCSAcsF7A3aF+MetCEDIogiHCWJJn0kJCBjGn4VAxLBDtcMKgzlC5ILXgkfBbcAxfxI+of4S/UJ8YPt8uv27P3uSfDR8AnxjPE88qPyt/LZ8oTzMvVP91T55PsI/9MCewa7CJQJuQmYCXkJ9QhTBzcFUQO+Ad8A4/98/pv9Qf05/Xz9Ef0J/Lf6Hfkm+BL4Zvjw+ED5lfk6+vf6Wvwp/mP/9v9G/wr+Lf1M/Hf7Cfv4+r771/yQ/RX+Rv6J/vb+zP4K/pz8dvqt+JP36fb79i73nffz+H/6F/xL/ab9wf0e/k/+Sf6k/Sb8G/ul+vf6ffw9/y4DtQf4CqkMaw67EG4TnxTSE+kSZRIXEs4RVRFiEVYSYBJ5ESIQgQ79DHcLyQnuB3gFUwISAA//A////qz9B/ys+kz55/cs9pL02fOY88fzCvRT9Pr0NPYo+FL6EPz2/I/9O/77/sH/9/+r/1v/Sf+L/0YA2QAuAYsBygEOAk0C+AH8ANP/lP4V/nD+Uv87AIIAYwDO/yH/kP76/Tv9RvzH+kP5Lviv91D4g/nH+nv7B/sb+kP5Sfgs9871QvRj8wzzK/MO9BH1ZvYU+Jr5Lfuq/LX9Vv5A/q/9Y/34/Kz8e/zb/N7+wwEnBPsFhAdqCX4M+Q7wD/4PmA/CD0MQpxBaEVoSQRMsFH4UfhSSFFIUmRNVEjMQxg13C2AJwAcSBp4EeANxAjABLP/H/NL6TvnB98z1P/M88Xrw4fD+8d3yHfNg81H0yfWA9/P45/kS+/b7Vfxg/JH8gv3t/uX/9/+t/5//KwARAZ8BtQFjAScBPwE5ATgBJAH/ANsAfQAKAID/5f4i/iT9Kfyj+5H7lvuC+wn7g/qW+gz7Y/sd+1f6cvm5+Cr4avek9kf2kvY897b3v/fa96T43/lR+7n8kP0u/o3+kv7H/hb/T/+S/ysAXgFWA1AF3QY0CI0JxwpoC2wLXAvpCxQN2g0bDi8O9w61EEES0BJqEp0RIBGyENoPmg4uDe8LIwtYCjoJAAirBlcF7gPQAQ//OPyT+WT3SPX+8k7xhfCe8ITxQ/KL8tjyf/Os9On1C/fM95H4b/lB+i37F/wt/SX+2f5d/7L/EAArAMj/ZP94/yYAAQFzAXMBYQGhAfQBAQKfAQEBRgCt/1b/A/+F/sX9A/2C/BL8Q/sx+i/5Zvja9yX3SfaW9Vb1i/XX9Q/2KfZS9uL22PcP+Rj62/qa+1j8Z/26/q//TABpAAMAif9R/8b/VgFxA8EFoAePCBcJ3wngCuILqwzTDNoMvwxsDF0MzgwEDrQPuxB/EJwPsg6FDpoO9Q2tDBoLjwmPCCQIAwj+B4YHWwaOBCMCav9n/Lv5rffZ9V/0L/Ol8mPzzPRu9r33xvi0+XL6qfpm+kf6ufqs+2H8f/wt/B78ffwn/cr9Bv4F/gr+Dv79/Q7+c/47/0QA+gA7AdAANAD0/6v/X//F/jn++v05/qL+yv6f/j3+pP0T/Uz87/pD+br3Efft9uv2WPaJ9Ub1vvUI9234Yvmy+Wv5Kvma+Yz6Z/v6+078lPwr/fr94P6Q/8z/CQDrALYCQAVeBz0I6Ad/B98HuwiSCT8KLgu4DJoOLRAiEUQSrxPwFPsUTxOsEB8OjAziC4cLBgsFCv8ISAiKB4EGWQWUA0sBbP7N+oH3aPUG9Zj1/fXm9b/1Jfbk9o73nvdE9z73WPek9//3C/hz+A/5FPpI+0H87/xR/Yv96P2X/v/+If8N/9P+8v6U/1wA1wCWAJX/VP/AAE8DmwTeAq3/9P0M/48BdwLtAND+fP3X/OH7hvqw+YX56fhE9zv1JfTo9Mj2fPgJ+QT5KPkk+mv7RPyI/A78XPva+ln6Hfqe+ob7rvzJ/XP+rf7S/pn/NwKsBg8LbQ0PDVgLGgsNDQUQHhJnEjgShxKAE0YUCBX3FVkW+xQdEUIM3QgQCPUIVQnWB4oF0wMnA/kC0gFS/0b8XvmU9hX0G/Jc8UjyyfMK9Tf1mPS+9HP11/UK9sX13vXu9kD40fl0+8r9owDnAtcDvwO/A1YEKgVgBdEEHgS/A7wDiQPQAjkCAQLxAXIBDAA//hX9yfyo/K775fmb+Nr3WPdz9jb1OfQK9Gn0mvSo9H30m/Qn9RX2evdb+DX47fa/9Qr2zvcU+uP6Lfpg+Zf55foT/Hn8Ivwd/In8E/2d/fT9Of6r/ycEWgziFesb6xtvGMwW5Bk+H3ghcx+4G1oZ6BmAG5YclBy6GkkWOg+VBz8CpQDZACsA9PyZ+Mf1r/SY9LzzsPGK75DtzOuw6g7rgu2G8Wf1Xfee94H3ZviE+u38Wv7b/lL/nADQAigFPwfHCCsJPwj5Bi0GSQYmBlIF2QMBA34DOQTQA4kBjf5E/Fr74frU+Tf4Pvem97T4BPlA+NP2yfUa9Uj0kfM088Pz/PTF9Vj2//Zv99z3O/fn9Vr13PUW9xb4xvgH+vj7IP7p/vv9rvz2+8f7Y/vv+pj60foC+yb7VfvC+rn5+fla/34LKBlpIFserBigGDcgIShyKXUkeB+OHygi3yL+IJsdHRpmFE8LagFQ+m33kvYP9bfyt/Az77Pt+utO6n/pyOgs55XlpOXo6Enun/Nm99T5o/st/Qz+SP4T/2UBcQSKBzYKjAyKDugP2g+wDpsMAQqWB5AFBgRkA1oD9wO6BB4E9AHv/if8M/rn+Cf3e/XH9JL1M/er+Cr59fga+L/2DvWh8x7zbvNY9F31DPYW9+v3Hfi79yX3sfbl9i73WPcG+G/5efuP/Oz7/vkl+H72uvUV9b70+PSL9Wz2QPiZ+an5M/jd+V8DwRO1IUwkdx2XF7wbbCbFLTossyb4IlgjVSTNI0oiaSAXGzsRzATj+jf2S/W+9Ez0cPMp8srvnew26+jrLuyI6czkiOFc40fpIfCF9Wb5YfzX/r3/rf/F/4sBpwShB24J5gr2DBIQrhIwE5MRNw4KCjwGcwMgAu8BxwFRAdAADgDc/jL9Rvt/+VD3WvUw9Jb0T/YP+KD4l/jl97r2U/Ul9GLzofM/9E31EfdF+VP7+PtR+wL6FPkz+JP3E/eX99z4bfoU+z37ofpb+tj5xPjR9jb0pfEh8WDyDvRd9gn4rfj39yH4S/7eDeUfQyqkJ1YfQh2mJMMspC6nKWglxyS1JPYiPiBjHdQZnxFSBX/58fA77eDsyu2Q7yzwOe6P63bpnOmc6hTqBOiT5kLnOeuT8Bj26vpn/kgAqgArAJoAZQLKBZoJsgzYDt8P6g/lD3sPiA6bDLEIRQQZAen/nADOAUYC2wErAMr9i/vL+a749/cC9xH3yvdM+dv6svuw+2/6GPjb9ejzEvMx843zpPSL9tz4APt3+5b6jvmD+Gb4g/je90f3yvbI9l34rPlF+sD5Mfi/9uL1sfTt88LzwfQ99kT3fvjd+Z75Qfl3+yEFhRUgIjskCB57GaAeFiioLHgqSiSeILgfxB7QHdUc2Rl+FCkLSgG3+aH0MfIC8i/ySPIz8KLt0+zg7U7wU/H37yHu+OzV7UfxZfXf+V/93v4R/7j+X/9hAugFOAnFCr4KnQoeCw0MIQ0eDEgJJgVNARAArgD4ARUDOQIFAGf9qfp/+X/5gfk6+Wv4AvhA+UH7Lf2A/R78Gfpg+CX3pvYT9lT2Pvdd+G35iPmw+NX3H/dS9wL4VvhL+OP39/dx+T37Ovzq+7D5tvc+9nD1nfWr9cP1Ave/9zD4Uvf/9Tf3e/kH+kP5xvoEBaAV6CHUI8EejRw2IqUoQClxJewgjCCXIQQh7h+iHn4buhWODC4Ds/sP9uby8/HY8ZzxzO+W7RXtwe1v7pvtput96ifrjO0x8T31v/ly/WT/ov94/5gAvQPdBtIIvAmvCrYMtw5DDw0Ofgt3CMYFvAN+AoIBrwA/AL//BP/F/dT7SvoH+W/3CvZz9Sz2uPdQ+Av4gfce98z2zPW69Dn0X/S+9Mf0r/QG9av17fYx+Kf4Dfl2+VL6mvvE+w77Pvrs+Zz6Dvti+mD5JfiS9/X3QPja+Bv5nvgu+AH3r/ZL+KL5TPpv+h79xgfcFuEhXCPVHRkbuR+ZJgcpQCZRIqchiyKwIqchIR+uG+kVlQ0qBUv9UvdK9KrzpPSG9NvxbO5W7Ivs++3Q7cnr3+l56dfrAvAv9OH3nvqs/O39jv5s/xkB/QMhB4QJMgsIDJIMUA35DQIOngxMCWoFpgIDAcUAQQGjAXcB4/8//Zr6QPk1+VT5YPh19lH0APMr8/bzkPTq82vy9fAN8DXwz/CT8bXyyfN79Db1QPYq+L761/zy/Qb+Mv2U/Nn8A/6A/2EA6f8P/gP8x/rj+hf82fzv+7L5pPeF92/56PxP/zf/Bv5C/3sGWBLmGxweyRtTGqQc+R98IMEf1iDWIvEiPCCLHI0a/Bg5FfcOcAdeABT76/fB9qb2x/Xh84zxa+/M7Yfs6ev/6+br6etE7JTt4fAD9RT42vn8+d35n/s5/k4AhgGtAn4E3wbqCFwKagu6C8kKPwmwB2AG8wVbBZAEQgNwASAACv+Y/W771fjG9sr1y/Rr8xLyFPF68VHyiPLP8UnwMO9d773wK/NP9T72l/fh+A77Dv6b/3r/Tf68/ZT/XQIKBAsE6wFuAJwAtwBpAHn+Vfxw+y37rPuf+/f6RvuK+4L75PsV+6f6k/s0//4HGRF+FjUWchK8EmsYoB1fHzceph1HIGQhPCA8HlYbKBnsFZUQqAvCBmgCDAEkAAb/pvzu96jz9/CH79fu7e2v7Ovr3+ss7cPuAvBg8V7y4fNT9eT1/fYQ+cL7Ef9PAa0CiQTcBbQGUgePB+YHTAgMCH8HyAVoBP0DdwN8AiAAfv1X+z/6f/nf+FD42Pfr9pL11fTv8yLzkvNC9Cv0CPRu8yTzefRH9sr3NfhD+CP5p/qB+2D8nf16/sz+Z/72/ksBFAR6BEkCLwD2/lP+Cv7J/Zf+dAAHAdQAEAHrABkBmQHpAboCZgPcAvgCwgVPDLMThRbVFAMSORLBFUkYMxdaFcoUahVJFoAV4hOHEv4QKA6bCi0HBgQnASX+cPyG/Nn8mPsf+Eb0JPIL8sLyufLU8Wnxl/Gz8kH0m/Vf9mX2I/ZE9gH3yPcQ+eH5cPr1+j38S/7D/5YAOADw/g7+X/4y/37/D/91/jb+pP7F/lr9ufu7+mL6R/oj+dr2EfWA9R34yfmb+A32KfV499L6k/vY+Nn2p/lf/+sCPwEg/uf+TwMXB54FHAIiAl8FXgi3BhoCYQGmBAIHNQbBAjYBNwM1BfQE5QOgAzUEfgS6AvYAOQHVArQDpgKbAUQDZgZBCXIJyweuB/wH3wjACZQJuArHC2wMQA2JDF0MsgyDC8kJ1gZABO4DNQTwA5kCBQEtAO7/s/5w/JX6BPqR+mn6ZPl6+GL4Zvn5+Wb5k/hJ+DH4Jvgq+Fn48Pi2+an5GfrY+mT66Pqh+tT60Pvw+Vn7fv0b/Fr7wvqq+1j+D/6N/CD9/f3r/Y/8OvvH+2j/qP+N/V/9+vt9/E/8i/ws/yf+xPuT+9D+qAIc/xH+uAHtAF8C7wBy/b4AEwIRAvIBzAABAsECpgEeAtcDEQT3A2UCN/+///8CmQPHAvEAuv9rABcChQPgAUkC8AOQAzAE7wKGABUDmgbIBkUGWQUIBecF/gfvCGMIywdBBs0GoAfTBVkF6gW0BBQEAgRxAxoDgAI9ALH+Uv+i/4v+/fy8/EL9kv2f/r/+P/wr+6b81vy5+zr6iPtT/hv9pfp5+uH64fsD++P5ffsJ+yn7Z/z1+rv6A/zD/NX95Pxt+wP8rvx8/Zj9n/wt/Bn9pP1q/R7+vv1n/SD7zPg4/eb9Qfw3/yn9nPxTAOX+x/59AKb/2f4//Xf/lwIMAQkA3v8RAiwFPARlAiICqwS7BpoFSwSgA9MEFAeIBsMEbANbAzkEUgSVBDsDKwIeAloCoAOoA+gBGwHBAfkCxgMWA5kCrwL2AhUDgAJEATQAiQDAACAAY//l/j3///8QAD3/yv4B/+f+qv4p/hH+Jf/G/xAATwCb/wwAXAA2AFgAIgCqAPQApgCqABAApP+//wj/Bv/0/p/+qv4F/t39qP0V/cP8Ffw4+4T7/vsx++b6Pfya/Cb8ifwk/FX8e/wO/Gz8ofwe/ar8ufs2/C794v09/mf+R/9L/1b/tv9a/6T/9/8SANn/nf+p/9X/ggDHAAUBtQG1AT0B4gDHAGoBQgJ3Am4CegLVAlEDkANsAxYD9ALXAqgCKwLXAngDBgPnAtICpAJmAv8BKwJUAusBZwETATkBTwEpAeQAMgAvAEEAr/8M//3+Rv+O/6b/Rv/r/gr/rf8tAEEABwCg/zIA+gDZAOIA/AC1AMkAFwH/ANsAcgBKAFUAXACvAH0AAwCt/5//4/95APMANAA5/z7/w/9DAJn/ov56/k3+wP1N/V/9bP0t/TL9Cv0n/az9s/34/FH8RPwd/HT8wvzq/Jv92/0D/gz+Af45/ov+av5P/of+U/6q/kn/c/8p/xr/jP+x/7r/nf94/8b/4gCWAbgB5AETAucCLAOkAjAC6wGbAtEDBgTVA44DxgOKBAIEeAMWA6gCagL/AaYBjQEiAUoAAwAMAJn/Uv8P/6r+3P7w/tv+If8l/yn/kv+o/3j/hf/9/7wAeQERAicCDAJcAdYAYwFlATsB1ADu/9z/QQClAGMA9v/O/+P/NgDr/z3/m/8BAKv/Bv+v/in/X/9H/87+gP6m/lj+Af5s/Yb9+/2S/f39qP6x/vn+7/7H/qj+K/6A/k3+zv0n/lj+Wv5P/mf+N/4j/lT+yv4c/9n+SP68/oX/GwBrANP/4P8vAB0A+/86AKEAtQARAWcBcAGvAcoBDwJIAtIBdQF5ASMCmwJwApsCDAM3AxwDqgJcAjcCCAKPAaEAWgCxALoAlABnAO3/nf9d/13+A/7y/dL94P0M/kn+av6Z/o3+wf56/9P/v/+y/9D/GQB5AK4AqgDOAPMAOwGvAagBPwHzANsArACjAJYAUwB7AOoAQgEOAYAAJwBIACcAZv8D/wb/Nf8W/+f+vv66/pT+T/5z/q/+XP47/pv+x/74/mr/aP8B/yH/av/X/0YAiQCLACYAMACAAHsANgDu/6T/d/9d/4D/yv+d/4v/ov/O/wEA8v+S/4f/GwBeAI0AiwCoAP8A9ACsAK8AtQAKAawBwwHZAbUBsQHHAXcBWgGCATIBpgCfAGUAkQDfAAoBBwHWAGUAif9d/6j/w/+o/1j/Mv9a/47/4v/i/6b/3P/y/xIAQwBTAHIAtQDUAMkAtwBVAFgAjQBTAAAAAAAmADIABQCV/5v/DAApAKT/mf+v/87/EACt/0f/Kf8T//j+3v5d/un9wP2z/dL9gv3B/TD+NP4V/sH90P0a/nD+cf5G/lP+if7S/rb+xf5m/xIAZQBDAAAA/f8rAFoAQQAJAMz/0/8kAJwAswB9AGsAOABDAJgAEAH9AIsAmAAHAUgBrQGzAXIBjQHiAUQCKQIYAg8CCgLDAXcBEwGqALkAzgDDAMsAjQBeAHAAOAD7//D/if8s//j+q/75/hX/4v49/3f/VP9U/4n/3P8pABAAIgB3ALwACgEuAWoBugHAAY8BHAHkAAUBGwH2ANAAYwDD/97/GQBRAFMA0/+C/1//lP+A/yf/8v7e/tL+sf6F/nD+gP58/l3+8v2G/dn9WP6k/tz+3P7c/g3/WP8w/0f/l/+F/4z/d/+U/8X/3v8pAIQAiQBnAIYAUQC6/8H/PwBYAFEAKQDy/wcAQQAkABcAOgAmAG4AYAByAKwArgDHAI0ATAAQAAwAJAB0AKMAjwDDAKwAlABKAAAAKQA2AIQAwACaAF4AEgA2AFoAVwAgALb/pv+o/6//4/8dAPn/r/+S/+X/PQAwANf/zP8gABcAQQCdAGcAfQDCAIAApgCSAGkAUwBuAAUB7QDJALcAtQABAcIAQQASAPD/GQDe/1b/Uv8q/zT/NP8G/+X+gv5l/mr+XP55/qv+v/7w/gr/Kv+S/+v/4P+i/7j/if93/73/tv+8/9P/IABIAFEAfgAHACQAPwAJADYA8P/2/58AFwFLAQoB5gDLAFwATAAQAE4A4gCsAMsAOwAvADgAw/80ADAADAAVABIASgBXADQAiAAkAMP/8v/l/+n/oP8tAA4AIABIAPD/SgDe/+X/CgD2/zQATwBKAF4ARgBcAGkAYACUAB0AVwAFAPf/RgDt/2AAdQBXAJEATgBwAIsAEgBRAAAA4P8kAMr/FwDy/30AaQApAE8AEAA2AC8AAQCV/2j/Of9G/9n++P5A//b+If9w/qb+5/7e/in/Bv8a/x7/DP96/7j/vf8FAMj/tP9v/5D/JADa/yYAvf94/7z/DP9W/3j/Uv+b/2P/xf/K/x0AYwC2/yQAIAAAAGEAJgDSANIAmgC+AIYAyQDCAHUAZwBuAN8AyQCvANAATACRAGkA9P/n/4z/9P/n/xUAnwApAFgAYADy/yIAr/+p/9D/7v9rAEMAOAA2AJ8A+AD0/wMAEACJ/yYA0/9L/9P/rf+9/zsABQDu/wMA3v+2/0MAFwCX/ycA+//OANAAYACfAFoAiwCSAAwATgA2AO3/AQDZ/zIA4/8OAEQAtP8/AL3/n/+r/zD/Af+h/sH++P7e/kL/sf4l/7j/m/+8/5X/FQB7AGkArwCLAHsAHgDy/of+y/sc/eoHgQef+936kQDlA9MFXgFy/I8AlwSuAND+rwBNAdkB4gAB/jb+TQI/Ad79If8W/90A0gC6/C79AABGATAA5P2d/UgBZwEQABkA9P68AFUAA//r/lL/aP+YANIB8P4P/8MAAwH0AXQABf6vAEoAr/+qAkL9vACdAiv+6f/y//YA1/+x/ev+EwJ+/zL/pv5d/iYGoP/C+ksBewEiAXACIP4H/EADHAErAkYB/fxbBP8C8QES+NL7kAJuAnEEuvdk9+8BlQZM/Kf5CQDD/WwDe/2Z+OsEJQLY+k39agO8AaX7sQAYBQP8r/5kA/j+lP8c/gwIewAV9goJMgNc/a0DJ/2CAREEF/yzAlsFbvaLCSL8RvyZC5jxpgOpBvz7pv3nArQDhf+c+Gr/BgX2A48A8fQZB3z/hPx6BtH5xAQ/AvX5Gv8LBxsAyfz9/3f9YAmw+gwCOgCj+bQGY/08BF4BUfQDCCQGdfeqCVP6w/+OBhH1ugsDAtD0Sf7jA+IJCPcW+SoGQAPy/wn6Of1NAY0CX/4j96QBAwNG/YwHe/te8h0IsQJE9EMOugPG5ngV4gIY5jEXCwbB7KsDMwzyA3r3A/uWEW343Pf1DjH68fMOCi39fAImCcHltQa3Cfn3ggei97/3LwiJAyP+iwFy+YIAHgKwBgEALfOGD2/6GP/TFhfpT/22FAH3NwPL+/T9QQ/Y+Qj9yP7H/j4HGALA/Tf5afvFC8T6bfvQCQnvRwe/CwfzBwGX+BgFyAx17hn7jQvsBBb4EPxfBZP7Ogj/A/Hz0AKlBkX7MAR0+QoE8AtQ774A5QZOBUQBrPLOC9IILu+xA28DEPxSB0/9+/aeBo0Cgfi0+kYJ4P+p9p0EL/ymAeD93v9bBiL+i/6k95QBWA2B98z+GP8t+2YLkvyQ9h4K9//1+Wj+LALBBbb2q/+pA9H/GgPO/nD7HwQiALz7WQYf+T0Bzwfr8yoErggO/JT/s/4V/1UIb//G9hQEAwqs+wD8nwMp+28FdgbU8rr9JQyH9gED1QON9A4CsQLDAcj3q/70A68DgP34/XoGlPsTAhYF6vvL+94DdAApARX88f0LBgkAdwMd8+7/+Rba9zfwGQhrB3wCcv3E8v4GlQ12+gX9tfwjA4gAzv3eAz39X/2ZAv//PAVq/qb0dwibBLT5lAFU/pD+ZgTv/av/Ff8r/o0HXf4S+j8Cvf/MAIv/DPyRBRz9k/peBnf/Rftj/yoFyfxf//YB7vr2ADoIm/+28O0I5QUt+wgBbv9VASb8FgWz/oD9RANy+eEEYAVh9SEDEQH8+1YLlfm09uEOJPmX/rIMRfJpAO4Hzft8/qH+5/4FCEb74PfAB1cFufgc99ULTf94+J8CAQIIAYL78fzqBvsBtvZGChn8BvlNDLr9oP+t/2z/NAJ1/P0BlwPdAPz6n/7GB9v+Of3g/ID9IQVzBE39qPJFBOIJ6PkF/NsC+QJa+7EAM/vUAEoGofzu+YwEngR89QYEvAPmAQX9S/h2CAr/O/13AHkBKgU1/zP7IP3hBcP/cvkJBhIJA/X1+TIKfgOn+yD/7QH1+L8FdwjG9+38NQTXA0MAwPtN/uf/2QEfBjL8OvgYAwkFQv4uAyL9W/hQBeQBfgMV/wP1aAQPC+T8S/h+BH4C5P49AuD+Rv9RAT8A///tAbH/YPxL/z0I6vqT954HSwKo/rn5pP74B6756/3iCS/57PnxBmIF2/yU9GcHKgUx+y4CD/l1BLkI6PkV/IEGffve/pAFe/wEBM38WvvuBfQAB/xjAa//CgBWAU396//4/XkAXwSQ/sr9CP+4AbwBiwDW+FoApgkV/Cb8UQBAA1j+TvzuBpMFRPOv/DgOVv7C+gUB9fs7BBoF8Pmj+s7+VQf6B+T78/OWAAUIswBd/vH9Xv0eAE8CfAIHAaD4TPxRCfMFoPoD/DT8FwHIDen9ofJoAugGU/4T/68Cq/4t+xEEVgSK+ysALgKZ/yD9LAInA/n41ACbASz+1AA7/EoBcwQl/mX+CgAT/pUDGgKr/n38XwXABpf5wwBhA7X+EQIp/sv8tAW6/0//+/4l/jkCxf4B/y79DAMHAaD6gwbKAuT2x/7aBycAMfiC/AIEjQL2/oX+Ef2N/oMD4v8/+0oABQC3AA3/EwHl/+0APgST+04ArQP7/UD/rQHZ/g0DMP+k/WgD3/ySAnoCfP1rAEf/NP+J/tcB6wK+/dQA0ABu+6T9HASAAlX8QQABAjIAPv+7+8EB7wea++/7vwPiAIIASPx+AGYGWgB3/K//HAHB/wsE1gDe/bj/aP5wAW4Cd/0DAAQDqv3A/QMBvgH7/XsApAJz/fn+FwJpAAP/fAFaADn+pAFCAQj+fQDZ/30AlAG1/mT/kgApAuv+cv1u/j0CKQL0/XL9iwB2BIT8Uf49/7P+ZQFn/okAE/5H/3AC4gAP/xP/uP+NAIABm/1cAPT/zgFuAXz9zv/r/2kAjP+8/2//HAGo/qv+qgKH/lr9fP/FAl0CqPsK/HABSQOhANb8eP9dAu7/3QDa/yn+eQJLAbr+Rv4F/tIC4gMg/rD7iwCHA34AGv8E/0f/7/7vAMcB+/70//8Awf2sAMAAofy9/9sA6gDkAMf+Ef7xAb4AU/2S/5wAnQBnAAoBzgAHAI3+JgBAAmH+vP+CAdD/WAEY/sH9jQGr/zL/XgAyANf/mf/gAMoBDgAe/1EBzgBU/1EBPQEy/xj/qAJ8AjL+CP9s/z0A+AC0/3f/w/8K/5D/uQC4AQoCfP9R//YAKQE9/gX+hwHlAhMBLv6h/a//rABu/r//rwBm/2P+c/69/+f/yP/ZAO7/4v1C/0YBIgG9/zgB1wBe/SD/GwFd/yP/+f8cAnwBnf0k/RkBmwJJ/wj9nf+PAGT/PwKSAFb9gP4bARABGwCr/lz+5gCNAQcAxf3kAFMCtQCA/9f9xQC8Ahj/Qv5gAPL/6wD2Ae3/rf1h/2EAJAB+ACsA5/+//w8CfgIVAKr+Sf5rALgBugAY/yIAjwAvACIBAQDn/0L/n/9aApEAP/02AIED0AGk/8b/MP9q/n7+YQDtAS8Ah/41/y0BVP4I/S0AJAG8/9n9i/5z/xcAxQHvArwB+P4O/hX+cABv/zYAVgIBAIn/bgGdAJf+sQE9Aj8ACgD4/g/+tP/tAj0C6/5J/oz/IP8i/lEA1ACO/nv92f8VANv++f58/tYA5/6J/QEABQDQ/hsAiADQ/8sAcADHAO0BQQFVACH/Gv9IAFv/awAOAdH/i/+CAHf/mv0c/3r/oP9uAN8AAwHM/wr/CgCf/6//9P+v/4sAdwGuAOf+If8gALcAqP6h/r4AvAFGAUb/fQCqAG7/ewCjAIIB1wHV/4z/BQFVADD/ZwAOAdD/xf5P/8AA1gCQ/oIAPwEa/1T/XAD0/wz/If9lAL8CHAGg/0//2wBPAXf/pv8q/1//0f/t/wkAwf8BAB0AQP/2/7z/zP4s/9P/nACO/2//QQDK/yAASAA2AMH/swCAAfYAewBu/53/lAAwALH+WACNAIX/S/+z/qv/8v+SAFj/HP6J/m//ev9P/xMB8gGWANn+w/++AOsAgAAa/0YAiADV/oX/OwCIAPEApP+i/qn/1ABTAL//bgCRAJ3/i//G/9f/HgApACX/ef7O/ykAJgDa//j+7/7Z/jYA3P+D/ysBswGqAUgA0/+JAOIAdwGQAf0A0/9gAD0AyP9cARUCzv+U/pT/Pf/i/3P/JAGiAxECWAAKABkBpgDbANYAOAAOAOv+MP7Q/wgCswBP/5X/vf/K/on9S/4HANz/yP/a/0QB9ABl/vb9//6cAE4Azv/k/mz9B/1e/U//rf4g/Wf8Lfwt/Bf8RPxI/IL8B/w2/Kb8T/3d/Wf94vzM/bf9i/6F/wj/LwDu/+T+EADJAFr/jP+3AEQAHgCi/1H/eP87ALEAmgCEACkCyANGAW//IACPAekBuv/a/w8DGAT9BDUFsAR+BHME2gYVCtsJ1gZQB3EMTg9gDnMNTwtlChwLBgusCb8GLwWZBdMEYQIO/gj9Qv2q/VP9L/od+Mz4PvpI+kz62Pg8+DP5H/vv+836/vro+pr6U/q5+oz6XfkL+uP4Uvj3+K33W/Z89hT3T/fE+KP5lfr6+gX8e/2x/aH93fxw/KP96/wk/Fr8Vf2m/7b+//zF/Hf8APwJ/Mv84PxK/BH+BQE7AYsCugN/BJMFOwSAAwIFHwVsBAAGFwelB2kGDgcTCacI+AjkC/IMvQzWEAgVkBaUFKwTbxS2FcUU9Q8KDeULaAxLC2sF2f9a/SP5DvUQ9GXy5fAl7yPwdvFB8YbyzfJj9Cz3Vvi9+N/5APsK/VH+kP7//mX+Y/6k/Rv8j/wS/KH6qfkq+Tz5gPft9Q/2FPfe9HX0Y/a29qD3bfc897/3ufia+Xv6wPuR+1X76vvt/LH8SP1C/9H/Zv8a/xUBkANjA9UDmQXBBOMDzwTYBE0E4ANQBYAIqgcBCPIKvQ5ZF1geTh8cG7cXUBm1HOAcHxloFbgSKhC/DPwIXwVWAUb96fi88wLvDOyL6qbsMO9+7/fvlfHF9Yz5JPwc/wP/VP4p/37/RAD0AaEBXAG1AUoA0//Q/sD9cP3A/Hf7Avp6+Bz3nvdo9iP17fOg8YPvR+4J7/LuoO8J8QDyy/Ks84L1J/fP+Jz6HP6SAZYCogPMBG8EHQUdB6kFYQPOAqoB0//o/Hv6YPkx+or6rvp7/HH+4P/0//gCVwe0DbUauCjiL2wu8CjBJ3IriilaInsa8BVKE/kM1AbKAsX++fjK8NToP+Gv2XTYkNzd4WDnU+pA7kb1Lfpe/YkBzgJUAk8CTgQMCLMKWAx8DsQQ6g8KDCoHpAP/AOn+bPwA+fD2c/W89QP27fQH86DwI+/I7qLu7O5D8OfwUPLQ9MH2p/fs90n4APoT/Jz8zv7oAOkBnwNYBCEFgwYZBswD8wDV/oD+hv3Z+8b5tPjN+N73b/hm+Hb3oviG+mv7ufwI/b/+EwlJHW0xZDpHOK8vIC3gME8vLighHV8TlQ4kCcoDFwGz/Wv6fvSW6avf+tZp0ZfSB9jP3bvgGuVz7c72tP+OBpgJugrpCVgJyAtFDosRjBX3F14YnhZPE4wPrQqdBLP+q/iC8mru+uzF7Fvuyu+I8AfyR/KN8cvw0e8f8DbxP/Om9Q34afxm/7b/ygFAAtABvwKSAFT+ef5L/yAAaQCCAI7/fv3Z/fj9KfvB+LP2ZvZb9o/0sfNp83XzPfXu9oD3D/id96D6aP/5A1MRNCbHNlc7AzNELAQyYDVfMcwokhtYE78L1gBh/AD69PS97t7mn+Ko3CHTN9Jy1/fd7+Km4+7nSfG9+ZsCQgrYDiARDhCTDvAOtw/AELwSWhTKEw4S8Q9bDQEMnQnMBLz/H/mR8WPt9uvv7MrvrfBm8UHzJfTy9Aj2Y/YV9qT1nfbs+Fz7E/7mAPYDFwfACFUIHwdtBRQE9AJPAMH9rPuP+fD4dPnj+V764/hx9in1IvPj8VfxQO8L74fvwPAt9OX2JvoF/Y7+SgAqA98QTCkxPBpCDTlRLtMxmzcgNC4o7BcNDeUEffuF97f0rfBs7djnuuKd3H7Uc9Ki1s7cm+L55D7ov/Dh+9QHnhCDFJIV+RQIFGoTWhKAEYEQtQ+0DhEM2wlbB/IEKgSSAm7/MfoS8w/u3eyV7iPwQ/Af8c3xtfIy9cH3evkZ+vr5yfqz+2z8ev7iAMgDJgdqCZsJmAgFCOoH/AdKBwsEUv+E+1L4RPYP9Yvz4/HI8DPwOe9L7gHu6+2n7knwk/IO9eT2zPih+27++gHIA4oERA3/Hqsxezv7N3ExEjKANYo0tyuZHSARRwbL+zb0pu5Z6QLlx+FV4GbeENl81dHX9Nxp4QjkTOiO8Kr6zwRNDZQTFBjNGfMZARrzGGIWNxMdEMYNfAsbCacGMwTeArcAofzr92Lz3PAF8fPx2PKw8s/xYvKE9I73Bfov++j7ofwe/nsAwwHKAnYENQZyCPgJ1gnhCOQHJge5BfsEGgUUBIkBXP1e+fL2bPSj8OLst+o26qPpPek96bno2OgV69HuEvLq84n0qfa8/PIChwV9Ce0T2SUGOJY/Dj0WOKM2yjgRN8cs5BwzDRAB2vdZ8RXsS+bG4LHcT9x+3VrcYdux3A7hZubq6NDsHvRs/MYE8QpkD/sTtBY8GFcaOxvdGYwVlhDMDHkJHQcuBTkDZQGE/ov7p/lL97P0/PH776LvVO+Q7mbvIvIM9Un3UPn6+hf8wP3n/yMCkgOQA34D8gSDBiEGegW/BSMGLwYRBbYCmgBY/rP7rvl196707fIF8rbweO4B7eDsNO3i7UTule4+7yHxifNn9Zn4zfzT/+ABnQONCicc2i+ROgg4dTBbMj460Tu9M8Uj0BOzBzb+fvhK85LsHebH4PDfbeDp3fXdgd/Z4QjmIeco6Qbv0/XI/jQH/wtxD7wRARVKGpkdlh2WGfsTFBDgDBcKcAfcAwkA+vvy+DD4v/f09qb1ofSJ9CLzPvHq8Hjx6vLz89LzXvTg9Qb4Wftc/i8A4gApAjUFOgjbCeIJTQlYCcUIFgb2ArkArf5f/WH8Qfpo92n0YPHc7vrsJOte6dbnxucM6arq/exQ78TyoPbK+O/6Of1C/x4CYgRADK0c5isyNCs0nDFCN7Y/AEIOPI8s/RsjDlwBzfkn8wHq9uGz2rvXCdkk2S3aCNzj3THh7eNt5+vt9vSs/MwDPQnsDdQQghSVGSEd8h1sG2kXdxSsETMPqAzLCDsEVv+1+wv6GPji9RP0iPJH8i3yTvEN8VPx2vHs8s3zTfWX9z76yf2AARQEWQUtBsYH5gmkCh4J5gZMBb0ETgQRAysB7/5D/Ir5KPfU9Efyiu8X7Zbry+rm6Urptenk6VHqwOv27Y/xBfUw94r53fyRAGwCHAQhDFYb7Su3NYI1DjVkO0BDxEahP9kvzx/xEPsFev6L9EHpid2F1EvTEdQN1SjXj9jn3LPiuOZ+7G3ysPioAPcFhAm/C9cMyxD0FZUZURsZGooY+Rc4F/0VqhJbDfcHrwLI/jv8z/j09Avxle6p7lvvou+T72Tvl++R8DPyFfQY9tj3W/ll+2j+lgEwBEoGxgdtCKcIYgiTB54GMQUGAy0ACv1k+j74PvZc9JXyp/BF70fu1e2o7Sztdeyz6zfss+wY7czuZvDG8j738/o7/lwA+gHHC3sbKypnM9QyTjLTOBVAvkR3PwsxkiOXFvkMOgbC+pDuL+Jw2CvXPNcL10zYE9lm3YviBOY46yjwFfY4/coBqwXLCMoLUxHjFRkY/heSFUQUAhUWFpwWTxSOD+QK3QZ4BPgBif2k+JLzu++D7rHtd+3y7Ersme3R76jy6/Sd9Y72C/il+pL+jwGmA7gFpQeWCYkK9AkMCTQIcgfoBcMCgv/0/Az7jvlC9wr0JPHR7rrtY+3S7MnrcOuz6wjsEe137urwyfMR9bj2wvj1+s79tf5xAm0NpRrnJjYsDixSMhY8uUSxR2U+6jGAJjYbLBTfCQX7eeyr3afWKNXg0gPSpdDt0WLYud6B5RnsEvFY96j8swCMBKMGZQkWDYgPYxHzEUQSfhQuFu4W4xYIFCkRMw+dDBELfQfFAc384fem9JXyPvBb7nvryOih6O3p4Ozq7y3yMPUq+C37wf63AdUDLAW2BcAGyQeWCG4JSgqtCpIJVQenBe4ElwN0ABP8zvej9IHyW/An7gPs6Onl6Efpwum86aHp3eq07VLwA/M39b32APnv+hsA5AvoGK8knCmhKnIzKz8RSXNLIUGSNVMsZyPkHK4QYQAN8YTiRtyA2avV4tILz7DPrdQk2efequPE6Cjw1/Xx+lj/XQJHB+8LBA+GEUMSTRPlFRQYZxm5GfcX5xV5FKUSjxDaDDQHJwGa++L2MvOy7yDsA+nK5/noVutS7l3wU/Hx8gj1w/f3+q/9gP8cAREDMQWNB00JcwphC4kL/QqRCegHnAbGBAMCCP4L+Sf1LfK074Lt2eoC6XvorugQ6TzpNunY6VPsle4W8EPy6PM09rj4pfs6Bf8R2R3nJe4nLC90O/lE9kmFQ+A4ijF/Kf4jGxu6C4L9z+7c5RziX9zU1xrS787S0eHUEdpM3+3iW+kP76T00fpq/qQCrAa1CGwK+Aq9DFkQ0hIeFPYT6RIIE84T4hSHFZgTjA9WCm0FGgLH/kj67fQ373nrB+pc6iPsuu207rvvxPE99VD5nPxl/nH/wwBhAhoE+QVSBzYIDggUBw0HEgfRBiQGcQNTADD9mPoq+br2WPOy77rs7+u16/bqIOpV6fjppuwL78zvl/D68Wn0bPcS+br+TwnZE4QcmR9YIyUu3DiyQXVCnDoyNcovTix4KfkdPA9k/4HxS+yc5wPhINrt0cvPZdLG1ZbaVN2w4BHmvOuL8vn3NvxMAHUDMQYpCNYJ8gsmDsgP5hDQEegSMBUoGLIZThnTFjsTjxDcDU8KPgXV/kH5//QD8uPvqO0Q7BDr3+r668XtV/Ag81P1mfd/+Rv78/yf/v//kQCYAIAAswDtAcUCbwPwA2YD7QI0AvgAsv/4/Kv5yPYg9FnyhvAl7lHsTOtW69DslO0u7nbwGfKf9Fv2vfeD/zYJtxF0GNIZuB/xKt0zaTswOToy6y+vLLwsYCmhHIYQYQNV+l33ce8C53HeudZi1yTZ1dpm3VndqeDX5cTqAvG89L33dvvk/dcAAwN6BEEHPwojDRYPFxBeESMTlRU8Fy8XhRVYEwoSsBBADp8JmQOH/ur6D/gM9T7xOe4Z7GHrZ+y97bvvFvEZ8tnzkvVq96L5hPtl/Yf+3v58/woBcQOiBc0GtwZxBpUGwgaVBvkE6wFw/vr63/gE9yf0C/He7WXs8Oxv7ZTtie6S70nx/PIi9FD4kv9kBg0NoxAlFfAejihiMSY1dDIAMfcvSy8KLpIlURrjDgsFXgCc+mLyG+mG3znb4Non2//bCttf29rezuPs6efu8/Hd9CP4f/tN/uP/OQHQAp4EhQaxCHcLEA9KEoUUFhZ2Fh0XoxdXFxMWuBJFDsAKsgfIBE0Bffw8+G70hPEj8NHuzO2q7PHr0uye7q3wCfLq8kr0/fVH+Ej6wvuS/bH/4AHiAx8F/AWsBjEHBQe/BUcDcAAO/sv7Pvk+9tnyM/A17x/v6+5Z7uft7O628Mvy1PRS+L/+HwV+ClkOIhPZG8sk2yrJLA4rHys5LagtyStlJJwaYxNhDckIaALj99Pt8uXd4S3hst+23TXcc9xb4GzlwOkp7YrvofKp9hb6WP0VADcCpwSnBhIIYwnvCcoKQgzcDcQP2hDLEYUTqBR4FSMV4BLkEBYOpgoDBwUCif23+UT20vNS8ffun+287FTtge4a75nv4e/c8MDyavTy9W/38PgX+4T9sf+QAaYCQAO0A8UDDANuAWT/qv2n+0759vbH9MXzAfS581jzOvOA85v1R/fG9w35dPvJACoH0graDcsRLxjTIH4lnybMJdAkJydZKAgmcSBCFxQQMAxICJkDOvtw8Svrjuf55ojmIeSR4kbiguS96APsg+5Z8G3ysfWX+LT6WPyj/Zf/nQH7AlsEpAVQB8kJ1Qt/DQcPOBAtEg4UkBTmE/gRbRCBD18NSgoEBsEB2/4g/O75Uvc59ADyz/Az8RvytPHn8HrwAvFa8mPzVvRK9Rf2UPfP+Kn6t/xP/mH/KQCRAIkAGwCm/9L+7/1l/Jb6xvlm+XL5LPnn9zn3D/fg97L40/ev9wf59vyzAg8GGwj4CssPuRe8HRsgNSFFIZ8jQCaCJVwi8RukFR4S9Q02CbgBUPj18SPuteyq6xvoSeUX5BHl2uha663s6+3g7t3xO/V293H5PPpI+xf9Kf4TAOYB7QMHB3UJ5AsmDvAPmBKvFF0VORWsE0wSOBEfD5QMLwlzBUQCZv/Q/OX5dfZG8wvxDfA57/jtdeyq6yXsX+2e7nPvN/DU8f/zyvb5+GL62PuA/Xr/RgHbAcoBvAGsAeYBZQH2//D+8f1I/SX9ufvC+ln61vmI+tr5nvgf+Zr68P5NA+EEIgf8Cd8Pmhd1GzsdUR0sHu4hDiSzI0kgEhq0Ff0SZBCUDNMEcPzZ9RvymfD47fPpsuYN5X7ma+k062zs7eyJ7pfxRvQh9hj3Zvec+Gb6HfxI/tX/5AFoBKcGYAneC3MOXBEyEzUUMBSAE40TGhOPEcEOuApcB70EWAKQ/7v7//cZ9WvzSvJ88FTuWuzQ67PsCO7B7h3vCfAA8sH0Pveg+J75xPp1/Hr+OAA4AdQBfgIqA+kDqwPQAuABgACo/3P+cPwC+3v56vgU+c/33vZ49rj3tfvg/iUBiQNUBtkMxxP8GHkc8hwCH3QikCQsJawh+ht0F3wTghAYDIoE0PwD9nbyIvFf7tDqJudG5RHnYOlY643shewn7rbwJPM59VH1TfUy9oz36vni+3z9xf+SAtMFTAksDMgOPRHzEkIUyhTbFPQUcRRzE8IRpQ6fC+oISgbBAzAAAfx++Kr1y/Mv8tHv4O3J7J3sl+0w7q/uFu9f8LXy8fTR9rL3iPgS+kP8Xf6Z/x0AdQA/AXwCgAPRA1oDjQJWArwB5gBW/+b8RvsA+nb4Tfei9Zj1VPhu+xb/hAFfBP8JpxBHFysbXxwoHnwgByMQJDUhyRwEGOYTtRAGDGsFWP4J+OD0JPMU8V/u4erG6c7qXuy97U/td+z77ETuYvAA8vfxmPJw8131V/hK+o38mf7FANwDfQYBCU8LaA3oD48RoxIBExkTahO6Eg4RKg7UCmMI8gWkA64ArPxO+fn2DfYe9bfzA/J98KfwYvEX8n3yKfK58gP0zPWi98L4qfms+ib83v0T/5//pv/D/+7/OwAwALr/Zv/K/o3+h/6x/TD9L/yU++H7x/pQ+jb67/ry/vIB5QMJBu4Hng1lFD4YuhrUGScaZh2QHjUf2RukFegRVg4aDE0JQALb+472KfMZ86fwT+3b6pjoPepL7Obs+O397CfuXPFB88P1ovYf93v5TPtT/Uf/NAB1At4E6gYmCW4KVgz7DvoQNBIQEikR8xChEM0PGw7kCgMIiAVoAxUCcf9Y/JP5Ifc19nD1y/MW8pnwcvAq8dbxM/Jg8uHybvQc9rL3H/kA+nb76vzx/aL+of7B/k//Uf8u/4X+gv07/S39P/3Z/Mf70vpF+j/6hvo6+h35TfiD+Wf8TgDyAlsECweQC1USyxe8GZMauhogHa4gwCCyHrMZhRSjEhcQCA2uB4X/Z/o79631vvSy8GPtZev/6hztZu077TntEe2c76HxHfO89DL1Xffs+dT7HP53/24BEQRvBvEImQr7C34Ntw6BD3sP7A5dDh0Ocw0aDBkKvQcZBtMEDAOhAIf9mvqu+EL37fXi87XxyvCe8Hbx7/Hx8Rvy9fLm9AL3lfg1+dT5DPvH/I7+Gv/2/gr/MP8ZAGMAv//S/j/9qvxn/K77xPoW+df3nff/92T4LPjs90n4FfuJ/wgD5QWKB/IKQRHuFoAbkhx3HIkeriDjIvEh5xxbGO8TtxGBD9QJOwP6+1j3s/V5883wquwC6Z7openr6wzt4Oy/7UfvrPKO9en22Pc5+Pz5afz6/Vv/BQBsAXMDUAVBB3AIEAolDPINKA8zDwkPZw+XD2APlQ2dCgkIxgUzBPYBcf7C+sj3avbt9cn0SvPd8cLx4/Jy9HH1WvWx9df20/i1+mX7Ufs0+8f7Af2o/Vz9bvzN+x38Wvx9/AX7jPkJ+an4afnM+Pv2Afbt9Ab2tvcS+GD4jvdZ+dL9cAIOB24IJwpgD3wVcxxqH8QeTR8WIHUjIyX3IbocXxbbEkYR6g29B+/+Y/eW80zyFvGJ7RLpbeYA52LqK+0P7ovtju2p77XyVPXD9Wr1Rvbn9wP7av3l/gEBeAMhB6gKuAzaDm4QLxIwFOQTDhMtEUMPOg6DC4IIjATDAAj/Yf1w+9j4Bvbv9EL1CPbV9Wz0bPN18xH12fYG97z2Yfa49yb6LfwZ/eT8Uf2E/lEAsQEuAd7/s/77/f39o/xX+s/3qPVc9a70O/QO8xny3/KN9JP32vgS+bb5t/sRAqAHTwp8DDENqhM9HOogkCSIIbkg7SP9JNAmUiFdGKgS5QzKC0oI9P7n9m/umOuU7FzqsufD4qngSuOc5o3qB+u+6rjsDfA99aX44/le+wz9TwC/Aw8G4QeNCScMpA73EOIRQRKvEw4UHBSGEiEPJQ0GCxkJiAaoAe/98/p4+UP59Pbo9AfzrPK49Br2l/Z39o72M/hr+gn8Rvzb+wD8zfw0/rb+7/0D/Zj8Ff21/UT97fuw+iT6+vmK+UX4MvYw9c70bvXt9Ur15vTe9Gr2gfg6+vf6Qfoo+879XwKKB6UIiQluDHAREBpWHqsfrx8jH9cjmyarJscjphvaFtITZBCmDEsDovmf8hXuVu1D6srl5OGg35Ti++XL6FrqSuqJ7e7x3vb6+jr83f39/xUDgQYkCCYJkQkeC/8MoA1DDqANGw4sD6QOqQ3rCrwIZQeBBYAD0f8O/Hj59PfK98H2A/Xt8x707/Xs9+f43/gU+Yb6EvxC/QX9+vu5++T7wPyu/IT7nPok+pr62PpB+mv5LPhZ+K34M/gY+NX2s/a793b4b/lv+Y75qvrE+9L9x/72/nX/0v5RAPgCYAV5CH8I7wmtDa8SRRndG6QcWB2ZHlkiByR/IicenBdoExkQbgyPBnL9efVZ7zTsTupb5qbi6t/W33Pjyuaj6fLrO+6T8nb3pft+/iAAqgHOAy8G7wfoCA4Jown7Cg0MzgyLDFIM0wytDG4M0AqoCCgHlwWkBFECN/+P/Pr5u/kx+a/3hfY29Qb2xvcs+Qn6v/lV+uH72/1k/w//av79/W7+g/8G/+j9PfwZ+6H7V/uR+g/5O/dN90v33Pd890n2kvYW98r4H/rl+Sr69/mq+sL7/vsi/AX74/q1+9n92QH2A1sGbgkwDesUuRqtHhQhwCB0I6QlICatJHMeLBjtEj4OnQrDA177i/Nu7Y/r0Olm54Xk4eHZ4pvlZOkI7Bftzu428TD1Gvk0+1j87fzH/sABKATLBYoGhAeECfgLCw6wDrkO3A7CDsoOJQ21CnkIVwaDBNQB0/7S+xT6YPmc+Mr3WPaQ9XP23vf9+Or4Vvib+Mj5SPvx+237vvqN+o/73/xV/Qf99vs6/OL8WP3S/bn8Q/z1+/z7f/zS+7f7Yvsk+/X7iPuy+yj7+vlT+oX5pfnz+bH3kveO98v6ZQB6Al0FBweUDIoWwxx9IYYh2CBAJQIo0SnrJtAdUBhqE58Q0Q1xBGL7AfMj7trtwusd6GrjoN9D4XXkf+cv6ejn2OlJ7e/xAvdz+B/6BfzO/iADsAVvB7sIMgpNDToPRxCYEC0QZxGdEcAQjA5sC/0J0AjJB60F6QFG//r91/3d/d/7APnl9kb2FPcY9871yfPY8qjzE/UM9uD1uvV39kX4Nvr3+vr6yfqo+1b96/3O/Qf9n/xq/bP9s/2S/IL7iPtu+xf8hvvU+R35N/ip+JD4N/jp9132pvZU95b6jP9+ARoEjgakC20VtRsmIN8hbSFWJlkpQysZKi0ivBw3F4cTxxC5Bwz+n/R67f3rG+l65Wvh+9xL3oLhc+XR6APpYevG7o3z/vgS+/H8K/73/7YDKgauB6wIAQnvCiENOA7wDvMOiA9BEE4Qew/wDc8MzguJChkIigRfAe/+cP3q+x35yvUx81Xy9vJs84vyM/ES8bDyN/UK95P3r/cm+Pn5SPyY/Yn94PxT/cX+FQCUAHr/Bv9C/63/eQCA/xX+MP1s/Or8kvy7+236Gvn++Jv4ovhq+Ov2lvZ49lT4Wvyv/pkBnQN9BzMPWxVcG9MdCB+zInEl8ijqKEIkUh+sGc0WYxTNDcsFx/uS9NjxH++m7EXnHuKy4ILhd+WT533nPOhe6drt2PLt9Uf47vjq+mr+ZQGgBMYF2gbzCMAKkA3fDqEP3xAQEbMRShELEDoPrQ0WDLkJeAaUA9AA9P4e/Tz6Wfev9HDzkfM084byo/F68b7yvPQj9tX2DfeS90P5EPs7/Kr8a/wB/e39tf45/53+X/4y/tn91/3C/EP82fst+4r70vpy+or6rvkh+or5nvjw+DX4g/iy+CH4hvrH/MP/jQLuA7wIOA58FGIZIhu/HYogOyRZJ6smOCTBHxMcTxpEFhARtQiU//X5NvUr8tHtnudw4/7gMOKt5JTl++Uh5rLoQu2N8Uj1vPZU+Av7Gv4aAhoEAAVbBrIHewpuDHYNPg6tDvUPrBCMEM8PZA58DTUMEQpnBwoEpgGO/5L9F/vj99X1gPRW9DT0XPOB8kryLfOj9L713vW29Uf2dfcQ+R36Nvqa+lX7rPx5/hb/d//M/0gASgFPASIBZQB1/0D/NP7X/df8gvsz+w76tPlX+Tf45fg8+Nf3XfiD+Er8J/8/AWoE1QXTC8wSXxe1G/IbDx5uInUlyCd+JbIgYx0BGmIYrRTlDCUF0vxd+Nz1W/F17E7mY+KU4mjjneSC5FPj5eTR5/brm+/+8EjyMPSX93b7av40ALMB1QMCByAKZAxQDsYPdhEKE5kTrBM2E1YSoxGpD84M1AmeBokERAK4/3/8PPmm9632MPYp9VPzK/Lq8Vfy2/KE8snx8/Gj8iv0cPXO9aT26ff6+Qn8Vf0P/o3+bP9cAI8AQQAM/879of2l/KX89fsU+2X7YvtV/OD81vyA/fr9m/5L/43+8P7oALYCrgVHBmQH+wq5D/gUmRfoGA4aLB3PIHsiVSFUHqgavRgmF08TzQ1UBWX+t/kc9rLyA+1m52zjU+Jo46/kxeSW5J3lg+g37aXwDPOv9Lj2Q/rX/cUAbAKoA2gF5gebCl8M8AyyDRYPTBBBEckQqw/3DiUOaA2bCwEJnAZiBOcCwgD9/Xn7FPk6+E33i/X48z3y7vFg8jby7vFJ8UnxhPLv8wP1cfW89fL2k/gh+h/7e/sD/AX9Af7Q/m7/ZP8kAKMA/wCNAcUBEwKmAnMCDAKYAa8AfQDV/+T+0P0b/JH7sPuN/Sz/0P/kAHgDQQjYDRASIBREFlIYMhwxHwcg1R47G3gYWxY1FH0Q7woEBEv+gfq69zL1/vAV7YbqNOpG6yfsquvW6mnrE+3p767xU/Kj8sXzHPaw+NT62/vr/OD+YQHcA/sFdAcMCSALwQw3DhsPxA9OEK4QeRB7DzoOygyvCxwKtwfGBAMC1//7/Tj8xvlN9yz1E/TC8yLzM/I18dHwevFe8tTy4/L68vTzXPXF9sr3+/d6+L35PPuJ/Dn9G/1y/Tf+WP8OAP//qf9N/2P/sv9N/2f+RP2C/HL8WvzP+9T7hPyC/vwArwL1BGMI3gyJEUkVUhfLGXEcgR+MIeggGh/2GxUaLxgwFVERdwsbBg4C7f5B/HP4t/Md8PLtVO1E7czrhOpi6bPpi+vw7Mrtxe0j7qfv1vEg9Lj1yPZk+Kn6j/2xAAwDRQV0B90JkAypDlsQtRGREvoSxxIeEnIRIhB6DhUMHgmXBroDfgHw/rz75/g+9ub0JPTk8rfxBPAq78HvFPCi8JzwPPDU8OXxiPPo9Kr1i/Zm9734R/qs+538O/34/Zn+sf+IACQB4gEFAnAC5QLtAmMDxQLVAqsC7wG+ARwBTwHgAtAD6wTYBaAGQgqJDfMQ+BJwE7sVkxcvGrgbThrvGLQW0xQnFEMRVg2UCAMDVwCd/af6nffL8kPwEe987vXus+2Q7Ins0Oz37gbwBPC38JrwNvI99Cz1D/e090X5DPwI/v8AzAKXBDoH0AgPCzMMMA1tDmgOuQ5DDlINygyXC1UKlgg6BokEhAIlAbb/Iv1i+135APhf9/j12fSW84vygfJ78mLyKPKp8d3xhPJM8+3zGfR39Az1X/ab93T4g/kh+mL78fws/vT/zgDbAfYCnwPYBM8EqQTuBAIEKASHA1YChAL/AfICVARfBPAFGQeACTMNOA9sEUQSwxMhFk4XVRhpF5UVURSlEmIRdg8sDOEIVgXkAmkBOf++/PP5aPc19r71A/XH8xDy0/Bp8JnwjPDs71/vAO/u7xbxVfJ785/01fbz+Iv7+P3G/xEC7gOQBT4HFAgHCc4JLQrACksKPQoHCsUJHgowCWIIfwdnBgAGMwURBLMC9ADB/43+S/3Y+7/5Hfip9mz1YfTk8rXxyvCB8KvwmfDE8P7w7PEv82X0tvXp9qD4f/pR/B7+VP+8APgBUgNhBOsEuwTwBJsERARdBBUDFQJpAdAAZwFGAhgC0wJjAxYFMgibCaoLZgx/DfkPHhGzEq8SpxFVEbwQgRA/EPkNBgzrCR8I8QcoBiMEiQHI/t39qPxc+2L5kvYM9Qj0gPMH86DxovBH8C/wAPF78aHxP/LP8gf0ofXp9j74tPk6+wj9MP/8ANUCpASRBnYIFwqdC7oMyA0lDjMO3A03DbEMcwvrCRQI1QUEBEgCfgB3/u/7zfkL+LH2x/U99MfyePHC8NbwsvDR8NrwtPB/8bXyA/SY9ZD2q/dQ+fX6y/xc/nz/vACjAQMDzANQBIkEFgQTBBoEbAMPA1YC2QGWAosCEwNNA2QDQwVKBpwHcghcCNcJhQqzC9wMWgySDFYMmwwSDq8NYg1PDOYKcQs9C/IKmwkiB+gFTQSkA4sCzv+k/dv6Fvkh+FL2zvSl8vDwbfDe7/LvuO9h78/vS/Cl8THzd/Rh9uf3+fll/K3+bAHMA/cF8QemCY4L/QzcDXMOCQ6/DRQN+QseCzoJdgfEBRwE+wJzAR4ApP47/Tv8M/t7+nH5Qvgy9zv2v/VT9eb0e/QQ9P7zOfTA9FT1rfVm9gT3M/il+Yr6E/zS/On9GP/O/+8ATQG8AV0CdQK2AmoCdwI3A1sDygNYA0IDbASQBPsFfwUGBZAF8gTNBvoGyAZDB/cF9QY6CHsIrgm8CMIIqAkMCroLCgskCq8Jfwj4COgHTAaQBMMBsQAs/6j9TPzW+ZH4cfem9pn2v/VK9fT0BfXV9Tv28Pak90L4svnb+kH8pP2O/tf/+gAuAkkDBAS2BPUEVAWOBWIFrQWHBSMF7gQuBPYDrQMgA6gCpgG5AP3/Pf/D/gz+pvyR+436M/rL+ez4EfgG92r2ifaD9nj2YfYK9qj2h/eR+Lb5P/pF+zr8ef3Q/kf/7f/n/9cAagGmAeABkAH2AagCXQMCBK8D0wOpBBEFOgYUBkkFPAWgBO4EygT7A/gC2QFTAUQB6AE9Ad8ANgAyAKwBLgK2AqoCIAIaAwIExARtBbsEzwTaBCwF3gVWBSMFWAS/A8EDFQNoAkQBTgBo/3f+3f3o/Fj8Ivy8+/P7wvsS/Lz8Hv39/Xf+7f6H/zgA5gDSAAEB4gDmAC4BxwByAP//qf/u/+L/3v/K/zX/Vv+A/47/gP/k/nD+0v13/T39QfyB+1L6cfk++bv4rfhS+Pf3c/j3+D/6FPu7+6H8OP1U/in/oP/5/+D//f8bACQAWgD2/2UAmAAiAf8BGgL7ArIDdQQzBS8FxAWXBcgF8AXuBI4EOwMrAsUBhgDZ/2P+9vzA/CT8yfyc/Dv8sfwD/a/+xv9uABUBbgHSAv0DvQRCBfcEAAUoBVIFTgVtBKgD3gJdAv8BXAEBAcj/WP8g/8z+sv/F/5X/EgADACsBJwJGAvkCfgK2AicD3gJkA3MCkAEeAWEArwA/AK3/Pv+Q/uv+Ff/2/uT+GP4e/gP+2/3J/bz8NPyo+1D7Xvuj+iv68/me+SH6b/qR+u760vqI+/j7WPzX/Lz8OP04/aT9Kf4P/q3+Lv+0/7wAZQE5AjADoAOTBO4EVgUABqcF7gWcBRsFzQTyA4kDnwKYAdQArf/T/o7+zP1+/c38OvxI/Bf8gvy6/Ij8tfwy/Z39nf7w/kb/6/9hADgBkgHpAUICPwL9Au8CjQKNArEBygEDAjsBEQEpAGUAugHpAfYCtgLyAtwEqQUtBz4H0QZVB9QGRQdiB+4F6wQEAyMCQAIRATIAP/66/ID8TPxr/H37SvrN+Sb5y/k++kX56fgI+Av42vjV+AT5m/i0+Kn5Hfrl+mf7kft9/A79//2v/vn+7f9lAEoBDwKmApADWARZBcgFYAYmB3IHBwhKCBUIywcmB5cGuwWwBH4D6wHrALj/n/7F/Xf8t/u++mf6ZvoQ+vz5ivmG+e75dPoi+3/7u/sv/ND86f21/j7/xf/l/8sAeQHBATACmAGWAf8AtQAwAOv+S/5a/Qf9r/wL+/76MftV/Pj+h/4pANUB4AMDCbUJHgzXDKsMvhC1EDkSQRKRDoYO5wxGDCMMmge9BfsBEADMAHv9pvzC+Sj3+/c39uD2v/Ug8wr0n/Ka8yn0UPKf8+/y5PO19Vb19PZm9w/5sPuc/Lb+zP93AY4EJAbEB1kIzQhCCkALHgzOC/8KmwoiCisKiQmnByMG2ATnA1QDbAEp/4b9z/s0+/r5+feO9t70gPSb9Aj08/NI86Hz7fTr9dj3S/ga+V77bvyf/sb/GwDeAbUB8AK/AwQDkAOLAmYCVgKGAFoASP4//fr8Zftc+z/6PPhF+Nj4wvvM/U3+3wAaAo8IKg5DEWgV5RRDGIYbcR3uH/IcuxkSF7gU5BThEcML7AahAGP/wP0U+m/3afEo8E7vpu627wjtfeuG6/br0e1h7sftJ+627sjw3fLf88H1H/ec+ar8Af9yAfsDzQbZCQEM4AwYDsYOyA+IEGkP0Q0PDKwKewmPCJEGmwMbARH/Yf45/Tj7TvnI9pT1QvWG9LXzSPJw8WLxe/LA8/7zofSZ9QT3qfkp+2H8lP0n/ncAPwGFAmYD+AJqBPYDVASbBPYCvgJGATAAWP/Z/Eb7ivkl95v3dfVT9a/0xPJx9236MP9NA1QEQQoSErUaByLzI2Ul9yZgKXwtKyypJ38gaRhqFCYQhwroAY73D/AB7AHqJOj/4/Hf+d6q4FTkaOcQ6frpTeyg7/Pzq/Zz91L5vfls/H7/JgC3AdcCGgUxCBoK7QtADb8OCxGuERwSvhCFDjwODwwuCpUGjwF8/mL78/ng94/0xvEa8NHwbvJ/8svxivEt8lX0Lvba9mb2dfax92D5Wfsv/Eb8cvyq/usAQAIGA4kCcwNQBPsEEgVSA08CjwGt/9n+iPxV+uH4KfbD9Uzy5fAf8I7u7vAY8aPx3fJ/80v5EQGKB4MPQxHRFk4hkSmANOQz8zKKMpkxHjWfLxgomxz5Dw4JyQGP+mfx2+N63NbYf9eS2oHX1NdE2ZDc6eWf6lXwnPP99Vr8DgBvBHQH2AbmCYULhwz3DtgNig/hELoRVhOxEaoQIBBpD8IObAuVBpsCCP+Q/ZP61fUO8pDuKu6B7knvGu8a7ofvk/IR97D6UfzU/Kj+kAGnBOcFcQRHA+kBKwK8Aan/c/1/+yr6q/k8+Sr41/ex9/L40fnl+ez5p/lK+nL6L/rs+MH3BPeJ99H2MPei9pn1R/dj95P5dPlI+rr8Lf1z/tL+hwL0CxATJhezGXIanSYuMKU1TTYFLUgsgypkKQglzhWNB0r6u/EW7wDoxN1v1TrPttMi2sDfTeTp5GfsAfXI/qsGfQhcCtkLtw4gEcYQbw5vDPQKtgphCoYICQfsBWQGqwYfBR4DHAESAAAATf4A+5P3pvRK9Lz0MvSu8t/wtfGL9L33wvkv+rT6efy4/9cBIANNAsAB6wIuBBgFQATkApkCbgLSAeIAXf6j/NH6Rfra+Xz3Tfaq9Bf2nvcR94L2IvWL9ZD3Vveg9g/13/PH9YL2UPip9yD2+fbI9+j6vvv9/J/+Cv85/8H/UgaaEokaGh6EHOweBi5UOD8+4Dc/K3QoMCYnJZYdxwoW+srtk+cb5wfgU9fH0CHOQdb33W7kCelg67PzEf22BOgJggp8C9UNvQ4xD9MM/QmbCfYI/giYB+4EqQRLBT4GUAbGAzABn/8a/xz/3/wH+Tb1T/O+8wr0SPNl8r3x/PO69xv7I/4Y//gA/QNSB8wJNAq5CcUJwwqFCvEI2AVGAycBMv82/ID3ufOK8H/vq+5C7cnr3epe7DPvafK686H05/US+ej74v2E/on9cf64/l3/Pf8y/Yj7H/po+dj5Uvk++Ff65vow/Sz+HQBwCj4U5B2yIVchkCiFMqA6FT2aMyYq6CSBH2McLxCM/+XxUuZe48bgYdvh1qbSCNXj3DLk2+ty8AX1P/1LBFILwQ5KD4QQ8xAOEZMPXwyoCeoHrgblBa0DeQE/AP//nAAmAFT+4vt7+iL6nvoi+iz4/fVE9Xf2WfjC+dj5mPpc/GP/NgLGA4MEsgTTBfMGjAewBvAEKgOdAvEBRgAR/jz7/vmp+FL3qvUd8wPysvEz8mvz6PNy9Lr1p/eD+v77Pfwn/P77Tvz++2L6m/jp9pf29/ZZ9w33UfZz99z4dPt//LP8NP+IAAMD2gPyBeMO8Rf3HvghvyBmJ6cwCDZxN+ssICTrHjwZUhWnCG34desU4a7eX92E2JPVs9LW1sLgPOkS8qL2nPvRA/0KuhFdFHMTGRM7EjoRVQ91C0MIfwVPA6QB//63/Fn71Po/+5P6+fiM9/b2+/dD+Tz5Ofg79+f3j/ps/ab+Zf7S/tcAdQOMBfsFHwV6BGEE7ARmBX8ERAOCAoICWAKGAT0AuP7D/T/8G/rR92r19vN184TzQfMo8nvxKPI99JL2Fvex9jD2C/f1+L35nPnu+KD4Mfrb+zn9pv0c/U/90v0Y/0b/wf8yAX4BhgHQADcFchGvHJ4i9yHdINMp7zTcOo02oChfHlcY+hMLDl//ou6j4UTaMtuH2//YPtdt13HfuurO84j6bv5oA5sKNBC6Er4RaQ+DDp4NvAtlB44Cg/8D/vj93/w1+vf3hfdO+Uj8Hv36+5X6mvol/Yn/+/8s/gX8vvuS/YD/EwDS/jn9wP1q/2EB+AFpAdsAhwEjA20E9QS4BJIEbwRbBIwDDgInAPH9vvv9+LP1xPK/8O7v9e/P74HvKO9f8N/y8PUA+HP4pfgz+lz8t/0F/i79HP2z/aT+J/85/iL9lPxc/a/+HP7S/dL+E/8E/+r8ZwB8DJEYgSAxIEMgoyogNxc/fTyBL+8kmByvFTwPAQE48DHhF9eG1mDXOtaH1XvWc96C6nP1Iv4sA1EIgw7QE78WZBU4EvIOBAySCeoFgAGq/R/7cPpn+gf6N/lX+S37Rv3O/oT+Jf0w/Sv+ov/t/8f9iPuK+ij7o/ys/Ir7lfrj+ur8WP/MAA4BHAFqAn4EygU6BuUFBwalBh0GmwSzARH/O/0L+2/4lvTU8A3v7O6v7wTwyO/z71vxRvR+9wL6bfvh+4v8NP0c/cD8UfyU+7D7Zfte+/77d/wD/ZT9O/7S/pQACgIRAtQA0P4yA+UPRhz2IuUhbyBdKbM0jjpzNngo0xxcFOAMngVD+Hjoptuk04nU6tfW2Hnb3N/U6Qv3DgGICKINNBIoF38ZtBcXE28N7AhfBQMBdPs39m7zYPOY9UT3p/cm+PP5t/1TAeAC6QHn/xb/W/+9/yP/+PzR+hL6sPoQ/Ln8nfzC/In9s/6y/2cA+gDAAaQCaAPlA4MEVgUZBqUGfwWSA1YBfP/7/dn7zPgT9VnyFPHd8I/w4O/Y76vwefLM9Dv3mflp+4/8zP3M/v/+0/6C/qH+T/8B/179jfur+VL5ePq9+a747vca9+z3HPjW+ssG2RQWIHclliVWLrk7wkOIRLw4UiohIOsVVA4IA/vw8+BQ1G7QfNRe1tLXn9kL3kHpm/VGAOgHWAv8DvoSMxUPFSsRqQw4Ca4FogIy//77vfqT+o37E/02/T/99v0I/64ApgBz/1b+cv2S/TL9FfwV+xn6UPoA+wP7H/si+/j7x/2E/tL+Pf8FAOgBlwN/BDcFfQXLBfkFZAWtA/wAlP5y/J76PPjo9AzyBPBQ75vv8u9Q8A3xu/Jh9UD4kfp3+8f7Vfwc/bX9wP2v/G37sPpV+v75VPlS+Pv2zPbM9vD2afkg++j7+vvH/EwIqhrnKG8v1ixsL888vkfjSu0/iyx4Hh4TewpTAIDtY9rBy6PF1cl7zcfPUdNE2W/mMPU0AUALJBGTFtQb0R1IHVoZBhQoEFYM/gfBApT9Bft7+uH6u/pJ+Sb49/e9+FD67vqP+TP41fdS+Yv7NPzA+237+vvZ/Yz/6//u/+D/wgBLAqgCFQKjAVYC7gPhBNkDDgI2Aa8BQgJ8AeL+Y/sG+b/32fZ+9bnyNfCF77vwBfM79RH3hfgZ+kT8Mv6d/1r/yv28/JT7PPqK+Pn2Mvam9VH1yfRw9Ez03fRh9uX3Bfo4/XX/awAl/1QClhFyJN8xuzOrLjE0jkG2SmZJ3DdkIqUS5QWm/cjx3N5JzbHArr8gyLzPgdZU3ATl4fPcAngPzxcyG9EdHR8cHssaSRSiDRAIDwM0/or4x/Ol8Qzy2/Pi9Lf0GvWx9hL6zP22/7H/nf5h/h0A+gFhAjIBI/8r/oL+7/4j/3X+2/21/j0AsQFAAikC/QKgBAsGQwYGBb0DVgNEA8cCYABn/NH4tPaF9ZT0CvOw8Rby0POd9rn5tftc/Pj8Kf7X/5wA/f63/Kz6Sfmb+Kf3s/aW9VX0+PMv9P30n/Vd9Zj1tvXI9tP5XPtQ+wX6CP4GDiQikjCPMzcw3TWXQ3lNRUxVO50lSBQxBvH8dvHj30POAcFGv93HFdE92Wffeudc9SMECRGNGUAcuh0qHlYc2hg0EtQKAAXc/4/7iffZ8z3ytfJl9OL1Y/b39hz4y/rA/T7/T/+h/tf+xwBfAjICywAW/6j+yv+RAOv/Pf4R/dv96/9zAWoBwwBaAf8CvQRgBS4EqgLAAUoBgADH/Xj5mPWd8wDzpfIf8YXv7u9I8gz2YPkm+2D7k/sM/Rb/QwD2/o/8FftT+3T82fwV/H/6ZPlb+fX4AvhJ9iv1/fWX9oD34fhH+Wn5zfj4/RIOOCHMLowxXy/tNs1EOE0WSrw33SHHEDQCQ/ji6+vZksnNvtC/LMrr0+3bauNm7SL8oQrMFaQchx60HsodsxrwFRsP8wceAgf9p/je9FHyrPHZ8hP18PYA+JP46vmJ/Pj+YQAeADv/S//tAMECQgMgAuD/0v7S/tD+4P2f+9r5N/m/+Ur72/xC/lwAzAK5BSIIlghTCCQIqQdrBhED6/0b+Z31gvPh8afvn+1f7Y7vK/PM9nL5Svsb/YL/+gEsA94CmAFOAGj/Qv6J/OH6JPlF97r1RPSw80PzCvOJ86H0jvec+jb77vmV+Ov//hEZJZMxAzPlMQk6rkVOTKxH5jQGHxgMnfxg8wfoYtcyyEa+scBkzBLXdOBy6NHxKf/lC7oV0hveHJsbeRnKFYAR4gtmBToA0vtF+O/1FfQ29Nf1Zveb+Of4TvmK+iD9EwBIAhoDrwKzAv0DSQU5BXgDOgAu/f76xPjp9pj17/T09eP3GPq+/K//agNKB1YKzguUC4IKKQlHB38E//9y+rP1EPKy73HuLu3e7Cfuu/Co9IX4Rft1/Yn/wAGOAxgDnQCa/Ub7P/qB+U34aPax9Az0m/T59Qr35/ag9m/2N/cU+u/72/u++s/7bQiQHC0tzjX8NME2vUG/SYNJbD1iJwoUpgMK9uTsIuBW0S/Hz8MfyxnX498J6MjwOvvABssPMBbzGckaBRljFeEQ7QtQB4ADQQDk/Fv5oPYB9nX3V/nc+eX4JvhO+Yv8TAAKAscBSAGoAcYDmgUYBWwC9v3++bj3QPbt9Azz1vFn8/f2Uftq/y4CAgVlCBwLOg0nDcAKxwfgBGYCDf+u+frz4+8I7trtie3p7ELtOe9O81D4afz0/m4AnQG4Au8CoQFv/z/9dPuB+lf5ave49RP12fUB99D22/Xp9XH2IfdD+Tj7V/wS/AD8agXmGKMrZzbVNk01QTzIRJpGzD4bK2MUnwFp80Hr/OJ91VHJZMQZyS7VpeDl6BLx8fmpA6sNtBQSGHAYSxZhFCsS3A2RCJUDJgAn/n37H/jV9YD1IfeO+Y/7SPyj+8n7+/02ASMDVAKNACsA5AAQAdH/df14+rT3wfXB9ND0mfX/9tj5Jf26/3oC0QV1CSoMPgx+CgkIsgVfA5IA7fyt+Nf0ffJt8QnxV/E/8u3zWvZM+bf8v//gAIQALwBuADAAI/5u+7/4//Y79mH1PfV39ZD1WPai91/47PcY9/32CPhT+pz8ufzA+8b6ugEeFQcqHjf2NyozxTdxQn5HSUKHL3YXIANM8wXrtOQ72WrMGcWqyHbVdeII7CX0GfxiBF8MrxKyFowXbxXoEh8Q+Au9B8wDZwEKAI39e/rO92b2D/f9+Jb6lvp9+cb5dfwkAB4DwQM9A4AC9gGfAZ8Ad/7f+pD3SPW+81PzqvPi9SH66f1yAFEClAO9BZYINgpCChcIVARTATf/XP2u+g33rvM+8SjwffA/8WLyzvMi9Vb3P/qh/GX+zv6o/vv+Sf7J/HT68Pcs9/L2w/ZP9lj1jvWi91z6mvwZ/fb78fqj/BsA8gFYAHL8CQB5EXwmyzT2Ng0y9jSTPTxCez+JLyoYugI48ezow+Qj22DQKspdzULasOen8UX6vgFMCYoQRhUfF00WDBRjEn0QlQwFB8cBev9f/+L+a/wR+If01vPD9aX4pflr+K/3EPn9/DIBxgOkBEIEcQPmAb//rf0U+x34kPUb86PxAPIy9MT4pv3XAMoCngRrB6gKNwxxC6wImQQtAY7+ivtH+CL0TPCZ7vjth+7M7yjwL/GC8yr3vvsc/+AAXAKHA8wDtQJuAOD9rPue+Q33pvQS85PypvMV9cX1uPb++Ez7Zf2v/34A5f9n/qb9EgiqHCUu6TaCNAAySjunRNlF1juJJQQPzvzn7jroWeCk1JfL/ci50KndzedZ8Av59AFyCiAQOxOpFTAWTRWxEwAQXQv8BiADFQFo/4/7T/em8wfy1PNW9t73+ffI97n5D/5xAhYFTgWvA/gBnQCv/z/+wPph9kPzmvEd8jjzd/QN+IT79v5hAr0E7gciC/8MxA22DLEJDQYlAjT+iPp19o3yXe9U7bHsMu0N7x/yUfVi+Fn7wf3MAHEDFATwAqL/Cvyr+ef3uvad9M/xW/Bm8LzybvVl9gv39fhi+9D9yQCCAUQAEf5w/BIIoh7BMRI8ITleNWc+DEYARvE7hiPRC2/4sOhq4wDeI9RVzZXLZNOR4fTrG/Q9/IUDfgroD9QS0RTXFN8SrhHAD5AMiwhQBNkBzP8r/J73Q/Pd8IPxWvOF9Wb3ePma/b4CDgdMCTsJ6AfnBQEDUv9y+6/2dPIN8FfvBfE08zv1Mfip+u/8tP/wAhcHVgqACw8LvAkVCPIFRgPQ/2L7yvXL8BXucezm6zfsKe2B8DT0qff4+1L/OwGEAcj/sf02++f4gfeq9S/0FPNj8xz2Tfiu+cL67PpI+yb8Q/zg/CH/mADQAJ3/1/2gBj0b0S9VPeM8ZTbcOCk9MD7ZN08jiQth9vfmkONK4iXdvtfO1MvZO+TO7HfzXfhl/KMALAU/CqQOxhDLERcTDxR1Ew4QqAsZCE0Eg/+2+arzR+/B7VfvVfPk9iz5JPsY/rECtAZuCHYHSwRTAJ/8l/mx9gH0LfKV8Wvyy/NR9Xz46vyCASUFpQZOBykIZQmzCpgKmggdBbUB0/9J/pz7+fce9Dzxyu8I70LvxvAp8rnzVPar+Qr9gP58/Zb7hfnV90v2//RR9Lnz2fO69ZH4sPve/Qj+pv2s/RX9fv0+/1j/X/61/J39NgpdHiowSTpCOd02fDrNPIg6vS/VG7AH5vXk6b/mJeQd34naTdno3wzqxvDg9Gj3wPnb/UYCKAbUCBIJiQkMDGsOlw43DHIJTwhcB6YEq//I+fn1GvWb9jn4cfdJ9m/3nPumAE8D0wKEAFT+2/z8+1D7Mfkw9kH0//NC9uX4/Prx/agAbAPGBfwGHQjYCNAIuQiyB3gFuAIpANP+2f3o++f4fvWj8qvw7O868EHxOvI287702faD+bP79PwX/Zb7nPnn95T2GvYj9l32vPb99vf35/nt+1H9ev5U/2AAggKvA78DmQJlApsMYiCVMow8hjpwNbo3qTkGN1otVxmJA5HwkuMb4bDgM90a2v/ZnODt6lnyvfdB+8f9XgELBZEIvAq8CoALBg7zD28PBgxRCKkGwQWfA8j/vvqm9tX1ZPdD+dP58vjz+OP6Ff1L/nD+uv2u/BP8vvsL+8j5Zvjr9x354/rC+678vv6EAV0EBAb3BaUF0QU8BuoG6AWvAiH/sfzb+3f7Sfmo9XvyQPBx763v/u9S8KfwwPFR9A34e/t+/Sn+5P0B/d37dPrh+ED3NPUQ86ryfvR69zj6GfuR+yL9XP6xAHECVQHT/vz7swF1FewrEDvrPTA4wzh0PVU9STcRJlIPrPsa7AbmH+Yg4tfclNoo3Wbl3+t87vPxr/W/+Vz+TwE1BHYHnwp9DysTdxLeDpAKEgjvB4oGogK8/ff4VPdX+e37sfzN+v34M/pY/YL/r/8//gz92/yP/Af80frB+FT3UPcz+Ir5Bfud/a8BdAWhB/MHlgfhB3kITggWBzMEXAHQ/4v+E/0o+qT2B/QD8i/wre4j7onuFPBy8lr1l/hc+yv9uP4dAJIARgCL/qX7jvjc9XD0QfRy9CL0NPTx9JT2PPkV+9b7gP0//lP9Qftx+eQBoBZfLRA9kj+IOgA64zxMPbQ3PiePEJH7jezo5y/o+OTh353cKt5G5C/pXuuW7Zfv9fI1+P38IgG6BO8I2g4rFIkVFxMmD5sLCglmBmgCrP19+V33m/hD+/b87fxP/LX8P/62/9D/uv7Q/Kf6tPn++OP3vPbt9fv2RfkU+6X85P4uAhQGHgn6CeYIywYmBeAE3ARoA9AAbv4V/ST8FPuD+Xr3i/Wm81PyAvLf8Tzy+PM+9uX3bfiZ+D/6i/zr/XL9Ffsm+Ar2Z/XB9Tn2avXX8z/zAfTm9W/4CfrL+c/6OPyz/C/8LfoZAaQVVSxQPIQ+qjeCNq048DgtNYAm8xEG/4TxE+9r8cPucOmQ5Ynlk+ki7BDs+Oxf7hTxfvb++/gA8gXvCloRABZmFZMRhw0OC5EJwgYcAsn8g/iH9zX6o/0w/mX7FPm5+VP8lP66/rX9Wv1+/ZD93fwo+oX2JPTx8/D1Jfir+Wf7yv2fAUEGRAlYCn0JTgeeBeADHALzAG7/Mv2E+qv4aPjI+Jn4X/cD9nn1VvX49cX2wfaL9gb2zPX99Tv1J/SC87HzwPPq8vrxC/IB9MX2sPjN+XD6tPqy+xf9bv2r/mUAxQApAVj/4AA+D8Ui2jP6O2E2uDDDL3MtQyyYJUsW9Qbz+Bby2/QX9sfz2PBI7bzslu3/7AbuW+9/8NX0Nvrr/mMDnAY7CzYQchEAEGoM9QfrBHUCiQGsAEb95vq7+uH7j/0X/Lf55/jB91v4e/pr/Hf+3P6//uL/Zv/k/ML5m/bk9Vb2Xfa4+Fr8YQCXBUwIIgnxCeYIvgcZBiIC1f6R/Bn7F/v4+rn6Bftp+/X75Psi+176qfn9+K/3UfYg9WP01vNy8k7xp/A68GbwjPDl8GnyvPQI+HD7if3r/q//2v93AE4Acf9rANkAb/9x/rj+xwjTHGotMjU3Ma8mKSSOJdUkbSLYFm0Iuv+D+qb8WgCJ/Aj3TPKD7tXufO6x7fnva/LZ9R/7i/8jBNkIQAyDD5wPzgvUB3MEOwNaA/gBmf+a/Av6tfrO/D/9tPqv9sH1u/jQ/OX/iQDa/1//gP8FAYYBpP5r+kv3O/ea+bX6cvvM/d0AzwTqB5QI2AerBSED7QGmAJ/+6vwi/AH9N/7V/QX95PtS+oP5ZPnT+Yj6jvke97j0MfKR8FXwjPA68c3xefJB9P319PZb98T3PvjM9+v2TfbG9sL4tvmE+gr9CP7r/u0ATQNwC58TmRNsEUUNygsKE40YzhvgHggcQRroG0IbGxkFEv4HkgPGA18EOQKG/bn5h/gp+8f+5AA7AaH9G/rv+o/88P6oAC7/pv/XAI8ARgFaACP+MP4B/ob93/wF+g/5uftj//YCSQMXAA7+Af6D/3wBzv+N+0f4tPY++KH7Qf3F/fT9s/1S/3ABUwI5AxoDeQIXAmAAsf6q/kD/yQD0AXIBxQDt/7j+Rv4w/bD61fiA9zP3OfeJ9Tb02fRa9vX3z/gA+QT6M/vz+3v8s/un+bL3IPbZ9JjzNPIr8kr0ovZg+Ij66vwq/wMB5gEPBDYHbAniCdYI9giPCqsNnxHHEtkRQRABDI0H+gH6/HcDJBLTHswk+x7jFtUWThdNFtkSdAdy/NP2GvXx+vD/zv3d+1f6ovhD+MP0p/Ck7yzuju7v8Tv0jPf++yQApAWyB/sECALT/iX9e/0D/cD86Pv++jT91gBRA5UDnwEOAe8BbgI7A0AC5gD7/+/+MgBWAeX/vP4B/bv7a/zL+0j8hP7k/sX/nAD0/+n/df4Q/L361viH91f4K/pC/eD/AQH6AfYBewBo/kH7AviJ9YLz+PLt8yD1aPZ490P4tvnx+ob78fuB+xv7cPst/KL+owF+A44D7QFeAAAA5gFUBAoEUQOrAhwBDAHI/uX/rQ3sHmsroi7DJA8dIR07HJAdEhtwEN0ILASAAzIKcgrlA37+H/eu8Tfuv+cT5ZnlYebL6/HxpvX5+AX65vt6/yQAdf8R/k78zfzI/g8CtAV0BkUG/AVQBfkEJQNfAd4BVQGNAOD/sf0D/WP9h/1m/xz/E/xH+uf4u/lD/Mv8mv36/Sf8nvst+yH6jfoY+rT5TPtK/Fb+3QEaBBsFQgRzAYT+cvuI+ID3oPdf+GT5JPoQ+8T7o/sJ+9r5JfhS9on0zvOs9Mz2Xflc+wn8Kfwe/GL71vkE93TzvPJM9Gb3uvyb/xMATwAVAJMIPRyPLVI37DNEJmgg/CDIIZYlYiJnGR4UaQ4CDpwRmwwqBJ38AfQq78/pfuOx42bnY+wM88r1GPb/9a/17Pij/In80vrK+An6VP/XA0UHPwhkBmIFjASUAz4D8wCQ/zsAvADOAcoBOAAZAGH/v/6L/kr8lfqa+hL7zv3v/iv9NvyG+or5Ifp/+Fb3OfgC+fH8LgHVAlQE2gOUAlMCHP/W+lD3XvTL9Ab3VPmq/F//FQHVAtUCFQEi/QT4d/R78zn0x/UP9sX1WvVL9dn2u/gL+Qr31vMb8mLyPfQ79474M/vy/mAA1QE2Ae0ANw3wH18wMTo4M6gmDiLaHaceAiJKHDUXMhMnDeMP+BAXCSsCTPkx8Unuk+gG5XHnJup471z1iffr94f1wPP29Sz4D/lA+Dv3+fkg/mgCSgZVBioFagQpA2oDyAIDAU8CfwTfBjQJQQgoBvcDlgC4/8H+U/yg+rb4Pvi3+vz7S/2q/hX9JPtH+TX37vcJ+iT8Zv+SAWwC2QKCAu0BFwGX/nv70fiV92T41vrt/eoAFwKsAPr9ofsZ+p74avZB8/fwSfDa8LPyBvVY9tn2LPc+93j3X/dC9jv1aPZ+9/L3cvlt+eP49fj/9xb/ghIaJuozHzSUJoAdkRsDHHIiKSSQHvgadRUyEwQXbhOWCsECM/l79OPxBu2W7IHvAPIe9hT37/QF8o7u/+2O8NjxZfIU8mfzr/fi+2H/jwG+AYUCuAOyBEMGEgaaBkoJ5ws6DqIOlwt7CBsF7wEgANT97/oE+uP5MfvF/Lr8t/vY+TX3bPWN9F70sfUS+Bv8gABEA6IEZAVgBcwE4gIpAMz9TPzt+3798P97AWkBhgDp/lX9sPra9qjzM/HR7x3w2vB08bLy7fPS9TP3J/cp9pv1e/UT9b/1Eff/9of3X/gx+Ff5k/fI9y8GxBonLaY1+iolHbYXgBVhHFwlyyTYIv0c4BU1F2IW6A7fB5L+/fcg9UXv8+qo6mnrM+888qrx7O6C6sDoP+wY8Rz2Evht+FP6Yvtf/ToAwwAsAqQD9AMZBwUJUwp2DmARnxK6EksOGgotB5kDQgJhASD/lv27+8n6y/uw+1771vos+Zn3YfW684f0NfcH+xz/1AFhAy4E9AT7BfMFAAXTAs4Axv98/4f/IgArALT/Kf6f+8347fXh8yjyzfDG7zXvoO9b8WLzVfQb9C/zofLH8jbzP/JT8cjx6PHq8wT4TPrz+7f6v/f2AaIVNynHNiYyrySfHSYZkRscJKsm1yeZJv0fqBzxGMsOgQbl/8b6Evia8UHpHeZQ5vXpMu4d78rsf+im5ePn/+wm80T3PvnZ++L8EP3O/b79gP/7AooFugk9DL8Mzw4LEIgQdBHcDe0JigaUAYn/yP4X/Rv9Wvx9+mn6z/hF94r3rfcf+Cj4xfaA9sj3H/p1/YkAqwIqBAoE+QLrAG7///6f/2MBGAIgAuQAUv91/nD+7f1R/Ln4P/Ws8rLxbvKG8+j0E/VT9F7yWfBq713vhvBD8p7yR/Lm8oTzfvUh+uj8Gv/i/uP6eQD6Eb4kyzQANMMmoh/OGgwbWSIBJhsp0iurJZAfvhlfDkcFWADA/NL7RfdR7RnoEedi6O/rHu2661fpKOai5uvqW/Bz9Mj2zfgt+rb5mvlb+qr98gJ0BvYJtgsRCywLfgtPC28MdQoFCNQHvwZHBoYGlwRkAxoCfv4v/PH5m/c3+IP5UPoM+3j5jPgO+nX8DP8RAVwBkgGCAWsAaP+Q/nf92f2//mb/1/8Y/uL7f/oz+br3tfVs89/yPfN99A71xfSo8wPyJPGe8Rnzs/Tm9aj2s/bR9u721fV89bb1Pvbu+ef/jgJ8BF8Bd/2TBW8VlCZ/M6QuciIZG6sVOhkQIWolVymVKVkiDBz6E3IJ1QFp/dj6/Pmf9Vvu/+ov6yPuqvHs8s/wfuy56EXoserK76HyCvRa9tz2zveq+n/8kQD7BDUGfwgrCcYH3QifCfwJWgxYC3AKTQoUCNwGmQWqAXX+Svq09oL2i/aK9zX6yfs0/bj9F/xM/Pz8w/32/oP/m/+dAAUBXwEiAVv/Qv2E+7n65vrf+i/6TPk++Hr3Avc39sr1TfY192D4PPgG9/n1tfUc9jP3OfhL+Sv6b/oC+rb4fPfS9cz2pfkg/Of+cAF7AMkAN/4u/R4L7xteK5Ux/yMdF8wSVhIcHfQmwCkOLIcmuBxSFkkNBARW/3L8TPyj+3X1Zu/B7ZzvIPNa9Cby5e0C6QLnmugO7EDwPvGy8Wn0Ifbf+Db87f2GATUEbQSgBsQHLQhzCtQKKwsWDNAJqggyCMYFSQQDAkT+/Pzh+nT5hvqn+iL7Kfxa+736I/m49of3z/nv/J3/AQArAK4AGQCt/2H9e/o5+Fv3N/gh+qr6a/rs+Zr5sPkQ+RL48PfN+Lf6TPyW+7T5k/e/9iX4APo4+3b7YvtH+tP5zPh+9w/2ovYa+P76vP7CAP//9v4T/Bb/BxGMIK8uUy3cHMwTxxFsFYQijCkOK14rCSIMGcETxwuwBTAEVgIVAzoADffT8JzvxvAR9Ebzbe8S613mzOXx6NPs3u9i7/vu/PDW8lv22vmu/FgBDwTYBDcGTAUYBYEHNgkPDAYOUQuhCbMHQgXEBdUEhwLHAZ3+4Pzz/IT78fuK+1X5jvd39C3z+PWK+UD+BwGIAKL/WP7O/Mn8KfyR+xP8Cvzo++b7Mft5+8D7mPuC+7769/lX+QL5t/nh+o36Jvnu9oT1h/UW97b4l/nI+UD4/fZb9mz1vvQN9pD3bfqf/ar+U/7K/V77dwDaD6YeWSpbJ8cZSxM/E5MZMCYeLVIwfC9NJqQcgxXKDEMHNQVtBGsFTwIQ+SbyR+/Y7trw++/p7BDqVuZo5Sjoo+tm7wnxGfL48wX1yPZ2+ZH8SwENBPIE8gUdBqAH0gq6DI4O7A6MDCML7QhXBnwFxQMnAukByP/b/QX8lfj59q320vVN9qb18fSD9jX4vvop/Sn9wPzZ+z/6VfqO+Wb5R/p9+zL91f4w/7H+cv3z+yL7K/tD+2D7qvv1+9L8Kf0r/dL8Xvyw+1X75fra+Un45fZs9Ub1T/Xd9Jj1v/fq+Ln6wvwH/Ob7Zvom+O0BixJeIQMtbCfDHKEY+RbnHLsnJCy6LpQrayGqGfoSfgvTBr0ENwMRAtf8EPQl7tLshe2775vvh+xi6GblHuXu6DDu9/BQ8tTzRvTw9Q34APkn/Kb/rQGHBd0H6gc2CWEJjwrrDLwMrQvpCj8JXAh2B7QFvAPoAAX9Tvpr+O72uPew+I368/sJ+yL6iPlJ+Yj5MflO+a75cvnC+WD5KPo9+5z7U/yx/FH8Ufxn+5P6F/u5+zD9vv4e/wj/l/7x/cH9x/xZ+7n5M/hF92T3RPep97b3Jfd699f3aPeW9oX2fvYw92v5pfrN+qj79fhs/UkPeh+PLT0sphuUE7oS9BZlJB4sWC3kLccjZxkMFGQMOAd5B2YG5QaoA/34sPG57yHwQ/PS863wgOwG57PkN+c56xPvGvAC8U7zBfTm9Qn42vlK/Sr/b/9aAnMDGAVPCUkMhA8MEfcN/QuPChQIrgcbBu0D7QKCAFL/CgCU/53/6/7m/DP76fcG9Vb1yvXO9yr5m/hp+aX5mfgQ+X74oPfY+En5NPvm/Zb+qP5A/jn9CP1N/Wz9uP1N/XL8jfsf+/760foJ+yT7Dvu0+sn5yPjn9/T3g/jw+Wv6OvkT92b2O/co+LL6Evx7+4T7QPi9+SkKUBnwJg8pXBkVESQPWRC0HQ0n4SlNLcck4RpzFn0OcAnSCKUG5QVLAnj4tPHI7wvw4fK38w7xxeyn5t3jLOY06/nwcPON9DX20/Xp9qn43/lz/YL/cgDgA/wFSgirDPkN6g5xDkYKsQiNCDQIrAl0CS8HxgVdAjYAyv/g/m7+Y/0/+u73efXf82/2Tfj3+iL8yfpI+ij6Cfqs+3/8Vv36/Tb9Cv3D/Dn9r/2k/Uj9DP3W/E/9Vv4n/5D/P/7A+5n5Wfgc+Br4GPjY9zH4C/jP96b3svca+En4uvdC9lT21fY5+PX6hPw9/JH7GvjC+TYH1RZ1JtEp6x4KFR4RNhPVHh8oDiwFLQEl1xuoFfMORgocCS0HEAc5Ay/6p/Im7yXvP/IM8/7wQO1H6Bzm9edp6+PuSe/y7pfv5e+38Rn0JfcK/JQAegOpBhYH3wYgCP4I5gq8C/QJPQkFCRwJhwqCChwJ5QY/At7+yfxX+1X7Ffy3/BP9C/va97j2KveD+UH7vPtu+9T6FPoW+ib61vqG+9j7Ovzk+1n7wPuo/Eb+v/8KAJv/Pv8D/1j/kP/9/bX7tPi89nH2z/fc+eb7wvs1+i74VPdC96b2avVj84nzi/Uq9+X4g/oW+gz78/rq+vQEIhNcIUgqRCMZGBUSRREmGiUmSCwGMKgrFyI2GpoSGgyfCHYGpwVbBFH+pvZH8fnvH/E68tHwDe0b6OTkAeXx6KvumvGK8jLzp/JG9BP3aPn2/VwBugLYBDUF9ASwBtsHMgpSDIMLOQowCUoIRgnJCVEIGQbJAfT96Py1/D39VP4T/Zr7Sfk39nX1VPb79y/5RfnP+Dj5K/r3+j/7EPue+mv69flr+rv7av1S/+7/CQBBAJ3/Uv+X/hz9svt7+Wv4Tvns+o38Pf2m/N/7U/p6+MH23PUw9eL03fQa9aT1pve/+Lb5XvvE+wn7e/o398n76wqYGqQoUiiHHJIVFxQiGP8jBSouLVwtryWxHbQXCQ87CdMGjAS9BLoBovmo86vwre9v8XTx/e5E6/DmGuUh52Xrq+4G8HDx6PHm8un0NfZX+dn9mgBhBGsGpwXEBkMH9ggjDJkMlAsBC08J2QiICeQHyAZsBOIB6AA9ACH/Wv5p/MD6ePkW93P2FfZ290H5XPqK+or6j/od+9/7ffzZ/BD8bvtB+xP9c/9aAZgBvgC9//L9SPwk+9L6d/uo+1D71PpQ+qD50fj79y73//XH9A70HvQe9Xz1qvUy9VX0LfTZ9YX3B/qG/Mf7CfzP+hL7BQcEGAonji/uJggbLxfFFcMcISYEKR4sJClvH0EZSBI3CmkHMAQwArUBEPvQ9CLyv/DU8cfyiPB67kXqm+bG5nbp0e238KPxJ/MR9Gf12vfY+Xf9hgBnAS4DzAMRBP4FngdwCnMNEw30Cn0IuwULBr8GTgYbBdkBS/5c/K76Dfov+ob5YPnK+Dz3yPa09pL30fl5+/X7NPxu+5779Py1/Xr+2f4B/6v/YQA7AEQAqP8e/5v+pv1w/Q/+Df/V/1H/Rv1p++f5yvh0+N732vbQ9U31WPXO9eT1lvR785PywPHR8cXzfPX/9736z/v2/ID8dPssA34ShCHCK5UnphzVFo4UAxn6IvUodSzEKrUhTxp+FAQOqAoZCC8FkgKI/Jv0BPAq7nfunO/T7ubrL+gP5RblA+lZ7tjxo/ON9LX0nfXD9vn3RvvK/moBZATPBWYG0AccCX4L0Q32DAELsAjRBuUGXgZoBZUEhAL5/7f9lvu0+sv6svrq+mT6EPkR+An4Sfli+qr6rPo0+6z8bv4K/2b/Lv9n/sH9efwX/HT8fP0a/+n/sf/w/sX9+v0a/4P//f7k/B364Pe49mH2Vve0+Pn4pfir9/b23PY896T2lvWh9Nvz1/St99H5Dvwc/tX9+P1q/Un+vgccFh0jGSr2JDQbHRY5FZMamiPMKLErmSgmH5wWOg/JCOMFzgKGAFz+G/lO84rvN+7c7g/vme0l6x/oUuZ65jzpgu1/8BLy4fKj8rfzifWV9/X6uP30/zUD8AT8BVwH6gcXCg0MugsRC+YJAQndCaYJXAhmBswCOAC//qb9r/1s/az8+vvY+Xz3O/Z49kH5E/yA/bX9F/0F/fH9Rv5R/pr9DvwA+436UPtz/V3/uQDdAPL/2/6Y/br8cPz1+0b7Yvpg+V75mflT+uj6pfrG+DX2CPTW81/1wfZm9xr37fYR96D4hvoD+9j65fo4+5j9pP+HAnMNsBowJUUoKiBCF8wUnRXAGzojMCb5JnkiChtUFhwS7Aw9CTkFTQLO/gf5K/RD8kHyNPO18ufwzu3W6aDnR+jz6kvupO+M8PPxpfI49FT2Fvmz/OX+l/91AUIDBwYgCRMLuAxSDWMMIwzpCysLwAmXBnEDfAGJ/43+vv3J/EH8Ovvs+R/5H/i490n4Lfn3+nb7Q/ug+nL65vrN+7z7qPuG+wr8uv1x/90AxQFGAS8Avv49/fj8Y/2f/SD+1f2v/I37JvoN+nD6K/rg96b13fMI9O/0IPYC9/D3Jfip90T3JfcK92r3Uvh6+ZL8jv9sASkCSAGQBPwPjh3OJycn0x3wFocWfxoiIkYmhScIJvIfdhmOFdsQ8AxPCeEE/QH0/HP1YPDT7uXv7PHL8LbtwOnZ5Wbk3OXf6JLrN+zb7M7u7PEX9Rj3zfhg+1P+rQFvBDwGRgg2CpUM3g5MDxEO+AuACQwIKAdKBt8F9ATiA8oCIAGJ/8z96vuy+nv5S/gA+DP4VPmy+nL7o/vY+8f7s/v4+6P8pP2Z/mj+ef23/K/8c/1w/vL+0P4i/ov9E/26/ML8lvxG/NT7hvoH+f33Rfcu96L3uPfp93X3g/bp9Qz2avbV9tP2vPbM9xj6tfyv/i8Axf8g/939w/1YA0oQhR7WKAYoNx+uFxoVAhjlHTQiSCSWJCYhwR0OGvAVfxEwDK4FrACj+qb1SPNl83D10/bt8wvv8en25dXlXedn6eDr0uxq7bTv2PEs9Wv4hPrQ/Bz/EAAcAbUBBANkBiIKTQyyDAMLaQkFCRAJOAm5CCYHEgXeAlEB0gBuAO7/wf4i/YH7tvmy9632O/am9qn3S/iw+FX5kfkO+rT6H/vW+1z8hvwF/dT9LP+oADQBEwFyAB4A2v+p/9D+rP3x+2/6TPnz+Ib5vfkP+bb3rfXi85Tzj/O69Jn1rfWH9ev1lvZH+FT5IvrN+nD7Mv1J/xsB5AHOAm0HLxLHHXMkkSF/GdsUihevHQgkFCeZJzMnuiMuHrUYxRPUD9cMUQgcBJX/2/qX94n2+fXo9Orweeoc5XviMuNZ5qPp7+ve7XXu7O5r7wfwevHt8732R/q8/YgANwOgBbMH0AkpCwwLlAqaCT0J4Am2CiIL7wpKCcIGMQTmAY8AWv8a/t387/sd+5j62vlA+bD46/cq99H27fYC+JP5KPtV/KX8gPy3/BH96P2x/pf+SP64/Uv9XP0F/eH71Prw+dj5zfq1+338B/2f/Nb7A/sQ+tr5PPrz+v77kfya/D38xPsi+436DvoJ+mb6Avu++5r8Nv1w/fv9EAE8CPMRfxonHRUaXxX2ExIXHBwWH1cfXR5vHUgcKRoEF4sTPBBQDF4HrAEk/Fv4Wfei9xr48Pao84zvDOy86WXpTOrz6j3rHOuL65ntTvHo9Ab40/mV+nb7Z/zD/RAA8AIhBrsI5gngCegIzQfsBq4GxgYLB/MGhQarBXUEUQPDAgYDBAOtARj/mvxt+/j7Ff30/VP+NP7V/Y39DP3i/IL8BfyC+/j6P/p4+Qf56vjA+Ur6P/qj+Q354fiG+Wn6Lfvi+078iPxw/Pz7mvuq+6r7Rvuu+mn6mvq7+hT6f/nC+bT6UPs9+wX71vtn/Yv+Lv93/87/AAADAI0AfgPdCL0ORhIbEugPNg80EYsUuRZ/Fm0VqhR6FGoUBBSxE3wTHhI+D+YK3gWPAbb+Tf0t/Vr9r/xF+xr5ZfbL82fxnu+x7pDuJu8f8GTxxPIH9Db1UvYw97T3Avho+IP5OPsT/bb+FwAnAfQBaAKNAv8CqAMKBPYDlwP9AqIChwKQAhoD9wOgBAIF6wSTBIUEigSSBGQE9ANqAxgDxQJRApQBXAAh/5L9t/sH+tX4Zvjw+Lb5Rfpe+pf5l/jB9zv3Rfei91D4ovk4+4n8Qf1G/Q79Af3g/Jz8XPxa/MX8of3r/lMAiQErAv8BrQF+AS0B4gCUAN0ArAFGAnECNwLyAZsBLQGcAB0AGwBYANsAuAG/AhwEbwViBvAG6gauBoYGigbCBmkHPAg2CWUK/Qq+CvEJ+AiWCKoIqAhRCEcH3gW0BNcDWANNAzADggJRAXj/5P3i/Eb8wPv++vn5wfj39973Uvju+Of4FPjy9uv1tfWM9jn4DvqL+4/8Qf0I/pT+9v6O/4gA0gEBA4wDrQPXAzsExAQEBdoEKAQIA7oBhgDr/+X/bgDrAMsA3P9s/gf9JvzL+4b7ZftM+xL7wvpb+tT5S/n9+NP4yvig+Hr4jvgo+R360vpB+337tfvv+xX8MPyx/GP95P03/kn+lv5f/xkAZQAnALz/0P99AEsB1AEYAmECEwMNBP0EgQWiBZ4F/gXRBhQIRAlKCjsLDwzODDANzwzyC00LFwtYC8UL/wvgC3ALpAp7CRAIlwZWBWQEmQPKAsABPwCL/hv9Jvx7++j6H/pF+WD4h/ez9vj1WvUl9VP1Z/W69Vj2RPdm+EX5tPkW+r765vtc/YT+b/8rAOoAzAHgApUD8AP0A60DSwN5ApYB/AAnAf0BhQJUAn4BbgCm/yX/sf5P/uj9gv0n/dv8mvx9/H38j/x0/OT7M/u0+o36o/qw+qX6kfqI+mD6SPpm+tj6k/tI/Kj82fz0/Ob8//ww/bf9s/6o/0oAbgAtANX/sv+y/9r///9EAKwAHAGNAawBfgFsAdkB0gLZA4wE0QTaBAQFqQXYBkgIRgl0CScJ6ggrCf0JHAt+DNgN2g5HD+4O7g3DDIcLRgrsCF4H8AWTBGYDhwKEAe7/Kf5B/Ib6YvmB+Aj4vfeQ91L39PaO9m/2xvaO92/4Bvk8+Vv5y/mn+ub7Cv3U/WX+yP7p/v/+E/9A/7j/TAADAXkBiwGJAX4BfAE5AbwARADr/6j/Yf8n/wH/GP8R/+L+c/7B/f38WvwV/B38G/zF+1X79frG+sb6nPpX+gf6xPlr+f743Pj3+GL58fmT+kX7Evzd/Fr9pv37/Yn+Lv+8/x4AhAAOAdQBlgI5A58D9AMfBA8E5QO0A70DAgSBBFIFRwYCB2UHhgd0B4EHqge1B7IHuQfsB7wIugmCCtIKpgo9CuQJjQkFCYoIIAi+BzQHYAZCBQYE4AK8AcIA2f8p/77+Mv5T/Tr8JvuD+j76Uvp9+n/6afpO+lD6cPqM+lv6BPrG+Zr5gfmX+ez5k/pV+9D7NPxs/M78kv1f/hz/g/+x/+X/FQBOAFgATgBKADQAJAAJAMb/g/8+//v+x/6L/v/9Zf0D/RD9gP3e/eL9n/0r/c38jfx9/Kj88fwO/dD8Yfzk+7P7xPsM/IL84PwI/R79K/1E/Zj9A/6C/gr/bP94/0T/DP8Y/2P/sv/F/7H/xf8DAGUAmgC+AOYA0gD8AEsBzgF5AgQDdQPTAx8EpgRLBQIGuQZrBxUIvgiaCU8K1wr4Co0KEAqaCUEJIgkSCd0IlggSCG0HqwapBasE8ANfAw8DqAL0AScBKwBb/9D+bP7e/cX8nPuB+tP5lfmT+bf55fnR+YP5Gvnp+C/5y/lX+pb6wPoD+7L7nfyC/Qb+Kf4X/iL+bP7i/m//4P8SAOf/ov83/7H+N/7O/ar9Y/3v/JH8SPxn/LX86vz0/Oj8pfxP/PP72PsK/Lf8bv3p/QX+4v3X/eL9E/4p/mH+ov7X/uT+wf6x/sf+BP80/0T/Bv+b/mr+qv5H//D/fQDzAC4BPwFNAWkBsQErAokCzgLOAvACbgMTBLQEPAVdBRIFwQRQBPQD1wO8A+0DZgQlBfAFTAZABtgFfQUxBdMEcwRiBNMEsAXqBqEH3we+B0MHpQYmBr0FVwX0BHMEAASOA+kCbAKsAaEAi/9I/mn9zvw//GL7JvpF+dz4B/kv+Rj5sPhF+Cz4JfhJ+Hj43vhO+dr5PvpT+mn62voB/DT9NP6W/nD+hf61/vD+GP/v/rz+ov6f/tD+If+Z/+7/0P+A/yn/GP8h/wj/CP8y/47/4P+D/7b+t/39/L78zvzD/NT8zvyA/Fz8K/w2/Ib8zfzk/B79hv3t/U/+kP4y/zAACAFTAf8AqgCuABsB1wFlAsEC3ALnAtUChQL9Aa0B2wFaAtcCEwMPA+UCnwKtAu0CSQMqBPQEjAX3BTcGoAYDB1UHlgfPB+EHEAjJB3AHPgf+Bi0HYAcxB5wG7AUxBZ4ERwTGA0IDhwLFATQBewC8/zL/ev7J/Rf9T/y5+6j77PsJ/O37Z/vl+pP6nPrP+hX7K/t9+078K/0R/pD++P4D/6b+F/5z/SL9Bf0g/Ub9Z/1P/f/8uvwV/KX7Kfvx+pH7Rvyd/GX83fuT+8v7L/yN/Gz8RPwX/PH7E/xy/Ej97/1L/lH+Cv6H/aH9bP6J/4gAAwHJAH4AtQABAZYBRALMAg8D+wJhAmwBjQAiAC8AtQAVAUIBcAFPAVYBPwEiARkBDAFBAZIBHgK4Au0COQNuA5AD9gMlBPQDgAPrAosCaAKzAoADSQS7BMQEMAStA4MDfANsAyADWAPtA4EE1wTXBMEEdQQLBKQDSQP/AgoDDAPnAl8CdwGsAOf/+P6O/kb+2f1V/bn8NPwS/Kj7L/vv+h/6vfmc+bv5Z/ox+wH8Y/zQ/Db9Lf13/bH9+P2Z/if/0P8XAE8AuQDJAO8ACgHJABAAr//R//T/2f9h/yf/GP8P/8r+m/4Y/tD9F/6U/tP+zP0p/Ij73f0bAfgAJf2b+G/4qPzCAG4Bm/6a+2b6NPvZ/PL9O/44/Zz7NPuc/G7/iQE9ArcB0gD0AF4B4gElAq0CdQM1BIwEogRSBOUDjAOZAgUCvAGjAYcBSwETAS4BhwHMARoCagGdAGcA7v+8/6MAJQE0ARECJQLxAe0BFQINA1YDqwIgAmwCAARbBXYF4AQhBOcDwwMBAxgCDgIsApkCogIeAhkBnQAVAZ8B/QGdASQBbAC9/wH/mf41/9H/AwC6//n+fv5s/sf+Pv8P/yL+Mv0R/WX9SP7l/r/+1/77/v3+lv47/d37lvuq+w78F/1j/hz/of0Q+0f5ePnk++/9d/0v+4H5nPoe/WH+HP5f/f/8B/0c/Tj9Xv1Y/rb///8DAAUA0/+p/2b/xf9GAT4DNQRvAzABEACRAGwBbAGjAE8AaQC5AMwAvgApAN7/jv+i/vj9Cv53/o3+/f6i/zsAwwCAAXwBWAGdAaYAn//e/4AAswGvAlEDGASyBCYF2gTpA+UC/wGGAf8BagMPBU4FKgS/ArgBfgFjARcBLwC6/8b/qAA9Av8C/wJ8ArwBZQFnAVMBXAEgAQEBlgGQAjEE2gSSA5kB2v/I/3wBlwIrApEARP94/6oAMgH2ADsAN/+k/mf+Iv55/m7+uv26/XL9pv3r/U39xfwn/Dr8DP1s/e/8Nvwm/M38hP3d/cH9Dv2j/MP8hP16/ov+HP6a/TL9qv3y/pL/Qv98/k3+h/4y/+L/rf9H//3+IP9h/7r/2QAnAXsAEACm/wwArAAkAPj+GP4c/in/YwCjAAcA1f4X/iL+jf4P/8X/HgAKADYAhgCGAJ8AHgFNAZQBygGhAe0AFQDX/1UAYwHKAesBuAGEAc4BYwHdAGcB6QFJAnECmwLDAr8CEQOHA/8DKATTA4MDlwNRA6EC8QG1ARgCuALcAokCAwKWAWcB7QCzAIsAdQBuAJoA0AC+AHcAn/+6/pD+aP4r/tv9nf3Z/Tv+IP7O/YD9df1q/Xv9U/25/Oj8kP0e/mf+Wv7K/YL9of3B/e39J/40/nz+T/8nAIYAOgCt/+T+of7S/jD/6/6L/tD+l/8XAAcAGQDI/5L/7f+4/xb/E/+o/z8AYQD0/+v/9v/9/9z/aP8w/6j+D/4X/oX+5f7X/hf+4P2W/kv/Nf/c/on+lP4n/1L/vf8mAMcAkAF5AdYApQCqAEQBFQJNAo4CwQKvAqICoQLHAv8CvgIlAhcCAQLxAfQBzAGqAUIBuQBaAA4BBQKzAaoAv//e/5oAcgHKAaQBRAHSAMUABwGAAU8CuAKNAhEChgFwAWcB9ABcAAUA7v+qADkBEAHiAEQA//+v/9X+O/68/p//GQAbAOv/8P8TAKj/6f7K/v/+I//0/nf+Tf5C/pT+0v4D/4X/2f+A/5/+8v3i/fD+cgAwAbcAjv9n/lH+RP9yANAAr/9o/sX95v1A/u3+T/9S/1H/W//i/u/9Jf3Z/Lj9wf5m/7P+Af1j/HX97f7//+n/0P4X/vv9uP4SACcB1wAgAO7/ZwBzAQ4CrwHLAEEAwwCtAUACQALFATQBeQE2AmoCBgJCAWEAFwAdAJwAkAHgAaMBOQF9APT/wf+X/6L/fP+g/1MAPQHBAVoBwwBwAFUASgBEAC0AVwBnAF4A8QCGAboBjwHSALz/Gv9W/4X/vP/V//n/EgAgAEoA/f91/9n+QP4u/o3+GP9+/5X/4v82AA4Alf8h/wT/T//l/2MAiQCAAKoAtQBOANz/8P+PAJIA4v/v/in+hf6C/zgAwgABAWsAw/8+/wH/hf/i/0T/3v7k/jX/zP8iAE8AJwAHAMP/nf9m//3+x/7F/hP/df8tAHAAQwBcAGkAhgCmAJoAOwCA/wH/1/58/1oAtwB+ABIAJgB3ALcAkQBRAB4AUwDOAAcB/wABASQBSgF8ATsBiQBMAGEAYABrAAkAoP98/8r/nwDmALcAQwCp/5//pP/B/9D/yv9s/yP/NP93//b/6/+H/2H/+P7i/ir/W/+Q/6v/wf/i/9r/sv/G/+L/FwAKANH/q/+r/8X/kP9x/4z/9/+3ACcBOwFRAUEB+ABYAKn/Rv9u/9P/5/8bAFcAjwDWAHIA1f8G/53+bv5w/v/+fP8MACQA3v/X/8X/vf+Q/yn/Pv/K/04AoQCmAE8A///0/zIAWAAQAJf/Kf/I/sj+QP9s/3f/7f9RAJwAtwBTADYAvP9P/2P/sv8wAG4AwgAgAYQBgAG8ABcA4v/K/9z/0P/p/wcA8v8iAHIAsQDXAKYAAABx/1j/Zv+d/zYArADqAMAAVQD2//D/qf9A/yn/GP9J/7b/IgBDACQA7v+X/6//1f+Z/z7/3v7M/hP/rf97AC0BRgHiAEMAuv9x/5L/AQAnAGMA1ABsAccB4AGEAfoArABYADsAhADJAKUAXAAmAE4AywAeARkB4ACRAC8A7v+i/zT///4B/x7/Tf+A/6D/lf8BAE4AYwAyAMz/VP8V/yf/fv8HAIQA/QABAeoAxwC5AGwA0P8Y/6r+wf4V/7b/EwBEAEMA8v+r/2b/+f7l/gH/IP9+/7r/0P/O/6T/lP9J/wH/0P7Z/jT/pP8SAEoAYQA4ACYACQDX/8b/2f/0/+7/bAClAKEAkQBIABMA5f+b/3f/av91/4P/Yf+C/7b/0//i/wUAHgBDADsAw/+y/wUAiADdAOIAtQCEAEoAMABuALEAowA2ALj/LP8G/1//r/80AIgAoQCvAJoAOwDB/53/sv9DALoAugCWAGcAkgCvAKwAfgBKAAAAxv+f/4v/0P86AHkAkgB+AE8A9P9z/yz/I/9b/5n/0f8DAEwAowCjADsAuv+U/5L/l/+V/6D/tv+0/9r/CgBBAD0A0f+Q/4P/g/+Z/5v/h/9z/7//+/8tAFUAJAADALz/yv8tAH0ApgC1AF4AMAAmAAAA8v/G/63/vf/I/+P/QQCGALEAqgBIANX/l/89/+/+1/6x/v3+if8yAOoASwEpAZEAAQCo/2//ev+U/6//2v8HAP3/IgAdANz/qP9a/0//Tf9k/4L/zv9RAMMABQHgAL4AYwABAOD/EgCCAPQAMgFNAUsBMgEFAX4AEwDV/5f/mf/i/0EApQDSALcAiQA/APT/bP8E/97+7f5S/3r/d/93/1H/VP9b/2P/i//r/w4A4v/7/xcALQAZAPT/EABVAKwA2QDxAOAAywByAPv/vP+V/6//l/96/4L/g//G/xMAYwCNAFEA4P80/2H+x/2v/T/+Ff8QAJ0AnwCJAGwAVwAVAKL/E/+4/uX+aP8VANcAJwETAQwBxQB0AB4Axf96/yf/NP9h/4n/7v8HAFUArgDSAMwAYQDB/wr/ev5u/sP+Pv+//y0AmgDrABkB/QCIAAkAlf85/zL/jv8rAOoAbAGtAZkBWgG3AAkAVP/0/kv/m/8bALEANgF1AYYBDgFhANz/Xf9d/4X/3P8eAHAAzgAKAREBtwBDAL//Tf8N/xr/aP+U/7T/wf/e/yQAQQAvAOP/av81//v+qv6N/qj+8v5W/8z/OABrAFgALwD2/+n/DgAdADAAKwAVAPn/AADy/9z/5/+2/4f/aP9o/63/5f8rAGcAewBlAEoAFQD2/+3/tP94/5f/5/8iADYALQBhAI0AbgA9ABAApP9f/yn/Bv85/5n/8v8eAEoAcAClAKoAqgB7ADQA4/+D/3P/fP9+/5L/fv+g//f/PQBsAG4ANADy/73/pv/G/wUAUQCaAPEAAwHZAK8AhABEABAA7f/I/+f/DgASAC0ASAA6ADIAMgAnACQAKQAgADgAiQDXAO0A2wCWAD0A8P+p/6L/zv/i//3/GQA4AD8AOgAiAOf/4//K/7L/w/+//9H/IgCGANIAAQHqAJIACQC6/5X/eP94/4D/vP8OAEgAcABXACYA///B/4n/Yf9P/0//Tf9E/27/n//O//D/AAAMAPL/yv+H/z3/Kf9G/2P/kv/I/+f/IAB3AHQAhABOANn/Zv8R/+X+1/4q/2z/tv8yAHAAkgCAAB4Aqf9S/yr/Df/7/i7/rf86AKgA4gC6AHUAQwDl/4n/Sf8l/0L/if8JAIkA6wD4AOQAwwCLAE4AIAD2/9r/1/+4/9f/IgBgAK4AqACaAIgAWgA7ADIAOgA6AD8AKQAKAP//BQAeADIAJAA/AFEARAAiAPv/9v/R/9H/yv/n/xcATwBeAGAATwAnAAUA6f/Q/5//kv9x/2b/eP+x//L/AAAyAGAAOwA2AGUAWABwAGcAQwCEAMIA1wCmAGkAOAAbAAEAw/+o/4P/Yf9W/53/2v/u/9D/l/9R/zn/Pv9a/2//aP9v/3j/sv///1gAeQB1AG4ATwAQAND/r/+b/7H/0f8dAH4AowCaAFUACgCp/0D/E//X/sX+Af+C/+7/ZwCLAEoA5f96/z3/Gv8w/0L/WP+C/63/8v89AFwAVQA4AP///f8DACcAWgCLALwAyQCxAGcA9v+f/1//Uv+M/9z/EgA7AFcATABXAEgAOgAwACQAIgD9/8r/uP+v/6n/4P84AMIAOAGHAZkBhAFWAegAdAAHALr/mf+6/+n/JwCYALMApQCNAFoA8v+L/yP/tv6X/rb+9P5k/9f/MAB7AJwAhgA4AMX/bP89/yf/N/9f/5v/tv/c/wkAHQAXAPb/2f+9/9H/zP/O////JgBYAGAATABOADYAJAAnABIABwD2/9D/yP+4/6D/ov+g/5f/1/8BAB0AJwAmAC0AMAA2AC0AFQDy/8b/rf+Z/6L/uv/B//3/QQCGAMsA8QDoALoAggBKADYAOABPAIQA1gAkAXsBsQGmAVgBwgAMAH7/Lv/i/rr+x/7w/lT/zP9EAHsAjwBTAP//wf9a/x7/Df8h/3H/yP9hAOoAKwFpAWcBBQGsAGEAIAAKAAMAHQA9AFEAbABlADIACgDa/7r/uP+//9P/4v8KAPn/9P/Z/6L/cf83/yz/LP80/1H/ev+d/6T/tv/0/woA8v+y/37/jv+b/6T/sv/G/8P/uv/F/9f/9/8FAOv/rf+D/3f/bv9d/0v/b/+//+P//f/9/+7/5/+b/4X/gP+Q/7j/1f/7/wcAJwAZAOn/zP+S/1H/Nf9f/5L/1f8gAF4AfgB1AEMA4/+M/zn/Gv8g/0L/kv/l/xkAOAA6AAAAw/9k/wb/6/7//jn/g//e/1oAzgA5AWoBhgFuAUEBDgHFAJIAYwBcAEwAXgCmAMsA7QAOASABDAHiAI8AGwCZ/zn/Ff8D/zL/fP/a/1oAoQDWAN8AiQAiALr/S/8I//T+IP+F//f/awDMAPwAHgH0AJwAawBGADsATABlAJYAzADgANsA0ACsAHcARgAVAPb/5f/R/9X/4v/K/8P/q/+V/4P/bP9G/wH///70/vn+Fv8K//n++P4B/wb/Jf9q/7z/+/8ZAB0ADgDr/7r/bP83/z7/d//g/1gA2QBCAaMBwwGdAUQBtQAeALL/bP9f/4z/v/8QAGAAggCUAGwABQBv/9f+Xf4M/uL98f0s/o7+HP+Z/wEASABOAB0A6f+S/0f/E/8B/yz/av/g/1oAzAD0ABcB/wDLAI8AXgBaAKUAKQG4AaQCgQNiBEIF5QVyBsAG0QbhBssGkwZvBvMFSwWrBPIDEwP9Ae0A2f/k/hj+SP28/Dj8svst+6f6Pvr3+c/5yfkN+p76Wfse/Pj8n/3e/f/92/2d/Uv9IP0y/Xn9E/6//oz/SgDMAPQA5ACoAB0AWv+m/u39bP0i/fb8//wn/V79h/2k/Zv9m/1f/Qj9s/xs/FP8YfzH/Fb9Lv4G/73/bgD4AEoBewGCAVEBJQHWALkAnAChAN8AJAFqAZgBrwGzAdAB/wEyAnoCrQK/AsUCkgJAAsEBSgFBAccBGAP0BEgHwwkBDH4NOg4sDiwNcQsnCcIGwwRaAz8CowE0Aa4A4v+J/uD86Pra+ND2K/Va9E30BfWg9qD41PoK/dP+GQDdABkB9ACNACkAAAAiAK8AZwEnAsoCHgMKA4cCwQHQAMr/yv7i/Wr9RP1K/Yn9mv2Q/Z/9cP1n/U/9IP0b/fb8EP05/V79Z/0u/Qz95PzS/Ov8F/1V/ZD9xf3K/cn9o/00/br8K/zY+/r7d/w//UL+Tf9GAAgBeQGYAU0BwgAdAIL/E//2/gz/Nf+k//n/DAAQAKb/GP9f/sn9lv3m/Qr/xQBuAxQHlgteEHoUXReaGPAXxhUpEpkNJgn1BPIBaQA7AGMBqAIMA3wCqgC1/fH5uPXY8SbvFu647i3xuPSg+Ez8HP/DAEgB2wDM/7j+2/3e/dz+jwDnAkMFSAedCB4JyQjCByoGRwSAAu8AtP/k/lr+s/39/Fz8d/uN+rT58PiV+Hb4lfjV+Fv5AvqN+hX7mvsk/LP8U/0M/vv+9P++AIAB3gHtAdsBWAG8AAMAbP8E/+/+DP9j/8z/9P/c/0n/fP5R/fz71voN+qL5xvmB+oL7nPy1/YL+5P4B/8P+Wv7i/aP9tf1c/lT/gADbAeAC8gO4BPAEAAWgBC4EFgRWBJUFuwdnCoENNhA9EgoTMhJKECoNTAl2BRMC9P/9/vT+6f8pATICSAIuAQj/Cfy5+GX1y/K78RnyxfOg9s/5+vxv//EATwGEAID//f3L/Gz8nfzB/Xr/TwEyA54EjgX5BZUFBAXgA2YCQgHu//3+K/5W/Sv9Bf0R/Zj93v1l/uT+BP8g/6L+Cv5j/Yn8Hvzk++j7tfxp/TL+GP9A/zL/ev5e/UP8Gfte+iT6bfom+x78HP3t/Wj+mf5o/hX+3f3B/fH9Of6X/kD/lf/X/+X/gP8q/4T+Af7p/cP9Rv5A/5IAaAPRBpQKpw6zEU8UExZFFncVXhNrEFYNSgo4CGIHXgfGB9YHkwesBpMEYwEZ/W34NPSD8ETuxe2y7r3wPfPc9Tf4sPk6+vn5CfkY+Kv3CPiG+Rv8ZP/0AnoGYQlhC1sMLAwXC5EJ7wd0BkIFYgTQAzUDggKfAWwA1f4V/Ur7dPku+Cr3v/YN94n3VPhQ+S36F/vS+zr8mPzg/DD9h/3Q/Rr+X/6b/tz+5P7b/r7+lP51/lr+WP51/oL+kv7I/sr+0v64/mH+1f0g/Wz8x/tZ+936lfpr+j76iPrz+mv77PtK/Ij8ufzo/ID9RP51/1MBrwPYBwQNYBKcF3IbYx6/H2MeTBtmFmkQ1wqKBSMCJwF7Ae0CPgQSBQAFygLS/jz5zfIe7Tzog+WJ5W3nWuve71z0f/gL+1P8SPyE+wD7zfrx+4L+JQKsBg8Lyw6CEZ0SYxLGED4OYQtKCMgFvQMeAhEB6f+8/pL9CvzA+nj5MPh69+72BveJ9/33m/jp+Cr5ePm9+aP60PtY/Un/HAHtAgQELgSgAy4CYwCi/hz9dfyC/Ev91f5YALUBdQJTAjgBbP8K/X36a/j/9m726/Yh+Nb5vvs//Wf+q/5J/on9VfxT+5P6Q/rA+o/7A/3I/oIApALEBLkHVgvIDkwSSxWaF4oZ8RkUGUIXSBQFEcYN8QonCTIIeAe7Bq0FHwSxAT/+u/nL9BDwCuyG6ZfoVemN64fuy/EB9U33svgd+bD4QPj991T4p/nz+zv/7QKDBskJFQxxDcgNGA3tC1UKtwiEB3oG4wWKBRYFzQTyA8UCRgFR/179UfuD+U34J/do9j32FfaD9jf3BPgU+Tb6cPuU/Jr9U/6+/gj/LP8l/1//bv+8/2sA6AC6AWYCmwK4AikCSwFsABb/CP4e/UT85vue+6H77fv1+9T7jfsM+6f6B/qR+Vv58vgt+a75Q/qP++/8tf4nAekD6geoDBURKRUiGNQZjRppGdgWwxNTEGgNGAsFCloKRgsTDBwMDwvzCD4F+f8L+vjz0e4O6xvpfelz623u1vHe9EX3oPh++Iz3CPZ19OTzT/QP9gn5kvydAIME6AeSCs4LEQyFC0QK7whgB9UFxgTMAxEDkgL2AZkB/wBcAK3/5f49/jL9EPwH++f5Kvne+NH4Uvn8+cL6t/t7/ND8mPwD/DP7dPoU+lz6Rvvq/AP/NgFSA94EhwU5BfIDQAJPAI3+Zf28/NL8Zf0n/uf+N//4/lr+Dv2y+3j6Qfne+Dz5B/p3+xX9Vv6Q/xAAEgD5/37/eP8FAC4BsQMOB+AKAA9wEmEVZBewFyEXUhWlEvAP9wzgCqEJoQg6CMQHLwdiBpsE4gFA/hn66fUD8jnvce3m7Iftwe6w8OPyxfRG9hz3SfdP94r3FPh0+YL78f3tAPYDqwYkCaMKLgtAC4cKjwmICGcHrgb7BXQFMwWOBL0DpAIuAbT/CP6E/D37Lfqu+YP5p/kd+nD6vfrq+rD6SvrA+UP5EPkC+XT5Vfox+2f8n/2f/mz/5f8OAOP/0/98/2P/lf+k//f/WgBnAHQAKwBU/4f+af1h/Iv7jfr5+Yz5S/lV+Rj50/iV+B/4Efhb+ED5DPsb/TQAzAQBCsIP1RS5GNcbMB3HHCUbXRhfFZQS+g+yDsEOcQ8UEMYP0Q6HDIYIJwOz/Df2WfB+62/okOd26KzqbO0q8KryK/SP9BX09fKq8RDxVfED8wj25/ld/tICEAdRCnMMig1SDYsMhQtBCmAJoQj1B7AHBwdHBj4FtgMXAiQAfv44/Sb8nPs/+xv7DvvN+mf60fkL+Yr4FvhA+Pn4/PmW+yn9x/40APYALQH/AF4Avf8p/8H+4P4g/6j/OgCPAK4ALwA+//r9jfx5+5X6Lfo1+m/6EPtB+wX7YvoJ+dj3ovat9cf1MvaM96v5dPvA/bH/BQEVAgYDpgQqBx4KrQ2CEcYV2BlWHIsd9hwMG+gX1xNIEJcNrwuWCrwJYwkTCakHOQVaAar8nfe88v/ubOxR62XrP+z27cTvHfH68ejxe/FH8S/x9fGw8w32L/ma/Pv/GAOXBWUHmAhyCRUKwwqCCzkMzgwaDeIMJQy8CtII0wawBNsCcAFGAIL/yv4n/lX9MPzz+lv52PfD9g32FfbG9t73lflI+6P8tf3i/dD9OP00/Hn7+PoU+8v78fy4/qYAUQK8A04EOQSxA0sCqAAn/439dPzF+0X7RftD+xL76Ppm+sv5KvlZ+NH3dvc892P3rfdL+Ez5a/or/On+rwKRB4sMARFWFawYDBvAG90aTBm5FtsTmBEkEKMPABA+EHgQURDIDvgLlQfoAcf7avXy7/3rrOkr6RXqJeyt7g3xofIX82ny/PAx78ztee0j7kvwuvMj+C792QHEBZ0IIgqbCiAKBwkMCBQHpwbxBp4HrgihCS4KNAqSCXQI8wY8BXEDxwGRAKT/DP9+/ub9Sv2L/AX8VfuR+gX6e/k6+Wv5oPkz+uz6cvsM/Fr8o/zU/NL8xfyh/Kb80PwT/YT93f0F/hj+1f1C/bH8Afxj+x/7EPtc++r7ifwt/bz9+v3x/ZD98fx9/AP8y/sD/ID8ef3i/pEACgP8BQEJIQyTDrMQtRLKEz0U8hPdEvgR8RDND0oPxA5iDuENugxoC2EJWQbOAon+j/o39zv0nPKh8XvxEvJi8qzyi/K38Xrw9+7K7XrtBO7C74/yDfYA+sz9BwF6A9MEXQUdBbgEoATVBL0FGQfsCMoKYQxiDXENiwzDCmMIxAU1AxwBfP9T/rf9cv1W/VH92/wK/Bn78Pnf+CH4p/fM91b4JPl2+pz7pvyG/Qb+c/6z/gj/gP/y/5gAGQGsAQgC+gHmAXIB2wBKAJ//Kv/i/nr+QP7p/U39vPzi+8/6Dfpx+Tj5afnJ+XT6G/uB+6z70Psb/Gv86/xL/usAfwSsCKAMFxArE/kUfhUPFXITuhEiEHwOGA6GDn8P5BBGEdoQVQ8jDNYHZQKo/Lb3YPOO8GvvaO+98E7yrvOu9JL0vvMQ8sHv/+3H7HzsuO3Y7x3zBvfq+sX+CgJ6BEoGKAd7B4wHKwcbB/wGDQd5B9QHVwjhCB4JYAlaCcQIHwjqBlQFxQOzAbb/2f0T/Nr65/lx+Vn5l/n8+W/64fo9+0r7M/sC+7L6f/pc+jb6V/rR+oH7d/yt/en+FwAXAboBAwLZAVYBYQBU/zv+P/2c/Eb8KfwM/CT87Ptl+7L6k/lC+O32wfVL9XP1QPb09yT6t/yi/3kCqQVBCYwMYg+oEa8TmxWrFswWfha2Fe4UQBRKE64SMhIMEVsP0wzLCSwG1QFT/S/57/XF87XylfIp88LzFfSa84LyzfCQ7onsEOvf6k/sJe8x8w345vxCAV8ELAaTBt4FsARYA6EC1wIKBCgG3QiLC9ENPA+RD5EOvQw2CkoHwwRaAnsAT/+X/nn+l/6f/pT+Vv7K/SL9Hvzx+qP5R/hE92b2//Uj9p/2qffc+BT6UPsD/HD8ifwb/LX7U/s2+5/7YPxl/dL+OwA5AQoCQgLtAS4BGQAD///9Iv2J/Cf88fsn/C/8QfxX/OT7gvv++lX6+vnd+Qf6z/pe/A//xwKwBnsKrQ0SEKwRDhJuETgQpQ52DekMZA0JD+0QyRLZE7wTjRLmD7gLzQaWAdv8jPlz9632E/fX91/4UPhz97r1TPNO8JftvOsQ6+Dr+O3u8Db0g/c1+jv8jf0X/jD+Qv7O/u3/twHuA3gG7Qj0CmgMLg0wDZUMgAsHCsQInge1BucFLAViBGgDiwJqAQMAv/5P/fj7DPsO+l751vhN+B34+/cd+G34wfhL+ef5nvpZ+9j7WPzi/Fj9E/6z/mH/AwB9AMUAwgCuACsAh//e/kD+8f3v/RX+Zf6U/qT+xf6t/lz++v1C/Xv83fs/++r68fo4+937/fz9/l0CNQbMCdUM7g5TELUQnA/jDeALCgorCVgJ2wpSDb0PCREtEYMPQAzPB/gBNvxx9yv0/PKs8/b15/hD+7H8kfzE+vD36vME8FbtBezr7G/vQ/Pj9+H7Kf9PAeIBhgE6ANX+Bf79/Rr/DgGtA4YGFQkXCx8MGgxwC+0JWgjhBnYFuwQ5BCEEKATwA6kD+QIFArcAIf+a/RL8mPqP+cr4Yvhr+Hz47PhX+Z75HfpK+oT60vrL+jH7svsk/AP9tf13/kD/wf9lAMAAwADtAMkAowCCACIA5f+J/xP/qP5R/tD9av0c/eL8Ef0w/V79yv37/Sf+S/4M/r79gP0V/fb8h/3M/skAFQNfBYoHjQnMChwL1AolCicJSAjsBwwIMgm2CvsLHA2vDXYNGAysCcIGzAP4ANz+mP0F/TL9cP2b/Wz9jfwM+wf57fYi9eLzj/MI9HX1JffW+Fn6Mfue+2778/qe+uH6j/vL/Jf+mACUAk4EcQXyBfcFWwXKBFIEGARSBMYEgQU3BsAG4wZ9BnMFDwSOAtsAfP9R/oT9Ef3H/Jz8cPxT/Pz7dPvS+ir6zfmZ+Xj5jvnR+Wn6Nvvk+5L8G/2A/R7+Zf6S/tn+6f4N/xX/+f4G/yX//f7O/qT+jv6q/tv+5P6r/m7+F/4w/UP8dPuI+mD6xPr4+3D+2QHjBUQJUguZDIkMaguICRsHhwUABYcFUAcTCjcN5Q+7EMIPhQ3XCT4FswDo/LD6Q/og+xn9Tf/iADIB8v80/bD5Cvbk8vfwX/Cj8TL0X/d7+pz8pP2m/er8p/t7+hD6efr4+yX+uQB6A5oF7gZbB/oGUgZ2BcwEfwSmBCMFywVrBrQGoAYhBgAFvwN+AhcB7v8K/2P+9v2b/TT96vyS/EH8z/tD++r62vro+uz6KPuK+/j7Tvx7/KH8uvzQ/Pb8J/23/Sv+ov43/6//OgBrALEA2QCjAL4A1gC5AK4AlAB7AGsALwAAANP/n/+U/5D/df9Y/wb/pP5n/jL+Kf4e/nD+Of+8AK0CgQRpBu8HywjYCAUIywawBdUEbQTDBBQGswc7CUoKcwrWCRUIfwXBAuv/j/0y/Kj74ftw/AX9Zf05/Xn8Evso+Uf3AfaZ9eL1+faD+Bv6ufsM/cz9Ff4g/rX9av2G/S7+Pf+WAOQBDAMYBKIEuARdBAYEaAPVAnECSAKFAqsCswKQAjcCoQEZAT0AWv+d/tv9J/2P/D/8Dvz1+8n7nvvC+7n7i/t2+zj75vrh+iT7k/vz+5r8hP0//j7/4/86ABUAkv/n/pD+Z/5I/qH+Kv/u/8sArQFJAokCDgJeAZEAFQA0AH4AhAEYAy8Fewc9CU8KfArSCZQIOgfwBQsFHwXlBXAH6AgVCq8KMApuCL8FtgKb/379K/zs+1j8NP1l/un+xf7Z/Q784/kG+Fj2XPVU9VH2svcH+Y/6tfts/Ij8TPwH/Nn7NvwQ/TT+yP85ASsC4AI7AxwDygJqAiwCSQK6AjAD0wNdBH8EPASUA4ICJAEtAFr/1/7F/tv+Ff+g/6L/ev9H/2r+uv3Z/An8nvt3+4r74fsk/Ib8Kf1y/e/9XP55/q3+yv6m/qr+Ff+k/xUAeQDoAKoBXAJYAtQBQQGUALb/LP8s/5X/OACAAMsAOQEbAYkAov9z/lb9/fxf/QP+1/7c/8kAOQGSAW4BJAG8AC8A4/8wAP0AugHBAocDJwR4BEkE/QMTA1ECHAK+AV4BhAGYAbEB0gGsAYsBdwEpAaoAEwB+/2P/Vv8p//L+5P6v/mH+Rv4//lr+cP6f/uX+NP9j/4D/1f8kAGUAnwDLAOoAJAEwAeYA7wDbAAgBXAGHAccB9AEIAu0BoQEgAXsA1/+H/1r/N/89/2j/tv/n/97/qf87/53+J/6d/f38wPy+/L78MP2j/eT9HP47/hz+6/3O/ZT9T/1q/ab9Kf7X/nX/OgDDAPQAGQEiAfgA1gCIAF4ATACcAOYAKQF+AYsBvgG3AaQBjwFnASQB6gCaAHkAlgCzAPgAGQFNAbwB6QH2AcEBdwEnAb4AjwBEAAkA9/80AEMAIgBXAJgAmABcACsAw/89/7P+K/7o/cf9o/3S/R7+lP4h/3H/Zv9q/xH/d/5A/tv9pv3V/T/+zP5s/y8AmgDbAO8ArABcAPL/qf+H/4X/0/9TANYASgFwAWoBXgEgAawAYAAvAAUAPwB5ALUABQE2AT8BRgFIAScB+ADWAOgA9AAOASkBJAFpAXkBfgFWASIBCgGvAG4AGwDR/5D/Uf8e/+D+i/5N/hj+9v3D/cr91P21/dX9uP3D/df93f3b/fb9Pf5R/l/+kv6z/uf+Uf+v/x0AhAD2AE0BfAGoAZABcwEuAQEB8wATAWEBowEGAnkCjgJjAl8C2QFfAeAAUQAwAEwAiADDABkBQQEtAdAAPQB3/8P+Ef6d/ZL92/0l/on++P4j/zn/+P6k/kj+8v3Z/fr9Tf7K/oP/GQBjAJgAswCYAGwAYAAnABMAIAA6AGcAiQDAALoAyQC8AKMApQC6AJ0AlgDDALkAvgC1AJgAdAA9ABMAIgAiABMAOABTAH4ApgDDAMIAmgBwAD0A7f+i/3H/S/8+/2H/fv+f/7r/vf/G/4n/Sf8h/wb/7/77/iX/bP+9/+X//f/7/wEA9v/i/+3/LQB7ALEA/AATAQgB2QChAD8AyP+Q/03/Hv8h/0v/aP/I/wkADAAbAPD/ov87/9z+lP5o/mX+c/62/v/+Sf+S/7r/uv+V/3j/MP///un+4P77/iH/Uv+y/ykAPwBlAIAAdABcABMA2v/B/7b/vP/t/yIAiwAKAWcBqAHBAaMBeQFRAQUB3QDDAN0AEAFPAZ0B5AHvAdsBwQGGAUYB9gCzALoAqACjAMMArACjAIsAewBgAE8ASAAyADsAPQBPAGwAiACSAKEAvgDOANsA1ADWANAAjwBgAEQAEgDZ/5//T//5/rj+kv5E/jD+O/42/k3+VP6L/pb+fv6A/nf+ef5w/on+mf6x/vL+Kv98/8X/7v8/AI0AtQDAAKoAkQCWAHsAaQB1AGkAiQC1AMUA1ACuAJgAZwAgANz/gP9P/xH/7/7r/tD+zv7H/s7+4v7H/p3+hP58/j/+Dv45/lH+df6k/vL+Wv/R/y0AdQC+AOgAGwE7AUoBVQFVAWMBcgGdAfQBNAJPAlECNwIVAsoBiwFIAegAtQCNAGwARgAwABIA7f/5/9f/vf+m/53/mf+f/5v/oP+//8X/vf+6/7r/pv/D/9H/wf+9/7j/sf+i/5//qf/I/97/2v/0/wkAEAD0/7b/if9u/2//Xf+H/7T/BQBTAI0ArACjAJoAcgA0AA4A7v/e/wwAQwB1AK4A1ADiANAAtQCqAHAAWgBXADsANgAkAB0AEgD0/9H/vP+b/4X/gP9z/3H/hf+D/4P/Y/9A/xP/7f7g/gT/E/8Y/1r/lf/I/8P/qP+H/03/HP8Y/xr/N/9+/7H/9/8bAEEAJwADAPD/rf+b/47/fP+b/9f/IABuALUA6wDzAM4AiwAwAPL/zv/Q/9z/EwBnAMMABwEgASQB/wDMAHkAJAD3//L/DgA0AE8AhADCALkAugCdAGUALwDy/63/hf9m/0v/Yf9s/3f/kP+2/9H/tv+y/6D/jP9v/1b/QP8p/0D/b/+k/8X/3v/g/9P/tP+i/4v/ev9+/5T/yP/9/y8AOAA4ACkAJAATAAoA7v/t/wkAIABRAHIAmACaAIAAXgAvAPf/7f8DAC0AXACLAKUAkgCCAFMAEACx/3P/Wv9N/13/qf/7/1UAiQCPAJ8AhgBMACQAAQDw/wwAJgBgAKUAyQDrAP8A/ADbALoAiABTACQADAD9//D/AwATACYARABXAFcALwAFAOv/xv+d/5n/nf+b/7b/w//c/+7/7f/g/9n/8v/X/9r/8v8AAP3/+/8BANX/nf9h/z7/E/8P/zX/VP+D/73/+/8ZACYADgDw/7r/fv9C/z3/c/+v/wMAWACoAOYAAwHoAKYAbgAmAOn/zv+b/53/ov+r/9z//f8ZAC0ARgAiAAMA6/+9/5f/eP94/2P/h/+4/+X/GwApADIAHgAHAOf/5f/j/+f/BQAyAG4AiwCYAKoAjwCEAFgANAArAP//7f/0//n/+f/u/9D/3P/M/8r/2f/I/87/uv+o/5n/kv+U/4X/lf+8/8P/9v8pAFMAeQCRAJEAdQBhADYAEwAiABcAJwBcAHQAkgCmAJIAhABrAD0AGwDu/9f/1f/T/+f/+/8XACcALwAiABUAAwDg/73/h/94/2P/Yf9v/3f/pv+y/8X/4P/M/9r/yv+d/4X/bP9h/2r/i//B//v/LQBPAFUAVwAVAOn/0/+V/4P/l/+p/9X/AABEAHsAbAB+AHsATwAmABMADAAXACAAQQB0AIQAnwCdAIgAawBEADsALwAiACQAHgAtACAAFwAMAN7/0f+9/7j/sv+i/6T/kP+o/6v/kv+b/6j/nf+X/6n/pv+g/6//vP/O/+X///8rAD0AVQBsAH4AfgB0AGUATgBIAEYAOABcAGEAWABjAE4AOAAHAOv/yv/c/9n/8v8VAAkAEAD0/8z/ov+V/2r/ZP+O/5T/tP/F/8H/vP+H/2b/Mv8P//b+CP81/27/vP/Z/xUAJAApAAEA1f+8/3H/X/9z/4L/rf/0/y8AZQBlAGEAQwAZAPT/9v/T/8z/4v/w/ysAHQBXAFwAWgCAAHsAfQB7AH4AhgCIAHIAZQBTAFMAdwCRAKoA0ADSAOAAzACUAFMADgDe/9P/AAAnAGMAjQDUANIAvACYACAA5/+t/3P/pv+9/+X/EgBpAJQAgABeAOX/rf9U/w//A/8M/zf/b//F/+f/SABOAPD/tP+Z/4X/Tf8n/z7/c//Z/wEAJABcAHIAcgA2ADAAawBMACIAOgBKAFEAzP/O/+7/i/+H//T/5P5sAJUFbQbvAikAXP5p/fj9Hv5l/lH/JwAkAOX/CQA4ALr/q/4l/rX93f2r/jn/0P4I/4sA6wD2/8r/TADy/63/sv8ZAPwAbgHxAOoAEQGdAPwAVQFjAE4AmAAKAIkA8wAmADgA0P9L/zD/Ff9H//n+jf6J/+3/Mv8j/0//GP8FAAEAKf1L/fwA6AFEAU8BVv8Q/Sv+hAFdAhsBnwBOAKwAiAAq/4X+if8/AVgBTgAtAa8B6f/n/in/rf/j/xkAWAHyAYIABv9W/87/7f/u/4gAbgHu/43+NADi/0n/UwFpAD7/CgFq/9X9nf9jAJ0ARADH/pX/XgBJ/xsAZQGUAZEA0v3N/NP+QgFwAmoCowDV/nz+Ff7i/ef+WAFRA+YBE/8T/97+hv1J/wYCZgLFAN7/VwDg/yP+aP6z/mz/0AGLAhgCeQCW/pL/eP87/oQAkgHSAAMBT/7p/SkCPQKS/sf+KwHpAeIBAABG/Ib98gHgAdv+cP5EAGkAyQCqAJT/yQHeAbj/ogItAWn6PfxlADIChgC//iMDnQKs/OD86/8M/8X+TwGCAUb+x/0TAVH/x/28AAkAcf6b/1wChwEb+7X7WAOMA0YAIP6a/fEAyv/C/MoC2gQ7AFH/xf/e/+D8U/4zBFED5f6EAR4B+PuJ/YkBCgIeAgoAR/rF/HoEfgOf/2cBGv73+BP/fgOJAVUAcAAmAAr+W//0Ae3+Z/3iAVwBeP/Z/3H/X/+fAWIEBf0//eIBoQDc/g793P4oBw0H//yG+9n+xf6k/VMBxgQeA6D/GP6U/ckBWAHp/3wF2f3e+PH9fwYqBEP8wPs6+vkG2QuN/Sf2/QAtAQb/Pf7L+ZwFWgrUAU76RP1q/gUAcABEAOEFKwG99+/7PAhyBmn5fgC2BBP9pvzO/EYBVAL7AXACEvzb+6UF4v7J+sQFGv7X/EkEwPy1+wwAmf+OAqsGVv3L+jkEI/9L/UEB/f4B/kEAoQH0ALYChwKa/HT5dwM/CP8Ce/qH+CABqgAiArECSf/8+pr7GAUXCFX78vfiA2QEIfoo98gGagxT/aH1dfwMCoYAzvXXBGIEuv0E/777AQP1BRz+LP4Z/Yv9OwGlBo0Bevk9/1cFv/+h+xMBtv5b/2EDoP/e/Z39fANuCqT45fbnCg8DH/kOAab+a/sRBfEHwAGa/DD/9PzS/jEGnwJN/bP92wFh/xX/I/4Y/msHsQFy/NYA6//y/+r7XP0eBID/hAFqArv3Tf7oByT9JPu1B0EAove1AoEEj/zk/qb/Rv9JAiwDPf7q+9MEZQEH/CUBtv/u/xEDdQLT+ez52wukBITyvAL+B8f92/rF+8EET/9f/aAF7wLI/wb+Z/q6/y8AVgPyAvj6YAB5AlMBHAT2/6/0I/4mCFsDOvob+pEHtAWy+MT66AVcAjL+gv5s/ScACALZ/6T+n/+yBUQD5voO/VMB9P+aAP8Cuv4MAGwAJAHF/zH7vwJz/9kDJQUf+xT6H/swCpMI2vh6+X4Asv8KAqD/ufxFBQUASvz0AZX/1/zOAg/+yfrKBbIFjvk8+dIHkAWC9f38JgeUAfoAVfqo++oGzv3S/KcIE/6a+9MCSvxwAfMAWfshBt0G8vgk++UCnf+rA2EA4v9yABT4RgG0BDD+cAK8/zr6LgJ4BC7+JvuPAGgFlv15/uf/tPrUCOAE3PWEAKQDLv+x/1v/EwBTAawB9P5P/zAB4P2s/RwEyAJE/UQAD/+m/ZoAygWU/KP7w/47AdAIEPro+fYDVwUDAij7JPmlBqkHW/kH/VQDdQLK/e0BvgAO+9QB8QGi/okEoP+k930FFgbr/cf8d/uzAGsGowAB/zsAYvl3AucFOvyV/wwBO/7MA1P9FfyTBA0D7/6W/iv+GPrqAM0HIP+N/pICdf09/jcC2/00/ykCkP2A/vYC2QHm/UL9If8u/zYCPgP6+73/kAJ5+wH90AIi/pQCvgLO/NwEQP+A/f/+/PtLA0QB1/5UBXkAmfdWAfgCFf8UBcf+yvcVA6UJmfkM/HsBFf98BfsB0P2h/nL9r/1iBzQCVPj5/1oBcAFlAqYB5vwk+2P/RAN8A5n+owG//sD6JAD7BcgCkfqx/gT/JwAKAx/7zwXkBxL58fqm/LwBOggMAMD6PQLbAB38xv+t//EAGAbv/Uv4OwCpA+IB3v7s+wYCPgR7/fH68fwcBHgE+gDK/Vb/XACz+2r/9wRj/x78sQNLBMr+yfqD/9UETwBU/uYB3wCS/Jj91wFxAvEBnQK0/936Ef+tAs363/qEB18KYADt8pL25wU6CfH90fmGALAE3/xQ+CgEvQNs/mUCE/47/PQB+/9bBa3/tPd1/nAJTAbq+2D7x/1iB/AGl/jv9ZUGxwdR/F3/WAJyAIv9vvw+/yADiwIbAE3+s/xcAfMAvP/KA+L+DfiVA2oEAPj9AvEGC/s0/a8E4v02/NkD0APj/734pv38CLUBX/gwASADuv03/hcCYQHg/KgDXf+499cD2QhM/PH9kAFz/rr/zv49AsYFBfwF+tcEggB4/zcD/fww/psCiQHkAv76uPYzBNcDnQDp/nL8kQBSB94BivF5AKoI0/50AFP7wvksBB4ELQHp/+L9w/4z+08B7wf7/973Pf1VCVwCPPdpAIcDeP/pAfEBwvwZ/X4C9gBnAdD/n/1zAeL9NP+tAfwAFgcB/bP0AQK0BfD/jf1b/xYEc/8Z/Z3/UQKx/+P6egInAGH9mgVPAo/9XQIt+TP5NgkoBPT+IAFj/KD6WQWqAmL72gbt/tn2rAgNBA/24v+VBmcA0v1lAskA1vyx/6UAGgQq/3D7eP+tAqkE7f/q/PD+qAGI/JYCWwWa/Ej9qAO/Azn+QP+3/Yf/FQNsAHH+j/zF/qEITgCd9wQDqgH6/J//fP1MAIcEggHk/Cj7agPnBWH8dvlk//cDMAI9AqP9+P3b/k77VALtCT8B0ffq+7MAngTB/hj+WwMpACIASf/O/hr+Zf68AdQAgALFAxf+K/p0+tAAEgiXBpL+kPip+bz/pQZLBSn+yv4eAmr3Xf+ACHr+xwFmA0H8jPcIAbQFWwMP/nf7W/93Ao8AK/2f/moByAZd/uX37v/j/wcGWAQ09i/7+gemAyr4FQIMAgX+hAHb/V3/hQL//TL+WgLF//QCcf/z+eoAygMiAcAAofv0/AIGoAQG/tT8XvoRAkMHzgCNAbP8JPp5AjEEagN1/yT5yv2aBkADXPsiAKgAsvtbA0YDD/6S/Y/7tv93AhgFHALj+LL/QAS8+1/+7wKdAaQB0f8L+nABUwc6+6/+EwOP/e0DmAH3+HoFXQQN95T9/wNtBLoBF/yo+0sBGAPoAU/+DfhNBCQGOvxB/WX9Hv0QCDwEfPcn/w7+pQDkB3f/9fejAFUBEwOzB8b5FfYcAooGsgNNA1z6t/luAN4EhQKlAHcA4/ou/U8CEwH7/W4DtQLs+jT7jgIuBXf/Qv6O/1j85v3eAcoFJAE2+wb/aAMq/7X7cAJhAzgA0P2J/Df+sgUcBGr9DPzF/c4BQgJGAQwA/QFXAOX4/fywBQgDcgBj/eT9fwZWAYL1P/vdCVcHT/zU/SsArPvFAPf/MgBlCBEC4frv+vj+MgP0AnABqf8e/ZgA8ALVAeX/nfeZ/vUHxQGH/4f/Tvyz/OQBcwMOAloD1PpL+dYALQFYBCMCK/7//Hv9EQTRA8X7cvwPA1QEYf3l+RAG2gb2+2f8dwDBAff/RvvFAO0D4v5cAG//Zf5MAOv+7f13AIsAVv+1AX4ClP/R9zr8NwYKBMf+j/qP/JAB2wK6//b/TQK5/O766gXzAFb4AAZqA8D8ef43/iD9EwCICEUHDPsW9yAB1QEy/y0AxgS2A+T+2f58/pH70f92CMMCn/yS/s4At/vA/TsC2gTOAxr+yPiv/LkF7v8R/hgDGv86/D4DowA7/jX/Wv2sBpcCMvcB/xgFTgAN/wT/t/zkAFsF0/8F+9D+dQNOAAEBewAF/J3/7wFpAI4CxwHS/O/8iQIzBOP/r/x+/wQEuP/0/goAkfz9/kkF0wXb+0P5LAWZ/6X4jAZ6BXX8K/0k/Yf+VQfZAJr5VQF8Acf9ZQEeAvT9TvwDAsEDWv/S/ef/YwK4/sj+AwG1ARcARgH9/IL96gUgAJ/8OwKq/uf5jgKVBdkAwPwX/A7+9gNuAHf+XwID/yL+Af+YAOf/bv/mAF0Dpv/d/fT9+/73BZ0Bw/7g/kP8Gv8eBDgBF/tkA20G6/34/ML8/f7FA/MAIvz5/78E2wLQ/Tb7vvzKAkICK/6XA/8B6Pkw/iEDzv5TAfoBf/zMAGEDWv6S/Br+JwEWBdsBtfw5/loA+v1U/m8DdAWdAjz74/hB/cEDtwnpAtv9f/yM+Yn8EQMsBioFcwHP+nv5OPxdA4gHKgSv/pf3XPohBTUGov6W/vb8O/1fA2kAXP0SACwCGQHS/ab+sf+H/+AA3gIuBBr+rfhc/agBCgSeB1b+/Plm/6b+qAJRA3n+av26ArEC7/1w/ov8mgB/BD4DowA6+ST8yASfA0b/AQAg/Yn9gAPXAdT9df9VANP/JwSLAEr7Lv9m/1YBLwVn/vr88QAT/jQBGAT7/Q78XQKIAFr/uv7P+00CigVAAwX8uPgrAVIEeP9H/5wAtv89A08Bg/qj/ccAEACNB+8Cf/nk/lb+Jf4ABnsBw/wuAkv9Lf1uAmwA3v75/jYB2QIvACr6uP70/q/+GwVgAIf9DwK+/Yr6qABPAV8CBgQe/Xb6JwKtAW7/SQMk/Vj8AAftAVL6hf42AiwEzP6v/VEATgBRAVoAr/3c/j0BDAHtAj3+Evxz/8kAoQJzAsr/4P2c/Lz+1wAfBO0BO/04AYn9efx1AdcDLAPI//H7Uf3qAJICpALe/2MAyP6Y+7j/JQWrBRgE1vrQ9CX/UwfaB27/PPtI/hX+2f8xBCcCDv72/iT71/3JBrMBxfvg/iUB0gGh/Qj+vAKvAbz+Jf4FABgD4v5U/8EEAf8w/Yv/0f8/Av8Amf7tA3kAvfnMAJAEvf87AbX9/PyJARcCjQJ1/ob8b/9aAXwBawDmAKgAHvxW/6YBZ/6rAoQCMv09/60BSf6z/Qb/vgDy/+gA5AJn/Zj8NgA0/8n8TwNHBRb/o/yp+hX+3gJZBpUE+vxN9or6dQQ3A6kDsgN1/EH6ZP8JAAr/JwJzBeABXvxc/tT5fv2ZBZoHkgBS+ib8AwDyBLMA1/xVAaICPPtN/0IBEwK/A5D+2fzv/v8B0gCh/ir/sgMcA2P9/fjQ/vcGVgR7/fb+2f9a/JL/gAGkApkCHv7k/nIBv/4B/dMDUQKdAOD/Hfji/kEIpAMv/KH6Y/18ArEDegK8/vr9Qf2h/SwE6wKS/HT8n/8aBFoDWv0O/qr+FQApAeQB5ACW+3H/egQmAAP9mf8wAvb/MgCxAFj+xwF3ANj60AKrBHD+fv4K//j+JwC6AHkAdwCo/ysAkQA5/6/9sf9EAMj/6wL4AEL/FQAQ+0v+LAKQA0kDBQEO/cv5jQCAAscAAwMpAE/9IgDF/If+pAP5AlL/Af0c/bMAIAJXAHkBKQB8/fH9HQAbAV8B4gCCAKn/gv/AACn+vP0nAokBZgJDAKf7of4TAyAC5/6v/mP/dQBEAKb+U/68AmwCx/2W/l//W/+xAXj/3v8cAwUAKf0a/iIAhQKqAZIAiQB3/vb+BP9z//QCsATa/9b89P9CAfEAi/91/9kB1ABJ/6wAUv+Q/tL+g/89ALcBWgP7/nj6NvymAIUDYwPe/6z7J/xGASUBWgCEAfL+IP8G/qr9uAFuAj8Avv6h/QwA6ABJ/9cArgBVAIQApP7m/Zv+BgO0AxAAVP7O/Cn/rwJEAsUAfv95/oX/SAHkAKr9+f9LAlgBb/8O/sP+jP/JAV0Csv+S/KD/FQD9AE0Cr/9T/R7/kQD0AGoCbP9L/nUAVQFyAJYAN/+f/lMCMgLvADQB5Px7/b0EhQKJ/qv/Yf4kABUA0ACkAmEASf8M/a/9RAHJAfn+cgBYAYv/Hv4M/U3/9AOoAZL8zP9yASkBZwBA/rj+oP+PAGMCWAGH/lgAMgCZ/gEAFQCLABMDAwER/kL91/0kAVIDwf/K/aUAhP6X/1EBjf01/+IBpP2k/4ACpP47/qb/Yf8s/74AKQAc/2P/Ef/V/8wANABjAD3/qP1A/6gAwgCvABkBZwEj/hH9VP85ARUDtwGJ/yz+D/6m/vMAWgOSAMX9Bv/DAAUALP5A/yIAjwCLAsz/qP4ZAAz+R/+HAkgB0/85AZT/kv5YAFoAbP84AMwCfAEY/6/+af1J/5QD9ACO/68Byv4g/Cz/pgDIAuUCev5D/J39cwFIAgoCJACm/cr9dQH9Ao8Bd/97/dcAiwM3/uL+/wI6AN0An/+x/aEA8gHF/3r/BQGdADb+XP2AAGMDSwFx/kv9Uv8eAsUAA/6G/Lr/UQJjABAAyv/m/WP/hf/y/mj/RgDxAMkAVwCf/pb9pv5cAF4BwQMMAdD83fzT/gMCGgP4AQoAzv7S/aj/vgH6ADQBAwFG/8f9Jf8KAbb/rf5qARUCAwAl/vr8RP9EAOP/vAF8AYIAdf9G/aH9GQAOAY8BMAKtAa3/bv1u/Yf/cQJdAwYCpv9y/bX9AQG8A9wCAwG1/Gz8UwFYAQYCugFj/3UAqP91/qv/vP9GACcB2f42/t7/0P6m/8r/LwAIAY7+df2+/icAfgDG/xj+Nf/V/1b/Hv8e/7T/2wCZ//D+RP/l/uL/4P9+/7T/Uf/UAK4AJ/3m/R4AiQK/Ahb/A/sy/WoBRAI0AqT+V/wp/s7/fAFWAS796/0eAOL/XAFPAbz/Yf5P/oAAcAKQAZEAuQCXAjkC/wFYAskBGAMsBD4EsAXTBZQDagN0BawGAwdeCJwG3wXaBoUFAAWFBtYG1gZBBvcEygPTAtICSAL/AIIBYwGf/hX9VfxN/ST97Pna94j4gfj5+OX3QvVW9Zb0+PK+9Zv4tfV19YvyJu9o9XL60feT9zn4m/Uh9uX4lPy0/2n9Ofih+oYBjwFu/8kAkgDmAagDAQLVAWYFEgUuAQECcAKbA0UFiQNCAikD9ALBAnUCYf+L/loCFAd1CzsJbAJy/b77fAMuDWQPTA5PC7gF9wRiCJYJGA0FERcR2hCODtsJ7wcyCSULJg7wD8MMkQiSBPEBTQIeAw8CvgCEAFT/7PvR98f1N/Wb9Tf2aPWS9C/z6vCI71bvDfEt8fnvLPGa8j3yC/Fn8Tbzy/Np9JD1dfaT9+74Yvkm+qH6pfgW+qT9BQC6AM7/m/7X/cz/ZgLgAasCxQKoAPIBvgFfAokEAQNVASICKQGcAHcD0gKZAUcEJQOC/+YA6vk0/YsMnQllCIoGEfjD/QcIwAgCD6QNdwkcCgoJsAhmC/sLng+CEyQSjRBHDToJDAxSD2QQ7BCeDTULRgpKCVkHuwXuBEAFXwT/Aun/ffyo+wf65feZ91v2P/XH9cPzIfFr8P3uCO4a7zXwUPAo7/fueu8Y7wbv+++p8TrzIPSq9Eb1LvcW9wr2c/jC+h78qvxw/Ej95/62//v+hf+lADABewGQATgBMAB+AHMCGgNEAkYBO/+4/7MBEwI2AQMBkP+D/w/+lvz0AbsH6giXBnsAxPlW/x8GDAuyEAIOdQmdCK4Irwm4DIUOHhIDFKsUexN6D8MMjA3+D0YS+hOCEjEQTg00C5EJhgjJBrQF4wXsBWwD5P4O+1/4Dflg+dH36PTJ8ojxAPHz70vuyuwu7Vbu5e7R78zubO2/7c7uoO8F8Z/y4vR89lv34vY79uX2b/km/Gj+9v+C/xr/6/1s/gwAewEaAgoDuAMgAxwBev8M/xP/iQCxAZgAxf0n/cP9NP7K/fT8efqc+jz7Xfmo/aIE+wRqAsr//fdF+30F0AhfDr8PjQtlC4MLNwolDfwQlhSaGTsbWRfFExIRkw/rEkQWyxe5FiIT3w6ZDBoKFwdCBecEwgYJB9cCd/ye93D0AfR+9Mvz2/M68wvws+0X7ITqwOkV6jTri+y27ybv5+zV7JDsYe5O8WTyQvRb94H4ovi0+NP3rPls/WwAzAKjAWAAhgBNAeQCvgL9AbMCIwQ5BVkEfAH0/n7+Gv+2/5YAO/8e/rH82fsZ/B377vh8+Fb42vfxAKQFDQMgAlb4tfSX/jkFiQorEFYOmQtUDYkLbgnnDccRjBYGHE0cPRkpFLMQmhG6FcYYBRpDF9QStxCeDu8LfQlOB+YGcAdqBDYADPzC+IP2kPZe9D3ynvBz7k/u+OyJ693ojOh56WXqQuxd7TDsLeuC7PvsXe6p8Dby7fS5+MD5p/nE+EP4a/qb/s4BRgMRBOUD5wNRA10DdQJ1AgIEHQauB/AF7QLl/yn+yv1Y/vn+uv6L/r7+fv0k++z3KvZd9mX2tvYy/swD2wJfA9H6gPRb+lwAUAf1DpgQAA4HDh4MnwlJDN0PGhVjGzAeKx3jF+ERsg/oEjoYwBorGVAVFRLeDtULhAkQBiMFfwY8BQwBJ/1x+MX0rvRu9Krya/CQ7q3sdexo7WrrVek46dbplurT7Ajuh+207rruW+9n8YryEfQn9/f5iPu5+7T6x/pK/YYAwQI7A0cDrQP9AjMEIwSFAxYD3gOiBbAFPgS6AD/+J/75/rb/n/9s/ob9E/x7+mT4bvao9dn2EfWG+cMCyQEKA4v9kfKk9cf9AQN3CyQQ+Q0FDy4NhAhGCZAMLxEzGbgejh5wGu0TNg93EeAVCxkAGvAVWBPJEZwN8Ql/B7kFgwaKBvkCjP8F+yf30PZz9XX0+vLK75LuOe7n7VvtcuuP6tbqAevp7NXtjuwf7sTv/u+Y8RLyTPLd8/f2lfkp+zr84ftD/M79Rv9hADkCyAJGA8QEaAS4A08DZQKdAngDTQMPAmkAn/+Q/5X//f4b/YH7vvp5+lL6FPlL9z32YPMg9hr+MAAIApX/tvak9hP87f/CBSALjAw8D6MQcQybCRwL3A2fE08bCB/0HVcZLhTfEoUURRd6GO4W4xaVFqETWQ+fCjEHQQbsBj4EYwHX/jT77vjM9yn1pfGt72btwex87XDsSutB603rP+vS6x7rA+ps603tX+/v8QzzTPOv9A/35fjx+cL6dvtV/YX/SAEuAjsC9gITBBIG9wU8BJkCvAHXAhEEwQMFAuL/Af+t/vj96vxw+1D7OvsS+6v5fvdx9SX0uvN39kn+iAD/ATn/r/fT+BD9cgCrA2oJLgzIDy0TcQ/RDPkMcQ7/EhQZRBwyHBUa8RdHF+gXXxemFVMTARQzFWUTDhDkCqMH7AYLBvACbP+n+0L4qfca92P1IPOZ75nsmOuL6vzoYOg26XfqNOy17CnrKOpG6p3rCu7L8AzyffNA9pv4CfqT+pH6F/sg/Z3/oQEyAx8EvwSIBZcF6wQsA2MC5AJFBKIF5wQVA7EAJ/8j/u38Q/wd/I38hPy1+4H6V/jb9bHzgfEI9Er8vADvAuABB/rP+NT7cv0MAqoHLAsqDwoTuxDnDgAPbw4eEhEXpxknGkMZbxfKF04ZiBnjF1gUphKxEbIP4Q3bChIIEggHCBEEKv8d+9f2gvWZ9b7zj/JM8h/wbO1x7DrqGOic6LfpgOu47WruTe1f7Tvu1e6T8DTynPMD9u74hPu6/PP8NP2h/ZT/ggHKAlQEoAWuBhAHOAbKA9MCsgM5BF8FxgVLBLEBGv+E/Wv8jfwg/H37hvu++jr6evcn9XnyVPAS87n5HP8uAcUBxPpv+Tv91/xOAEAEvQeHDSUTSBJ5EH0Rpw9TETkVLBayF1kY0RdiGM0ZPRlAFp8TARIQEZcPHQ1GCSgGngYCBpcDrwBc/G34HPZu9B/yR/FD8KXvle9A7sPs/uox6gPqMusT7eXtKO6i7s/wn/Lb8zv0O/Tb9en38Pn1+xP+3v+1AZ8CNwJTAhoC6wLhBHoG4wfGB5oGdAUhBIkCSAFcAcAAiwAFAf3/cf7m+4T6Cfmp94H37vbk9un1K/Nt8SH4cP1x/isB7Ppz+Pb8efw//esBwQXSCSgRdBEzDx4RNQ+tDggSHhQWFWoWgRa9FtIZzhrxF40UaRHlD94NKgyNCqcIFQleCEIFJwFj/Un5zvaJ9hD07PKu8pnw6+4E7jft/+sR7D/rRuoK7LHs3uzK7a3uYvCY8p/zqvPr9Zz4yPmq+wr9xf0SAKgBvAL2AzEFiAaaBzgIFgeVBssF+wSRBbsFBwYUBfkCJwHM/9n+w/3t/D/8P/vW+eX4tPd79fH0R/Jx8Kv29fvt/YX/y/sj+Gf8w/6b/VYC7gN6BREMgQ18DfMPtxEXEZ8T9hV+FPYU/BKzEr8VIhhwGYoXZBUjE9AQ9Q21CsQHVwV0BecDpQB8/lH87PoN+Z/2Y/NM8IXtKerW6Xnq4Ov97f/tne3V7Pbrrupg6uvrAe5M8YvzCPVH99z4Uvog/F79Iv5v//EAEwK4A/sEGAYFCEEJ3wnkCdgHfAUoBLYDgwQuBYUELAPMAev/GP74/PX79/rG+QL5Bvif9in17PJ68d70Z/r4+zD+ef0m+gb+//8a/74ASQK0BNAJmg7aDxkSjRTZFEcWnBaZFQ0WahVQFSMX3BjvGUoZsheJFYkTsxBNDDII+wRLAyICrACf/qz8e/r797/1p/Ki763sDOq36O7oWeme6Ybq6+qG6zLs+uvr6yfsKe3B7wzyqPPv9av43/r6/LH+S/8FAHsAbgE9AqIDWQVDBq4IPwpsCloJjAbVA/oB9gEcAjcCgALgAYYBOgCA/dj6N/l++E/3H/dS9hn12fSw8bDxS/bM+AP8h/63+0b9KQHt/3oCmQMyA4YIPgxgDnsRAhUAFgsYDBtYGt0aEhnIFdwUuxUmF/UWVhZQFb8UNhMFEM4LlwZoA3cAtfzP+e32IPXe9P30TfQD87/wHu0/6h/o9ObK5lLnj+go6ufsse6v7yzxM/Jy86b0QvXr9aD3BPpp/Nz+TwFsA/AEEgY+BmsGKgcCB98GogYSBhYGDwYCBuoF5QSQA3kBNP8a/t38Rfv1+X35h/gj9xP2qvW29Ur1VfRy8fnvx/KO9SP5+PyC/BP/OQQ8BSYGWQbcBGAGrgmZDNEPmROnFhAZJRw7Hckc0htlGUMXhRYaFiMVBhSLE0sTRhMyEuwO+gpwBzkEmgB5/F34j/SG8kHxH/Ct73zvkO4+7XHswOpK6JzmAub95eHmWejm6WPs3O/H8vL0Hvc1+Cj45/jI+f76ufyz/iUB7gOsB2UKcQuoC0gKIgm9B8gFWATRA1sEUgR4BIADpgG8AFH/j/3S+6v5kvc+9u/0w/Na9F700vMm89HwVfGk9Hr3qvqa/HX8/f4RAyEEowbjB9gHbgunDkoQ7RInFnAYghvyHV0drBwTG7kYRxg/GI8YxhchFuITsBHqD/8MkgksBmED9gAI/qn65fal80zxUu/O7ZDsTezC6wjrkeqw6QXprOgJ6I7oduoG7NDt7u8O8nL0nfZq+IH6CvzZ/Xj/dwBWAcEBqgJJBBgGtQfbCCAJ/gioCG8HvwV8BGoDhwKQATAABv/r/dn8+Puw+9v6R/nT9/T1rPNt8o3ymvKC8pPywvCY8Rf2OvlN/cP/W/8RArIF8QbzCPQJ9gliDeQQdxKxFT4Ychk0HGoe/x1dHU0csBk2GB0XHxUZEx4Rkw5UDDULgAlKBh4DIAAM/aX55vWI8gLwou4K7SDr8enb6fzpo+r26k7qMupn6vPpMuqo6xjtVu/C8f7zn/Yf+bv6nfzn/uIADgJzAsUCgAMhBd8Gswc6CDsJvAlECS0IfwcHB0UGxgTnAu0AUf8K/sX8bPwp/LL7hPrK+Mj27/Ul9fPzifNP82XzWvOB8rLyFfaR+br92f/JABgEwgc5CucL4gyODAAPHhF+EqQUpxYJGG4alByWHY4d9BtKGnIYFBd1FWcS5Q5xDF8KAwliB0IERgEI/4L8BPp49tLy/u/X7Tbsvuqu6Wfpo+nd6d3qYevQ6+Tr9OuN7N7t6e4Y8DzylvRb99r57fvV/Vb/tQBoApUDSwRABUEG3AY2BwkHHQczBzEHQQfNBmYFxgPXAQkA7/4b/bL79/pe+tj5hfmr+IX3q/Z59ar0kfOR85zzDvRN9dn0w/O49d/4yftjANAB7gONCAYMgQ1kDw8Pig9REl8TbhTwFToXDhmJGzkcXx15HUocIBvEGewWrRPRDxUMdwnzB0kGlQOYASH/Qfy3+Xf2FPMY8bTue+y66qDoLudQ51Tn4eeI6UHqEus27Pjs/+3970nxz/KU9GH2f/g2+gf8vv0MABoCsgPPBPcF8wbWB4oIeQg2CMQHWQf1BssGBwbyBJIDLAKlAA3/0v21/K/8bPye+yT6kfj59rb1K/Ws9Fb0y/RE9Wz18PVh9Tn1wfcU+w/+dwBaAvsE+gjeDCQP1BAHEpITIRUGFiMW2hawF2AZxxqRG/8bKxvtGWYYMxclFY0SCQ+xCzQIpQWrAkv/5vyp+tX4E/eC9J7x/e8T7jLst+pI6UXotegA6YLpuupy64TsBu4I7x/wYvEp8h70wfZ/+Xv7Xv3Q/mcAwAGqATQCXwNFBLoESgapBmIG3AaXBigG7gWKBSEEDAOHAdz/0v4T/pb9m/05/W78TPvI+SP5Qvhj9/f2D/at9VT2qPbk9mz3//YW9z75DPuE/SAAwQHnAyYI+woWDaAOBQ9OEBUSCBO+EpYT9BP5FB8WfxYsFh8WSxUMFOIScBGYDy4NpAq5ByYFLgKM/3f97fuq+h35Mvc99ZLzCfJ98DzvS+7V7Y7tee2Q7evtlO7N79rwU/Lb8xX1+/WU9mP3B/nJ+jD8P/5o/8UACgLFAqgDJgXeBUkGvQZKBoMFHQXGBEcE/wNWA10CRAF7AP/+Qv4V/tX99P3m/ZL8APz2++P6yfqK+kP6TPpv+tj58/lX+mn69fog+677efwO/oP/IAG+AmwESgbvB98IsQnBCh4LtgsaDJUMYQ3VDdoNlw1qDYENZA2bDOALZgubCggKlgjfBocF/QMnArMAgP8Y/gf9Zfuu+XT48Pdd98H2UvbQ9XH1NPXL9Mf08fRU9d710fZj9x/4zPhA+VX6XPt5/DD95P1n/kf/IADAACsBvAGAAhwDtAOkAwoDpgJmAvQBoQH4ADgANgDi/5n/Df8R/iD9Af1W/WP9RP2G/AX87Pvz+1X7/vog+8/7KfxO/M/7gfs0/Af90v1f/un+pv8BAf0B7wLjAxEFPgZTBzYIywgMCSIJmAnQCR4KVQq+CfYIxAilCIIIPwieB+MGyAZgBnYFdQREAykCdQF1ACf///3D/J77xPod+p75hflF+a34Q/g++I74DflS+af5PPq3+jH7o/vx+2P8G/3K/aj+df/i/zoAzgBCAeYBkgLVAtsCygLOArgCEQJqAfwAugC1AD8ATf95/sH9Uf3v/E/87Pvq+9v7Hvwr/M37qPte+077bvtD+xf7OPtt++37qPwQ/Z39Lv7I/qv/XADgAIQBPwIpAw0ElwQPBfAF1AahBx8IQwhwCG4IUwgdCIQHVQdDB6wGMwbeBTkF8gSSBMoDIQNfArUBJQGmAOD/A//o/aX89vtX++76vfqN+pr6z/rf+u/6F/tn+7f7JPyS/MX8Gf1h/Zv9Jf7n/oX/QQCNAHQArgDDANAAIAFpAZQBIAJAAt0BhAEXAaMAWgDg//b+aP7m/Sf9mPwO/N/7HvyP/ND88fz6/Oj82/yI/DL8EPww/D/8L/yY/AP9i/1R/vT+jv8bAKEACgFfAa0B3gFUAg0D0wNxBBIFhwX1BWIGpwayBoUGWwYoBugF1gXIBUsF2ARtBAAE3APMA3gDJwMBA6ECRAJnAZIAIACx/2T/Df9R/tv9if0c/er8vvy1/Nf87fzU/O/8Bf0V/SD9Ff1E/ZD9sf2x/QP+QP6Z/gH/If8s/yn/MP83/1H/aP9j/1//av9s/2j/Wv/y/rr+lP4i/vj96P2W/Wf9Wv05/U39h/1q/WH9Z/1y/Yv9lv23/fb9VP6f/vn+Gv87/5n/sf+4/9n/CgBXAK8A+ABNAccBHgJRApkCvgIBAzUDJQMPAx4DHgPwAq8CXQIrAj8COwIaAkgCmwINA6ID5wPtA/cDHwQUBB8EDQTDA4ADPgPnAnMC/wGGATAB2wB9ACkAxf9h/+3+pP5U/vb9rP1C/cn8Z/wT/PP73fvq+/r7IPxE/Dr8Pfxu/LX8CP1G/Wr9o/3M/eD99v0j/lP+lP7c/vj+NP9j/3r/4v8JACsAcAB0AHkAdQCEAHAAewC+AOgA9gAMAeQA0ADfAK4AewBMAOX/vP+t/4L/fP93/4D/oP+6/73/vP+b/4v/lf+d/9H/6f/0/wkAIABMAI0AtwDrADABfAHXAWUC6wJdA+4DZATwBHoFxAXBBYwFMwW0BDcEgwPBAjcC2wGNAT0B1ACAABcAuP9S/+X+Wv7y/XL9E/3x/Mv8tfzD/Nn87fwi/fr86/wQ/Rv9Rv2A/X79tf3Z/RP+XP6Z/u3+\" type=\"audio/wav\" />\n",
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"audio, sr = sf.read('prediction_example.wav')\n",
"Ipd.display(Ipd.Audio(audio, rate=sr))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "94899563-e8d7-44f4-8669-b67a612b21d1",
"metadata": {
"id": "94899563-e8d7-44f4-8669-b67a612b21d1"
},
"outputs": [],
"source": [
"# %%writefile ../sources/fastpitch/model.py # commented to enable syntax highlighting\n",
"\n",
"import torch\n",
"from torch import nn as nn\n",
"\n",
"from sources.fastpitch.common.layers import TemporalPredictor\n",
"from sources.fastpitch.common.utils import DeviceGetterMixin\n",
"from sources.fastpitch.common.utils import regulate_len\n",
"from sources.fastpitch.data import FastPitchBatch, SymbolsSet\n",
"from sources.fastpitch.hparams import HParamsFastpitch\n",
"from sources.fastpitch.common.transformer import FFTransformer\n",
"\n",
"\n",
"class FastPitch(nn.Module, DeviceGetterMixin):\n",
" def __init__(self, hparams: HParamsFastpitch):\n",
" super().__init__()\n",
" self.hparams = hparams\n",
"\n",
" n_symbols = len(SymbolsSet().symbols_to_id)\n",
"\n",
" self.symbol_emb = nn.Embedding(n_symbols, hparams.symbols_embedding_dim)\n",
" self.encoder = FFTransformer(\n",
" n_layer=hparams.in_fft_n_layers,\n",
" n_head=hparams.in_fft_n_heads,\n",
" d_model=hparams.symbols_embedding_dim,\n",
" d_head=hparams.in_fft_d_head,\n",
" d_inner=4 * hparams.symbols_embedding_dim,\n",
" kernel_size=hparams.in_fft_conv1d_kernel_size,\n",
" dropout=hparams.p_in_fft_dropout,\n",
" dropatt=hparams.p_in_fft_dropatt,\n",
" dropemb=hparams.p_in_fft_dropemb\n",
" )\n",
"\n",
" self.duration_predictor = TemporalPredictor(\n",
" input_size=hparams.symbols_embedding_dim,\n",
" filter_size=hparams.dur_predictor_filter_size,\n",
" kernel_size=hparams.dur_predictor_kernel_size,\n",
" dropout=hparams.p_dur_predictor_dropout,\n",
" n_layers=hparams.dur_predictor_n_layers\n",
" )\n",
"\n",
" self.pitch_predictor = TemporalPredictor(\n",
" input_size=hparams.symbols_embedding_dim,\n",
" filter_size=hparams.pitch_predictor_filter_size,\n",
" kernel_size=hparams.pitch_predictor_kernel_size,\n",
" dropout=hparams.p_pitch_predictor_dropout,\n",
" n_layers=hparams.pitch_predictor_n_layers\n",
" )\n",
"\n",
" self.pitch_emb = nn.Conv1d(1, hparams.symbols_embedding_dim, kernel_size=3, padding=1)\n",
"\n",
" self.decoder = FFTransformer(\n",
" n_layer=hparams.out_fft_n_layers,\n",
" n_head=hparams.out_fft_n_heads,\n",
" d_model=hparams.symbols_embedding_dim,\n",
" d_head=hparams.out_fft_d_head,\n",
" d_inner=4 * hparams.symbols_embedding_dim,\n",
" kernel_size=hparams.out_fft_conv1d_kernel_size,\n",
" dropout=hparams.p_out_fft_dropout,\n",
" dropatt=hparams.p_out_fft_dropatt,\n",
" dropemb=hparams.p_out_fft_dropemb\n",
" )\n",
"\n",
" self.proj = nn.Linear(hparams.symbols_embedding_dim, hparams.n_mel_channels, bias=True)\n",
"\n",
" def get_encoder_out(self, batch: FastPitchBatch):\n",
" '''\n",
" Return: \n",
" enc_out: \n",
" Output of the first series of FFT blocks (before adding pitch embedding)\n",
" shape: (batch, len(text), symbols_embedding_dim)\n",
" enc_mask:\n",
" Boolean padding mask for the input text sequences\n",
" shape: (batch, len(text), 1)\n",
" '''\n",
" embedding = self.symbol_emb(batch.texts)\n",
"\n",
" enc_out, enc_mask = self.encoder(embedding, batch.text_lengths)\n",
" return enc_out, enc_mask\n",
"\n",
" def forward(self, batch: FastPitchBatch, use_gt_durations=True, use_gt_pitch=True, max_duration=75):\n",
" '''\n",
" Flags `use_gt_durations` and `use_gt_pitch` should be both True during training and either True or False during inference.\n",
"\n",
" Use the function `regulate_len` to duplicate phonemes according to durations before passing them to the decoder.\n",
" \n",
" Return:\n",
" mel_out:\n",
" Predicted mel-spectrograms\n",
" shape: (batch, time, mel_bins)\n",
" mel_lens:\n",
" Number of time frames in each of the predicted spectrograms\n",
" shape: (batch,)\n",
" log_dur_pred:\n",
" The predicted log-durations for each phoneme (the output of the duration predictor).\n",
" shape: (batch, len(text))\n",
" dur_pred:\n",
" The exponent of the predicted log-durations for each phoneme. Clamped to the range (0, max_duration) for numeric stability\n",
" shape: (batch, len(text))\n",
" pitch_pred:\n",
" The predicted pitch for each phoneme\n",
" shape: (batch, len(text))\n",
" '''\n",
" encoder_out, encoder_mask = self.get_encoder_out(batch) \n",
"\n",
" pitch_prediction = self.pitch_predictor(encoder_out, encoder_mask)\n",
"\n",
" if use_gt_pitch:\n",
" pitches = batch.pitches.unsqueeze(1)\n",
" else:\n",
" pitches = pitch_prediction.unsqueeze(1)\n",
"\n",
"\n",
"\n",
" duration_prediction = torch.clamp(\n",
" torch.exp(log_duarition_prediction:=self.duration_predictor(encoder_out, encoder_mask)),\n",
" 0,\n",
" max_duration\n",
" )\n",
"\n",
" if use_gt_durations:\n",
" durations = batch.durations\n",
" else:\n",
" durations = duration_prediction\n",
"\n",
" pitch_emb_out = self.pitch_emb(pitches).transpose(1, 2) + encoder_out \n",
" enc_rep, dec_lens, reps = regulate_len(durations, pitch_emb_out)\n",
" dec_out, _ = self.decoder(enc_rep, dec_lens)\n",
" mel_out = self.proj(dec_out)\n",
" return mel_out, dec_lens, duration_prediction, log_duarition_prediction, pitch_prediction\n",
"\n",
" @torch.no_grad()\n",
" def infer(self, batch: FastPitchBatch, max_duration=75):\n",
" encoder_out, duration_prediction, pitch_predicton = self.infer_encoder(batch, max_duration=max_duration)\n",
" mel_out, mel_lens = self.infer_decoder(encoder_out, duration_prediction)\n",
" return mel_out, mel_lens, duration_prediction, pitch_predicton\n",
"\n",
" def infer_encoder(self, batch: FastPitchBatch, max_duration=75):\n",
" encoder_out, encoder_mask = self.get_encoder_out(batch) \n",
" pitch_predicton = self.pitch_predictor(encoder_out, encoder_mask).unsqueeze(1)\n",
" log_duarition_prediction = self.duration_predictor(encoder_out, encoder_mask)\n",
" duration_prediction = torch.clamp(torch.exp(log_duarition_prediction), 0, max_duration)\n",
"\n",
" return encoder_out, duration_prediction, pitch_predicton\n",
"\n",
" def infer_decoder(self, enc_out, dur_pred):\n",
" enc_rep, dec_lens, reps = regulate_len(dur_pred, enc_out)\n",
" decoder_out, _ = self.decoder(enc_rep, dec_lens)\n",
" mel_out = self.proj(decoder_out)\n",
" return mel_out, dec_lens\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "7e56cee5-2819-4e64-8e02-f7b58fe54084",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
" # Allows reloading code import without kernel restart\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "44733b3d-8031-4c55-8a02-b1f7ba00eae8",
"metadata": {},
"outputs": [],
"source": [
"from sources.fastpitch.model import FastPitch"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d500860d-72f1-49ba-9da7-d74f836a514c",
"metadata": {},
"outputs": [],
"source": [
"fp = FastPitch(hparams)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "fdde33be-187f-41d9-92e0-91b105d0c5e0",
"metadata": {},
"outputs": [],
"source": [
"enc_out, enc_mask = fp.get_encoder_out(batch)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "00a2d810-490d-45b3-9592-e90e12d91882",
"metadata": {},
"outputs": [],
"source": [
"assert enc_out.shape == torch.Size([hparams.batch_size, batch.texts.shape[1], hparams.symbols_embedding_dim])\n",
"assert enc_mask.shape == torch.Size([hparams.batch_size, batch.texts.shape[1], 1])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "bf709b60-8765-471f-9f48-ad04fcf34bbe",
"metadata": {},
"outputs": [],
"source": [
"mel_out, mel_lens, dur_pred, log_dur_pred, pitch_pred = fp.forward(batch)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "dcb1f96e-2dc2-4702-9711-dd196aadf3a7",
"metadata": {},
"outputs": [],
"source": [
"assert mel_out.shape == batch.mels.transpose(2, 1).shape\n",
"assert mel_lens.shape == batch.mel_lengths.shape\n",
"assert dur_pred.shape == batch.texts.shape\n",
"assert dur_pred.shape == log_dur_pred.shape\n",
"assert pitch_pred.shape == batch.texts.shape"
]
},
{
"cell_type": "markdown",
"id": "97ba68b7-d3e8-4ea2-88dd-de4db7385ec9",
"metadata": {
"id": "97ba68b7-d3e8-4ea2-88dd-de4db7385ec9"
},
"source": [
"### Run training"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "2e164200-31c5-4c38-8f23-93de7ecaeaa7",
"metadata": {},
"outputs": [],
"source": [
"logs_dir = \"logs\" # Choose any paths\n",
"ckpt_dir = \"checkpoints\""
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "406ae58f-2cd6-4569-babc-7abb1c6b9630",
"metadata": {},
"outputs": [],
"source": [
"os.makedirs(logs_dir, exist_ok=True)\n",
"os.makedirs(ckpt_dir, exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "459e61e4",
"metadata": {},
"outputs": [],
"source": [
"# !pip install matplotlib==3.7.0 --force-reinstall # Reinstalling because I caught `AttributeError: 'FigureCanvasAgg' object has no attribute 'tostring_rgb'. Did you mean: 'tostring_argb'?`\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "783a90a0-1356-4216-a47b-fe1d80fcefb8",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "783a90a0-1356-4216-a47b-fe1d80fcefb8",
"outputId": "30504c3c-1ee6-46a5-d5d8-759bd31f4593"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/fvelikon/miniconda3/envs/ysda_speech_torch_26/lib/python3.11/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
" WeightNorm.apply(module, name, dim)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"HiFi-GAN: Removing weight norm.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"22207 14 08:16:27 INFO Epoch num: 0\n",
"22207 14 08:16:38 INFO Logging GT data\n",
"22207 14 08:16:49 INFO Logging 20 images\n",
"22207 14 08:16:50 INFO Logging 20 audios\n",
"22207 14 08:16:53 INFO Logging 20 texts\n",
"22207 14 08:16:53 INFO train : 1 loss 36.0241 elapsed 6.56 load 4.22\n",
"22207 14 08:16:53 INFO Running validation\n",
"/home/fvelikon/miniconda3/envs/ysda_speech_torch_26/lib/python3.11/site-packages/transformers/models/whisper/generation_whisper.py:573: FutureWarning: The input name `inputs` is deprecated. Please make sure to use `input_features` instead.\n",
" warnings.warn(\n",
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"22207 14 08:17:22 INFO Logging 20 images\n",
"22207 14 08:17:23 INFO Logging 20 audios\n",
"22207 14 08:17:23 INFO Logging 20 texts\n",
"22207 14 08:17:34 INFO val : 1 loss 35.74470138549805\n",
"22207 14 08:17:34 INFO Saving model state at step 1 to checkpoints/fp_step_00000001.pt\n",
"22207 14 08:17:35 INFO train : 2 loss 36.2633 elapsed 0.52 load 0.00\n",
"22207 14 08:17:36 INFO train : 3 loss 36.1810 elapsed 0.56 load 0.00\n",
"22207 14 08:17:37 INFO train : 4 loss 36.1064 elapsed 0.56 load 0.01\n",
"22207 14 08:17:37 INFO train : 5 loss 34.7805 elapsed 0.58 load 0.00\n",
"22207 14 08:17:38 INFO train : 6 loss 35.3339 elapsed 0.54 load 0.04\n",
"22207 14 08:17:38 INFO train : 7 loss 34.6046 elapsed 0.68 load 0.00\n",
"22207 14 08:17:39 INFO train : 8 loss 35.1483 elapsed 0.59 load 0.02\n",
"22207 14 08:17:40 INFO train : 9 loss 34.5151 elapsed 0.62 load 0.05\n",
"22207 14 08:17:40 INFO train : 10 loss 33.7697 elapsed 0.65 load 0.03\n",
"22207 14 08:17:41 INFO train : 11 loss 33.3248 elapsed 0.69 load 0.05\n",
"22207 14 08:17:42 INFO train : 12 loss 33.5310 elapsed 0.56 load 0.01\n",
"22207 14 08:17:43 INFO train : 13 loss 32.3785 elapsed 0.61 load 0.08\n",
"22207 14 08:17:43 INFO train : 14 loss 32.1704 elapsed 0.56 load 0.07\n",
"22207 14 08:17:44 INFO train : 15 loss 30.4854 elapsed 0.57 load 0.00\n",
"22207 14 08:17:45 INFO train : 16 loss 30.9662 elapsed 0.53 load 0.22\n",
"22207 14 08:17:45 INFO train : 17 loss 30.3923 elapsed 0.59 load 0.00\n",
"22207 14 08:17:46 INFO train : 18 loss 29.6566 elapsed 0.68 load 0.00\n",
"22207 14 08:17:47 INFO train : 19 loss 28.6302 elapsed 0.69 load 0.04\n",
"22207 14 08:17:48 INFO train : 20 loss 28.3878 elapsed 0.58 load 1.27\n",
"22207 14 08:17:49 INFO train : 21 loss 27.6924 elapsed 0.61 load 0.00\n",
"22207 14 08:17:50 INFO train : 22 loss 27.5262 elapsed 0.66 load 0.00\n",
"22207 14 08:17:50 INFO train : 23 loss 27.4874 elapsed 0.58 load 0.03\n",
"22207 14 08:17:52 INFO train : 24 loss 26.7642 elapsed 0.68 load 0.80\n",
"22207 14 08:17:53 INFO train : 25 loss 26.7050 elapsed 0.61 load 0.00\n",
"22207 14 08:17:53 INFO train : 26 loss 25.6365 elapsed 0.64 load 0.00\n",
"22207 14 08:17:54 INFO train : 27 loss 25.4432 elapsed 0.63 load 0.04\n",
"22207 14 08:17:55 INFO train : 28 loss 25.4728 elapsed 0.53 load 0.61\n",
"22207 14 08:17:56 INFO train : 29 loss 25.6827 elapsed 0.55 load 0.00\n",
"22207 14 08:17:56 INFO train : 30 loss 25.0224 elapsed 0.66 load 0.00\n",
"22207 14 08:17:57 INFO train : 31 loss 25.4071 elapsed 0.63 load 0.02\n",
"22207 14 08:17:59 INFO train : 32 loss 24.7555 elapsed 0.49 load 1.33\n",
"22207 14 08:18:00 INFO train : 33 loss 25.0480 elapsed 0.62 load 0.00\n",
"22207 14 08:18:00 INFO train : 34 loss 24.3856 elapsed 0.64 load 0.00\n",
"22207 14 08:18:01 INFO train : 35 loss 24.1730 elapsed 0.62 load 0.00\n",
"22207 14 08:18:03 INFO train : 36 loss 24.0276 elapsed 0.56 load 1.26\n",
"22207 14 08:18:03 INFO train : 37 loss 24.0225 elapsed 0.61 load 0.01\n",
"22207 14 08:18:04 INFO train : 38 loss 24.0606 elapsed 0.66 load 0.00\n",
"22207 14 08:18:05 INFO train : 39 loss 23.1130 elapsed 0.57 load 0.00\n",
"22207 14 08:18:07 INFO train : 40 loss 23.0313 elapsed 0.69 load 1.63\n",
"22207 14 08:18:08 INFO train : 41 loss 23.0459 elapsed 0.68 load 0.00\n",
"22207 14 08:18:08 INFO train : 42 loss 23.2232 elapsed 0.75 load 0.00\n",
"22207 14 08:18:09 INFO train : 43 loss 23.5154 elapsed 0.66 load 0.00\n",
"22207 14 08:18:10 INFO train : 44 loss 23.1601 elapsed 0.60 load 0.68\n",
"22207 14 08:18:11 INFO train : 45 loss 22.8810 elapsed 0.82 load 0.00\n",
"22207 14 08:18:12 INFO train : 46 loss 22.9930 elapsed 0.64 load 0.00\n",
"22207 14 08:18:13 INFO train : 47 loss 22.5086 elapsed 0.61 load 0.10\n",
"22207 14 08:18:14 INFO train : 48 loss 23.0560 elapsed 0.59 load 0.76\n",
"22207 14 08:18:15 INFO train : 49 loss 23.2530 elapsed 0.66 load 0.00\n",
"22207 14 08:18:15 INFO train : 50 loss 22.9687 elapsed 0.56 load 0.00\n",
"22207 14 08:18:16 INFO train : 51 loss 22.9546 elapsed 0.63 load 0.00\n",
"22207 14 08:18:18 INFO train : 52 loss 22.1351 elapsed 0.57 load 1.11\n",
"22207 14 08:18:18 INFO train : 53 loss 22.2968 elapsed 0.74 load 0.00\n",
"22207 14 08:18:19 INFO train : 54 loss 22.6244 elapsed 0.62 load 0.02\n",
"22207 14 08:18:20 INFO train : 55 loss 22.7245 elapsed 0.62 load 0.02\n",
"22207 14 08:18:21 INFO train : 56 loss 22.9756 elapsed 0.66 load 0.88\n",
"22207 14 08:18:22 INFO train : 57 loss 22.0094 elapsed 0.58 load 0.00\n",
"22207 14 08:18:22 INFO train : 58 loss 22.3222 elapsed 0.60 load 0.00\n",
"22207 14 08:18:23 INFO train : 59 loss 22.1019 elapsed 0.64 load 0.08\n",
"22207 14 08:18:25 INFO train : 60 loss 22.4231 elapsed 0.51 load 0.81\n",
"22207 14 08:18:25 INFO train : 61 loss 22.2954 elapsed 0.77 load 0.00\n",
"22207 14 08:18:26 INFO train : 62 loss 21.9066 elapsed 0.56 load 0.00\n",
"22207 14 08:18:27 INFO train : 63 loss 22.4433 elapsed 0.55 load 0.08\n",
"22207 14 08:18:28 INFO train : 64 loss 21.1412 elapsed 0.56 load 0.85\n",
"22207 14 08:18:29 INFO train : 65 loss 21.9028 elapsed 0.70 load 0.00\n",
"22207 14 08:18:29 INFO train : 66 loss 22.2544 elapsed 0.67 load 0.01\n",
"22207 14 08:18:30 INFO train : 67 loss 21.9992 elapsed 0.62 load 0.03\n",
"22207 14 08:18:31 INFO train : 68 loss 21.7414 elapsed 0.58 load 0.61\n",
"22207 14 08:18:32 INFO train : 69 loss 21.4878 elapsed 0.52 load 0.00\n",
"22207 14 08:18:33 INFO train : 70 loss 21.3512 elapsed 0.59 load 0.03\n",
"22207 14 08:18:33 INFO train : 71 loss 21.3372 elapsed 0.65 load 0.01\n",
"22207 14 08:18:35 INFO train : 72 loss 21.8348 elapsed 0.65 load 1.13\n",
"22207 14 08:18:36 INFO train : 73 loss 21.6747 elapsed 0.58 load 0.00\n",
"22207 14 08:18:36 INFO train : 74 loss 21.1853 elapsed 0.58 load 0.05\n",
"22207 14 08:18:37 INFO train : 75 loss 20.9362 elapsed 0.64 load 0.00\n",
"22207 14 08:18:38 INFO train : 76 loss 21.4265 elapsed 0.59 load 0.94\n",
"22207 14 08:18:39 INFO train : 77 loss 21.2650 elapsed 0.63 load 0.00\n",
"22207 14 08:18:40 INFO train : 78 loss 20.7817 elapsed 0.59 load 0.05\n",
"22207 14 08:18:41 INFO train : 79 loss 21.0191 elapsed 0.65 load 0.10\n",
"22207 14 08:18:42 INFO train : 80 loss 21.1474 elapsed 0.68 load 0.94\n",
"22207 14 08:18:43 INFO train : 81 loss 21.3123 elapsed 0.71 load 0.00\n",
"22207 14 08:18:44 INFO train : 82 loss 21.1903 elapsed 0.68 load 0.14\n",
"22207 14 08:18:44 INFO train : 83 loss 20.5951 elapsed 0.69 load 0.00\n",
"22207 14 08:18:46 INFO train : 84 loss 21.0148 elapsed 0.69 load 0.71\n",
"22207 14 08:18:47 INFO train : 85 loss 20.7752 elapsed 0.56 load 0.00\n",
"22207 14 08:18:47 INFO train : 86 loss 20.4521 elapsed 0.63 load 0.01\n",
"22207 14 08:18:48 INFO train : 87 loss 20.7022 elapsed 0.56 load 0.08\n",
"22207 14 08:18:49 INFO train : 88 loss 20.2241 elapsed 0.67 load 0.86\n",
"22207 14 08:18:50 INFO train : 89 loss 20.7298 elapsed 0.59 load 0.01\n",
"22207 14 08:18:51 INFO train : 90 loss 19.8008 elapsed 0.65 load 0.00\n",
"22207 14 08:18:51 INFO train : 91 loss 20.6139 elapsed 0.59 load 0.05\n",
"22207 14 08:18:53 INFO train : 92 loss 20.1077 elapsed 0.60 load 0.70\n",
"22207 14 08:18:53 INFO train : 93 loss 19.9990 elapsed 0.67 load 0.00\n",
"22207 14 08:18:54 INFO train : 94 loss 20.1665 elapsed 0.57 load 0.08\n",
"22207 14 08:18:55 INFO train : 95 loss 19.9834 elapsed 0.65 load 0.07\n",
"22207 14 08:18:56 INFO train : 96 loss 20.2983 elapsed 0.62 load 0.69\n",
"22207 14 08:18:57 INFO train : 97 loss 20.6095 elapsed 0.57 load 0.01\n",
"22207 14 08:18:57 INFO train : 98 loss 19.4115 elapsed 0.64 load 0.07\n",
"22207 14 08:18:58 INFO train : 99 loss 19.6714 elapsed 0.62 load 0.16\n",
"22207 14 08:18:59 INFO train : 100 loss 19.5679 elapsed 0.58 load 0.56\n",
"22207 14 08:19:00 INFO train : 101 loss 19.5044 elapsed 0.56 load 0.00\n",
"22207 14 08:19:01 INFO train : 102 loss 19.8637 elapsed 0.61 load 0.02\n",
"22207 14 08:19:01 INFO train : 103 loss 19.4409 elapsed 0.61 load 0.08\n",
"22207 14 08:19:03 INFO train : 104 loss 18.7309 elapsed 0.58 load 0.87\n",
"22207 14 08:19:04 INFO train : 105 loss 18.8129 elapsed 0.71 load 0.00\n",
"22207 14 08:19:04 INFO train : 106 loss 18.4664 elapsed 0.61 load 0.02\n",
"22207 14 08:19:05 INFO train : 107 loss 19.1890 elapsed 0.63 load 0.00\n",
"22207 14 08:19:07 INFO train : 108 loss 18.5611 elapsed 0.58 load 1.11\n",
"22207 14 08:19:07 INFO train : 109 loss 18.7299 elapsed 0.66 load 0.00\n",
"22207 14 08:19:08 INFO train : 110 loss 18.3969 elapsed 0.57 load 0.00\n",
"22207 14 08:19:09 INFO train : 111 loss 18.7440 elapsed 0.54 load 0.00\n",
"22207 14 08:19:10 INFO train : 112 loss 18.6599 elapsed 0.58 load 1.13\n",
"22207 14 08:19:11 INFO train : 113 loss 18.5145 elapsed 0.59 load 0.00\n",
"22207 14 08:19:11 INFO train : 114 loss 18.7467 elapsed 0.61 load 0.01\n",
"22207 14 08:19:12 INFO train : 115 loss 18.4347 elapsed 0.67 load 0.05\n",
"22207 14 08:19:14 INFO train : 116 loss 18.1365 elapsed 0.63 load 0.88\n",
"22207 14 08:19:14 INFO train : 117 loss 17.9152 elapsed 0.59 load 0.00\n",
"22207 14 08:19:15 INFO train : 118 loss 18.5020 elapsed 0.50 load 0.00\n",
"22207 14 08:19:16 INFO train : 119 loss 18.0918 elapsed 0.54 load 0.01\n",
"22207 14 08:19:17 INFO train : 120 loss 17.8202 elapsed 0.61 load 1.03\n",
"22207 14 08:19:18 INFO train : 121 loss 17.6451 elapsed 0.65 load 0.00\n",
"22207 14 08:19:19 INFO train : 122 loss 17.5315 elapsed 0.60 load 0.00\n",
"22207 14 08:19:19 INFO train : 123 loss 17.0624 elapsed 0.59 load 0.01\n",
"22207 14 08:19:21 INFO train : 124 loss 17.4648 elapsed 0.68 load 1.22\n",
"22207 14 08:19:22 INFO train : 125 loss 17.0470 elapsed 0.59 load 0.00\n",
"22207 14 08:19:22 INFO train : 126 loss 17.0399 elapsed 0.57 load 0.00\n",
"22207 14 08:19:23 INFO train : 127 loss 16.6768 elapsed 0.58 load 0.00\n",
"22207 14 08:19:24 INFO train : 128 loss 17.3173 elapsed 0.52 load 0.95\n",
"22207 14 08:19:25 INFO train : 129 loss 16.8984 elapsed 0.59 load 0.00\n",
"22207 14 08:19:26 INFO train : 130 loss 16.8815 elapsed 0.57 load 0.00\n",
"22207 14 08:19:26 INFO train : 131 loss 16.3856 elapsed 0.62 load 0.06\n",
"22207 14 08:19:28 INFO train : 132 loss 16.6376 elapsed 0.53 load 1.23\n",
"22207 14 08:19:29 INFO train : 133 loss 16.3637 elapsed 0.57 load 0.00\n",
"22207 14 08:19:29 INFO train : 134 loss 16.0925 elapsed 0.64 load 0.00\n",
"22207 14 08:19:30 INFO train : 135 loss 16.6959 elapsed 0.67 load 0.00\n",
"22207 14 08:19:31 INFO train : 136 loss 16.2599 elapsed 0.56 load 0.82\n",
"22207 14 08:19:32 INFO train : 137 loss 16.4281 elapsed 0.62 load 0.00\n",
"22207 14 08:19:33 INFO train : 138 loss 15.9807 elapsed 0.57 load 0.00\n",
"22207 14 08:19:33 INFO train : 139 loss 16.2213 elapsed 0.62 load 0.06\n",
"22207 14 08:19:35 INFO train : 140 loss 15.9185 elapsed 0.60 load 1.30\n",
"22207 14 08:19:36 INFO train : 141 loss 15.7430 elapsed 0.67 load 0.00\n",
"22207 14 08:19:36 INFO train : 142 loss 15.4415 elapsed 0.60 load 0.00\n",
"22207 14 08:19:37 INFO train : 143 loss 15.3660 elapsed 0.59 load 0.04\n",
"22207 14 08:19:39 INFO train : 144 loss 15.3749 elapsed 0.60 load 1.01\n",
"22207 14 08:19:39 INFO train : 145 loss 15.0429 elapsed 0.58 load 0.00\n",
"22207 14 08:19:40 INFO train : 146 loss 15.0908 elapsed 0.60 load 0.00\n",
"22207 14 08:19:41 INFO train : 147 loss 15.1621 elapsed 0.51 load 0.00\n",
"22207 14 08:19:42 INFO train : 148 loss 14.8761 elapsed 0.64 load 0.97\n",
"22207 14 08:19:43 INFO train : 149 loss 14.8379 elapsed 0.56 load 0.00\n",
"22207 14 08:19:43 INFO train : 150 loss 14.3978 elapsed 0.57 load 0.08\n",
"22207 14 08:19:44 INFO train : 151 loss 14.2945 elapsed 0.58 load 0.00\n",
"22207 14 08:19:46 INFO train : 152 loss 14.5390 elapsed 0.56 load 0.85\n",
"22207 14 08:19:46 INFO train : 153 loss 14.5399 elapsed 0.61 load 0.00\n",
"22207 14 08:19:47 INFO train : 154 loss 13.9890 elapsed 0.70 load 0.02\n",
"22207 14 08:19:48 INFO train : 155 loss 14.1086 elapsed 0.69 load 0.00\n",
"22207 14 08:19:49 INFO train : 156 loss 13.6583 elapsed 0.67 load 0.94\n",
"22207 14 08:19:50 INFO train : 157 loss 14.2121 elapsed 0.66 load 0.07\n",
"22207 14 08:19:51 INFO train : 158 loss 13.5189 elapsed 0.63 load 0.11\n",
"22207 14 08:19:51 INFO train : 159 loss 13.2650 elapsed 0.60 load 0.00\n",
"22207 14 08:19:53 INFO train : 160 loss 13.3148 elapsed 0.53 load 0.84\n",
"22207 14 08:19:53 INFO train : 161 loss 13.6663 elapsed 0.64 load 0.09\n",
"22207 14 08:19:54 INFO train : 162 loss 13.1872 elapsed 0.65 load 0.01\n",
"22207 14 08:19:55 INFO train : 163 loss 12.9850 elapsed 0.58 load 0.00\n",
"22207 14 08:19:56 INFO train : 164 loss 13.0719 elapsed 0.62 load 0.77\n",
"22207 14 08:19:57 INFO train : 165 loss 12.7011 elapsed 0.66 load 0.35\n",
"22207 14 08:19:58 INFO train : 166 loss 12.3523 elapsed 0.64 load 0.00\n",
"22207 14 08:19:59 INFO train : 167 loss 12.9462 elapsed 0.55 load 0.00\n",
"22207 14 08:20:00 INFO train : 168 loss 12.3861 elapsed 0.61 load 0.43\n",
"22207 14 08:20:01 INFO train : 169 loss 12.2773 elapsed 0.62 load 1.07\n",
"22207 14 08:20:02 INFO train : 170 loss 12.4663 elapsed 0.64 load 0.00\n",
"22207 14 08:20:03 INFO train : 171 loss 12.0153 elapsed 0.67 load 0.03\n",
"22207 14 08:20:04 INFO train : 172 loss 12.4697 elapsed 0.61 load 0.26\n",
"22207 14 08:20:05 INFO train : 173 loss 12.3983 elapsed 0.56 load 0.82\n",
"22207 14 08:20:06 INFO train : 174 loss 11.6984 elapsed 0.76 load 0.00\n",
"22207 14 08:20:06 INFO train : 175 loss 11.7261 elapsed 0.65 load 0.00\n",
"22207 14 08:20:07 INFO train : 176 loss 11.7527 elapsed 0.64 load 0.04\n",
"22207 14 08:20:09 INFO train : 177 loss 11.6695 elapsed 0.59 load 0.95\n",
"22207 14 08:20:09 INFO train : 178 loss 11.2559 elapsed 0.63 load 0.00\n",
"22207 14 08:20:10 INFO train : 179 loss 11.3170 elapsed 0.66 load 0.00\n",
"22207 14 08:20:11 INFO train : 180 loss 11.4511 elapsed 0.58 load 0.32\n",
"22207 14 08:20:12 INFO train : 181 loss 10.9842 elapsed 0.59 load 0.56\n",
"22207 14 08:20:13 INFO train : 182 loss 10.9972 elapsed 0.62 load 0.00\n",
"22207 14 08:20:13 INFO train : 183 loss 10.5021 elapsed 0.68 load 0.00\n",
"22207 14 08:20:15 INFO train : 184 loss 10.7435 elapsed 0.66 load 0.94\n",
"22207 14 08:20:16 INFO train : 185 loss 10.8574 elapsed 0.76 load 0.07\n",
"22207 14 08:20:16 INFO train : 186 loss 10.2718 elapsed 0.58 load 0.00\n",
"22207 14 08:20:17 INFO train : 187 loss 10.3473 elapsed 0.56 load 0.00\n",
"22207 14 08:20:19 INFO train : 188 loss 10.2983 elapsed 0.65 load 1.13\n",
"22207 14 08:20:20 INFO train : 189 loss 10.2555 elapsed 0.57 load 0.05\n",
"22207 14 08:20:20 INFO train : 190 loss 10.0303 elapsed 0.67 load 0.00\n",
"22207 14 08:20:21 INFO train : 191 loss 9.6676 elapsed 0.64 load 0.00\n",
"22207 14 08:20:22 INFO train : 192 loss 9.9005 elapsed 0.61 load 0.78\n",
"22207 14 08:20:23 INFO train : 193 loss 9.6382 elapsed 0.65 load 0.27\n",
"22207 14 08:20:24 INFO train : 194 loss 9.4035 elapsed 0.51 load 0.00\n",
"22207 14 08:20:25 INFO train : 195 loss 9.5109 elapsed 0.70 load 0.00\n",
"22207 14 08:20:26 INFO train : 196 loss 9.5816 elapsed 0.65 load 0.63\n",
"22207 14 08:20:27 INFO train : 197 loss 9.7412 elapsed 0.61 load 0.17\n",
"22207 14 08:20:27 INFO train : 198 loss 9.4341 elapsed 0.51 load 0.00\n",
"22207 14 08:20:28 INFO train : 199 loss 8.8596 elapsed 0.57 load 0.00\n",
"22207 14 08:20:30 INFO train : 200 loss 9.0540 elapsed 0.71 load 1.25\n",
"22207 14 08:20:30 INFO train : 201 loss 8.8396 elapsed 0.61 load 0.01\n",
"22207 14 08:20:31 INFO train : 202 loss 8.9425 elapsed 0.59 load 0.00\n",
"22207 14 08:20:32 INFO train : 203 loss 8.6131 elapsed 0.67 load 0.00\n",
"22207 14 08:20:33 INFO train : 204 loss 8.5502 elapsed 0.60 load 0.75\n",
"22207 14 08:20:34 INFO train : 205 loss 8.3027 elapsed 0.58 load 0.09\n",
"22207 14 08:20:35 INFO train : 206 loss 8.6384 elapsed 0.61 load 0.00\n",
"22207 14 08:20:35 INFO train : 207 loss 8.4333 elapsed 0.66 load 0.00\n",
"22207 14 08:20:37 INFO train : 208 loss 8.3081 elapsed 0.62 load 0.98\n",
"22207 14 08:20:37 INFO train : 209 loss 8.0380 elapsed 0.62 load 0.00\n",
"22207 14 08:20:38 INFO train : 210 loss 8.0269 elapsed 0.69 load 0.00\n",
"22207 14 08:20:39 INFO train : 211 loss 8.1108 elapsed 0.61 load 0.00\n",
"22207 14 08:20:40 INFO train : 212 loss 7.8924 elapsed 0.58 load 1.09\n",
"22207 14 08:20:41 INFO train : 213 loss 8.0007 elapsed 0.59 load 0.00\n",
"22207 14 08:20:42 INFO train : 214 loss 7.5347 elapsed 0.65 load 0.00\n",
"22207 14 08:20:42 INFO train : 215 loss 7.4523 elapsed 0.61 load 0.00\n",
"22207 14 08:20:44 INFO train : 216 loss 7.3190 elapsed 0.62 load 1.01\n",
"22207 14 08:20:45 INFO train : 217 loss 7.7040 elapsed 0.64 load 0.02\n",
"22207 14 08:20:45 INFO train : 218 loss 7.2666 elapsed 0.68 load 0.00\n",
"22207 14 08:20:46 INFO train : 219 loss 7.2526 elapsed 0.64 load 0.00\n",
"22207 14 08:20:47 INFO train : 220 loss 6.9675 elapsed 0.59 load 0.43\n",
"22207 14 08:20:48 INFO train : 221 loss 6.9837 elapsed 0.52 load 0.35\n",
"22207 14 08:20:49 INFO train : 222 loss 6.9064 elapsed 0.67 load 0.00\n",
"22207 14 08:20:49 INFO train : 223 loss 6.9298 elapsed 0.64 load 0.00\n",
"22207 14 08:20:51 INFO train : 224 loss 7.0518 elapsed 0.62 load 0.75\n",
"22207 14 08:20:51 INFO train : 225 loss 6.8705 elapsed 0.62 load 0.01\n",
"22207 14 08:20:52 INFO train : 226 loss 6.7047 elapsed 0.56 load 0.00\n",
"22207 14 08:20:53 INFO train : 227 loss 6.3839 elapsed 0.59 load 0.00\n",
"22207 14 08:20:54 INFO train : 228 loss 6.0777 elapsed 0.54 load 0.91\n",
"22207 14 08:20:55 INFO train : 229 loss 6.2038 elapsed 0.67 load 0.03\n",
"22207 14 08:20:55 INFO train : 230 loss 6.1956 elapsed 0.62 load 0.00\n",
"22207 14 08:20:56 INFO train : 231 loss 6.1045 elapsed 0.61 load 0.00\n",
"22207 14 08:20:58 INFO train : 232 loss 6.3264 elapsed 0.60 load 1.12\n",
"22207 14 08:20:58 INFO train : 233 loss 6.0840 elapsed 0.59 load 0.05\n",
"22207 14 08:20:59 INFO train : 234 loss 5.8884 elapsed 0.57 load 0.01\n",
"22207 14 08:21:00 INFO train : 235 loss 5.7511 elapsed 0.64 load 0.00\n",
"22207 14 08:21:02 INFO train : 236 loss 5.7499 elapsed 0.67 load 1.29\n",
"22207 14 08:21:02 INFO train : 237 loss 5.6895 elapsed 0.56 load 0.00\n",
"22207 14 08:21:03 INFO train : 238 loss 5.3323 elapsed 0.59 load 0.00\n",
"22207 14 08:21:04 INFO train : 239 loss 5.3580 elapsed 0.56 load 0.00\n",
"22207 14 08:21:05 INFO train : 240 loss 5.4388 elapsed 0.60 load 1.23\n",
"22207 14 08:21:06 INFO train : 241 loss 5.3221 elapsed 0.56 load 0.00\n",
"22207 14 08:21:07 INFO train : 242 loss 5.1095 elapsed 0.49 load 0.00\n",
"22207 14 08:21:07 INFO train : 243 loss 5.0861 elapsed 0.58 load 0.00\n",
"22207 14 08:21:09 INFO train : 244 loss 5.1794 elapsed 0.58 load 1.41\n",
"22207 14 08:21:10 INFO train : 245 loss 4.9728 elapsed 0.59 load 0.00\n",
"22207 14 08:21:10 INFO train : 246 loss 4.9037 elapsed 0.57 load 0.00\n",
"22207 14 08:21:11 INFO train : 247 loss 4.8437 elapsed 0.60 load 0.00\n",
"22207 14 08:21:13 INFO train : 248 loss 4.6788 elapsed 0.56 load 1.25\n",
"22207 14 08:21:13 INFO train : 249 loss 4.5304 elapsed 0.59 load 0.00\n",
"22207 14 08:21:14 INFO train : 250 loss 4.8988 elapsed 0.64 load 0.01\n",
"22207 14 08:21:15 INFO train : 251 loss 4.5948 elapsed 0.66 load 0.00\n",
"22207 14 08:21:16 INFO train : 252 loss 4.6349 elapsed 0.51 load 1.06\n",
"22207 14 08:21:17 INFO train : 253 loss 4.4576 elapsed 0.66 load 0.00\n",
"22207 14 08:21:18 INFO train : 254 loss 4.6730 elapsed 0.52 load 0.00\n",
"22207 14 08:21:18 INFO train : 255 loss 4.6282 elapsed 0.64 load 0.00\n",
"22207 14 08:21:20 INFO train : 256 loss 4.2077 elapsed 0.61 load 1.34\n",
"22207 14 08:21:21 INFO train : 257 loss 4.2210 elapsed 0.60 load 0.00\n",
"22207 14 08:21:22 INFO train : 258 loss 4.2456 elapsed 0.66 load 0.00\n",
"22207 14 08:21:22 INFO train : 259 loss 4.4098 elapsed 0.61 load 0.00\n",
"22207 14 08:21:24 INFO train : 260 loss 4.0325 elapsed 0.61 load 0.70\n",
"22207 14 08:21:24 INFO train : 261 loss 3.9153 elapsed 0.60 load 0.00\n",
"22207 14 08:21:25 INFO train : 262 loss 3.8814 elapsed 0.62 load 0.00\n",
"22207 14 08:21:25 INFO train : 263 loss 4.0367 elapsed 0.63 load 0.00\n",
"22207 14 08:21:27 INFO train : 264 loss 3.8292 elapsed 0.59 load 1.21\n",
"22207 14 08:21:28 INFO train : 265 loss 3.8438 elapsed 0.58 load 0.00\n",
"22207 14 08:21:29 INFO train : 266 loss 3.6915 elapsed 0.59 load 0.00\n",
"22207 14 08:21:29 INFO train : 267 loss 3.5617 elapsed 0.56 load 0.00\n",
"22207 14 08:21:31 INFO train : 268 loss 3.7210 elapsed 0.66 load 0.94\n",
"22207 14 08:21:31 INFO train : 269 loss 3.5817 elapsed 0.54 load 0.00\n",
"22207 14 08:21:32 INFO train : 270 loss 3.5748 elapsed 0.65 load 0.00\n",
"22207 14 08:21:33 INFO train : 271 loss 3.4805 elapsed 0.68 load 0.00\n",
"22207 14 08:21:34 INFO train : 272 loss 3.3358 elapsed 0.56 load 0.93\n",
"22207 14 08:21:35 INFO train : 273 loss 3.5552 elapsed 0.54 load 0.00\n",
"22207 14 08:21:35 INFO train : 274 loss 3.3001 elapsed 0.62 load 0.00\n",
"22207 14 08:21:36 INFO train : 275 loss 3.3005 elapsed 0.70 load 0.00\n",
"22207 14 08:21:38 INFO train : 276 loss 3.1504 elapsed 0.63 load 1.04\n",
"22207 14 08:21:39 INFO train : 277 loss 3.2588 elapsed 0.65 load 0.00\n",
"22207 14 08:21:39 INFO train : 278 loss 3.2186 elapsed 0.61 load 0.00\n",
"22207 14 08:21:40 INFO train : 279 loss 3.2044 elapsed 0.69 load 0.00\n",
"22207 14 08:21:41 INFO train : 280 loss 3.1206 elapsed 0.55 load 0.67\n",
"22207 14 08:21:42 INFO train : 281 loss 3.1963 elapsed 0.64 load 0.00\n",
"22207 14 08:21:42 INFO train : 282 loss 3.0917 elapsed 0.60 load 0.00\n",
"22207 14 08:21:43 INFO train : 283 loss 2.9651 elapsed 0.64 load 0.01\n",
"22207 14 08:21:45 INFO train : 284 loss 2.8525 elapsed 0.64 load 1.02\n",
"22207 14 08:21:45 INFO train : 285 loss 2.8388 elapsed 0.62 load 0.00\n",
"22207 14 08:21:46 INFO train : 286 loss 2.7903 elapsed 0.59 load 0.00\n",
"22207 14 08:21:47 INFO train : 287 loss 2.9383 elapsed 0.60 load 0.00\n",
"22207 14 08:21:49 INFO train : 288 loss 2.7986 elapsed 0.59 load 1.26\n",
"22207 14 08:21:49 INFO train : 289 loss 2.7869 elapsed 0.62 load 0.00\n",
"22207 14 08:21:50 INFO train : 290 loss 2.6676 elapsed 0.54 load 0.00\n",
"22207 14 08:21:51 INFO train : 291 loss 2.8586 elapsed 0.64 load 0.00\n",
"22207 14 08:21:52 INFO train : 292 loss 2.5959 elapsed 0.55 load 1.28\n",
"22207 14 08:21:53 INFO train : 293 loss 2.6131 elapsed 0.58 load 0.00\n",
"22207 14 08:21:54 INFO train : 294 loss 2.5901 elapsed 0.54 load 0.00\n",
"22207 14 08:21:54 INFO train : 295 loss 2.6099 elapsed 0.64 load 0.00\n",
"22207 14 08:21:56 INFO train : 296 loss 2.4711 elapsed 0.58 load 1.02\n",
"22207 14 08:21:56 INFO train : 297 loss 2.4630 elapsed 0.63 load 0.00\n",
"22207 14 08:21:57 INFO train : 298 loss 2.4641 elapsed 0.59 load 0.01\n",
"22207 14 08:21:58 INFO train : 299 loss 2.5106 elapsed 0.56 load 0.00\n",
"22207 14 08:22:00 INFO train : 300 loss 2.3678 elapsed 0.57 load 1.36\n",
"22207 14 08:22:00 INFO train : 301 loss 2.4410 elapsed 0.64 load 0.00\n",
"22207 14 08:22:01 INFO train : 302 loss 2.3316 elapsed 0.59 load 0.02\n",
"22207 14 08:22:02 INFO train : 303 loss 2.3807 elapsed 0.66 load 0.05\n",
"22207 14 08:22:03 INFO train : 304 loss 2.2976 elapsed 0.58 load 0.47\n",
"22207 14 08:22:03 INFO train : 305 loss 2.3159 elapsed 0.63 load 0.00\n",
"22207 14 08:22:04 INFO train : 306 loss 2.2835 elapsed 0.59 load 0.00\n",
"22207 14 08:22:05 INFO train : 307 loss 2.2794 elapsed 0.64 load 0.00\n",
"22207 14 08:22:06 INFO train : 308 loss 2.2200 elapsed 0.58 load 0.77\n",
"22207 14 08:22:07 INFO train : 309 loss 2.1265 elapsed 0.71 load 0.00\n",
"22207 14 08:22:07 INFO train : 310 loss 2.1235 elapsed 0.59 load 0.01\n",
"22207 14 08:22:08 INFO train : 311 loss 2.1436 elapsed 0.63 load 0.00\n",
"22207 14 08:22:10 INFO train : 312 loss 2.1904 elapsed 0.64 load 1.27\n",
"22207 14 08:22:11 INFO train : 313 loss 2.0849 elapsed 0.71 load 0.00\n",
"22207 14 08:22:11 INFO train : 314 loss 2.1248 elapsed 0.61 load 0.00\n",
"22207 14 08:22:12 INFO train : 315 loss 2.0216 elapsed 0.63 load 0.00\n",
"22207 14 08:22:13 INFO train : 316 loss 2.0545 elapsed 0.59 load 0.80\n",
"22207 14 08:22:14 INFO train : 317 loss 2.0627 elapsed 0.58 load 0.00\n",
"22207 14 08:22:15 INFO train : 318 loss 2.0212 elapsed 0.64 load 0.00\n",
"22207 14 08:22:15 INFO train : 319 loss 2.0764 elapsed 0.52 load 0.00\n",
"22207 14 08:22:17 INFO train : 320 loss 1.8999 elapsed 0.62 load 0.99\n",
"22207 14 08:22:18 INFO train : 321 loss 1.9690 elapsed 0.69 load 0.00\n",
"22207 14 08:22:18 INFO train : 322 loss 1.9359 elapsed 0.55 load 0.00\n",
"22207 14 08:22:19 INFO train : 323 loss 1.9332 elapsed 0.64 load 0.00\n",
"22207 14 08:22:20 INFO train : 324 loss 1.9043 elapsed 0.61 load 0.89\n",
"22207 14 08:22:21 INFO train : 325 loss 1.8347 elapsed 0.57 load 0.00\n",
"22207 14 08:22:21 INFO train : 326 loss 1.8550 elapsed 0.58 load 0.00\n",
"22207 14 08:22:22 INFO train : 327 loss 1.9003 elapsed 0.63 load 0.00\n",
"22207 14 08:22:24 INFO train : 328 loss 1.8247 elapsed 0.60 load 0.97\n",
"22207 14 08:22:24 INFO train : 329 loss 1.8966 elapsed 0.57 load 0.00\n",
"22207 14 08:22:25 INFO train : 330 loss 1.7998 elapsed 0.59 load 0.00\n",
"22207 14 08:22:26 INFO train : 331 loss 1.9074 elapsed 0.64 load 0.00\n",
"22207 14 08:22:27 INFO train : 332 loss 1.7783 elapsed 0.58 load 0.77\n",
"22207 14 08:22:28 INFO train : 333 loss 1.7628 elapsed 0.66 load 0.00\n",
"22207 14 08:22:28 INFO train : 334 loss 1.7604 elapsed 0.65 load 0.00\n",
"22207 14 08:22:29 INFO train : 335 loss 1.7355 elapsed 0.64 load 0.00\n",
"22207 14 08:22:30 INFO train : 336 loss 1.7889 elapsed 0.60 load 0.56\n",
"22207 14 08:22:31 INFO train : 337 loss 1.6782 elapsed 0.61 load 0.00\n",
"22207 14 08:22:32 INFO train : 338 loss 1.6932 elapsed 0.66 load 0.00\n",
"22207 14 08:22:32 INFO train : 339 loss 1.6595 elapsed 0.65 load 0.00\n",
"22207 14 08:22:34 INFO train : 340 loss 1.6971 elapsed 0.62 load 0.67\n",
"22207 14 08:22:34 INFO train : 341 loss 1.6927 elapsed 0.64 load 0.00\n",
"22207 14 08:22:35 INFO train : 342 loss 1.6375 elapsed 0.53 load 0.00\n",
"22207 14 08:22:35 INFO train : 343 loss 1.6120 elapsed 0.61 load 0.00\n",
"22207 14 08:22:37 INFO train : 344 loss 1.6238 elapsed 0.64 load 0.69\n",
"22207 14 08:22:37 INFO train : 345 loss 1.5398 elapsed 0.70 load 0.00\n",
"22207 14 08:22:38 INFO train : 346 loss 1.5999 elapsed 0.60 load 0.00\n",
"22207 14 08:22:39 INFO train : 347 loss 1.6024 elapsed 0.59 load 0.00\n",
"22207 14 08:22:40 INFO train : 348 loss 1.6063 elapsed 0.64 load 1.10\n",
"22207 14 08:22:41 INFO train : 349 loss 1.5539 elapsed 0.63 load 0.00\n",
"22207 14 08:22:42 INFO train : 350 loss 1.5072 elapsed 0.53 load 0.00\n",
"22207 14 08:22:42 INFO train : 351 loss 1.5638 elapsed 0.61 load 0.00\n",
"22207 14 08:22:44 INFO train : 352 loss 1.5058 elapsed 0.66 load 0.88\n",
"22207 14 08:22:44 INFO train : 353 loss 1.4804 elapsed 0.62 load 0.00\n",
"22207 14 08:22:45 INFO train : 354 loss 1.5128 elapsed 0.63 load 0.00\n",
"22207 14 08:22:46 INFO train : 355 loss 1.4761 elapsed 0.51 load 0.00\n",
"22207 14 08:22:47 INFO train : 356 loss 1.4732 elapsed 0.66 load 1.12\n",
"22207 14 08:22:48 INFO train : 357 loss 1.5119 elapsed 0.59 load 0.00\n",
"22207 14 08:22:49 INFO train : 358 loss 1.4250 elapsed 0.58 load 0.00\n",
"22207 14 08:22:49 INFO train : 359 loss 1.4918 elapsed 0.61 load 0.00\n",
"22207 14 08:22:51 INFO train : 360 loss 1.4684 elapsed 0.61 load 0.90\n",
"22207 14 08:22:52 INFO train : 361 loss 1.3871 elapsed 0.60 load 0.00\n",
"22207 14 08:22:52 INFO train : 362 loss 1.4545 elapsed 0.63 load 0.00\n",
"22207 14 08:22:53 INFO train : 363 loss 1.4360 elapsed 0.59 load 0.00\n",
"22207 14 08:22:54 INFO train : 364 loss 1.4029 elapsed 0.57 load 0.98\n",
"22207 14 08:22:55 INFO train : 365 loss 1.3538 elapsed 0.57 load 0.00\n",
"22207 14 08:22:56 INFO train : 366 loss 1.4473 elapsed 0.76 load 0.00\n",
"22207 14 08:22:56 INFO train : 367 loss 1.3410 elapsed 0.53 load 0.00\n",
"22207 14 08:22:58 INFO train : 368 loss 1.4554 elapsed 0.59 load 1.17\n",
"22207 14 08:22:59 INFO train : 369 loss 1.3949 elapsed 0.55 load 0.00\n",
"22207 14 08:22:59 INFO train : 370 loss 1.3948 elapsed 0.66 load 0.00\n",
"22207 14 08:23:00 INFO train : 371 loss 1.3659 elapsed 0.59 load 0.00\n",
"22207 14 08:23:02 INFO train : 372 loss 1.3274 elapsed 0.59 load 1.25\n",
"22207 14 08:23:02 INFO train : 373 loss 1.3809 elapsed 0.64 load 0.00\n",
"22207 14 08:23:03 INFO train : 374 loss 1.3018 elapsed 0.58 load 0.00\n",
"22207 14 08:23:04 INFO train : 375 loss 1.3584 elapsed 0.67 load 0.00\n",
"22207 14 08:23:05 INFO train : 376 loss 1.3252 elapsed 0.61 load 0.65\n",
"22207 14 08:23:06 INFO train : 377 loss 1.3636 elapsed 0.60 load 0.00\n",
"22207 14 08:23:06 INFO train : 378 loss 1.3110 elapsed 0.61 load 0.00\n",
"22207 14 08:23:07 INFO train : 379 loss 1.4175 elapsed 0.57 load 0.00\n",
"22207 14 08:23:08 INFO train : 380 loss 1.4160 elapsed 0.65 load 0.95\n",
"22207 14 08:23:09 INFO train : 381 loss 1.3344 elapsed 0.68 load 0.00\n",
"22207 14 08:23:10 INFO train : 382 loss 1.3532 elapsed 0.61 load 0.03\n",
"22207 14 08:23:10 INFO train : 383 loss 1.2975 elapsed 0.59 load 0.00\n",
"22207 14 08:23:12 INFO train : 384 loss 1.2769 elapsed 0.67 load 0.93\n",
"22207 14 08:23:13 INFO train : 385 loss 1.3690 elapsed 0.53 load 0.00\n",
"22207 14 08:23:13 INFO train : 386 loss 1.2630 elapsed 0.56 load 0.00\n",
"22207 14 08:23:14 INFO train : 387 loss 1.2670 elapsed 0.57 load 0.00\n",
"22207 14 08:23:15 INFO train : 388 loss 1.2550 elapsed 0.59 load 0.80\n",
"22207 14 08:23:16 INFO train : 389 loss 1.2398 elapsed 0.63 load 0.00\n",
"22207 14 08:23:17 INFO train : 390 loss 1.2436 elapsed 0.71 load 0.00\n",
"22207 14 08:23:17 INFO train : 391 loss 1.2499 elapsed 0.65 load 0.00\n",
"22207 14 08:23:19 INFO train : 392 loss 1.2803 elapsed 0.67 load 0.68\n",
"22207 14 08:23:19 INFO train : 393 loss 1.3408 elapsed 0.60 load 0.04\n",
"22207 14 08:23:20 INFO train : 394 loss 1.2825 elapsed 0.62 load 0.00\n",
"22207 14 08:23:21 INFO train : 395 loss 1.2824 elapsed 0.62 load 0.00\n",
"22207 14 08:23:21 INFO train : 396 loss 1.2174 elapsed 0.52 load 0.24\n",
"22207 14 08:23:22 INFO train : 397 loss 1.2786 elapsed 0.51 load 0.00\n",
"22207 14 08:23:23 INFO train : 398 loss 1.2492 elapsed 0.51 load 0.00\n",
"22207 14 08:23:23 INFO train : 399 loss 1.2092 elapsed 0.46 load 0.00\n",
"22207 14 08:23:23 INFO train : 400 loss 1.2320 elapsed 0.49 load 0.00\n",
"22207 14 08:23:24 INFO train : 401 loss 1.2345 elapsed 0.14 load 0.00\n",
"22207 14 08:23:24 INFO Epoch num: 1\n",
"22207 14 08:23:28 INFO train : 402 loss 1.2245 elapsed 0.61 load 3.87\n",
"22207 14 08:23:29 INFO train : 403 loss 1.1733 elapsed 0.54 load 0.00\n",
"22207 14 08:23:29 INFO train : 404 loss 1.2239 elapsed 0.65 load 0.00\n",
"22207 14 08:23:30 INFO train : 405 loss 1.2062 elapsed 0.64 load 0.04\n",
"22207 14 08:23:32 INFO train : 406 loss 1.2420 elapsed 0.62 load 0.84\n",
"22207 14 08:23:32 INFO train : 407 loss 1.1638 elapsed 0.63 load 0.00\n",
"22207 14 08:23:33 INFO train : 408 loss 1.2203 elapsed 0.58 load 0.00\n",
"22207 14 08:23:34 INFO train : 409 loss 1.2694 elapsed 0.66 load 0.00\n",
"22207 14 08:23:35 INFO train : 410 loss 1.2219 elapsed 0.62 load 0.59\n",
"22207 14 08:23:35 INFO train : 411 loss 1.1950 elapsed 0.60 load 0.06\n",
"22207 14 08:23:36 INFO train : 412 loss 1.2024 elapsed 0.57 load 0.01\n",
"22207 14 08:23:37 INFO train : 413 loss 1.1771 elapsed 0.53 load 0.00\n",
"22207 14 08:23:38 INFO train : 414 loss 1.1902 elapsed 0.58 load 1.03\n",
"22207 14 08:23:39 INFO train : 415 loss 1.1348 elapsed 0.62 load 0.00\n",
"22207 14 08:23:40 INFO train : 416 loss 1.1549 elapsed 0.57 load 0.04\n",
"22207 14 08:23:40 INFO train : 417 loss 1.1566 elapsed 0.60 load 0.00\n",
"22207 14 08:23:42 INFO train : 418 loss 1.1514 elapsed 0.51 load 1.09\n",
"22207 14 08:23:42 INFO train : 419 loss 1.1518 elapsed 0.56 load 0.00\n",
"22207 14 08:23:43 INFO train : 420 loss 1.1778 elapsed 0.65 load 0.01\n",
"22207 14 08:23:44 INFO train : 421 loss 1.1873 elapsed 0.66 load 0.04\n",
"22207 14 08:23:46 INFO train : 422 loss 1.1877 elapsed 0.72 load 1.12\n",
"22207 14 08:23:46 INFO train : 423 loss 1.0982 elapsed 0.58 load 0.00\n",
"22207 14 08:23:47 INFO train : 424 loss 1.2347 elapsed 0.56 load 0.01\n",
"22207 14 08:23:48 INFO train : 425 loss 1.1745 elapsed 0.70 load 0.01\n",
"22207 14 08:23:49 INFO train : 426 loss 1.1471 elapsed 0.56 load 0.83\n",
"22207 14 08:23:50 INFO train : 427 loss 1.1560 elapsed 0.56 load 0.00\n",
"22207 14 08:23:50 INFO train : 428 loss 1.2071 elapsed 0.67 load 0.03\n",
"22207 14 08:23:51 INFO train : 429 loss 1.1904 elapsed 0.57 load 0.00\n",
"22207 14 08:23:52 INFO train : 430 loss 1.1803 elapsed 0.58 load 0.87\n",
"22207 14 08:23:53 INFO train : 431 loss 1.1621 elapsed 0.56 load 0.00\n",
"22207 14 08:23:54 INFO train : 432 loss 1.2150 elapsed 0.54 load 0.20\n",
"22207 14 08:23:54 INFO train : 433 loss 1.1450 elapsed 0.67 load 0.00\n",
"22207 14 08:23:56 INFO train : 434 loss 1.1586 elapsed 0.60 load 0.74\n",
"22207 14 08:23:56 INFO train : 435 loss 1.1628 elapsed 0.58 load 0.03\n",
"22207 14 08:23:57 INFO train : 436 loss 1.1077 elapsed 0.63 load 0.15\n",
"22207 14 08:23:58 INFO train : 437 loss 1.1413 elapsed 0.56 load 0.00\n",
"22207 14 08:23:59 INFO train : 438 loss 1.0895 elapsed 0.64 load 0.67\n",
"22207 14 08:24:00 INFO train : 439 loss 1.1652 elapsed 0.64 load 0.00\n",
"22207 14 08:24:01 INFO train : 440 loss 1.1567 elapsed 0.53 load 0.30\n",
"22207 14 08:24:01 INFO train : 441 loss 1.1542 elapsed 0.68 load 0.00\n",
"22207 14 08:24:03 INFO train : 442 loss 1.0980 elapsed 0.58 load 0.66\n",
"22207 14 08:24:03 INFO train : 443 loss 1.1494 elapsed 0.66 load 0.09\n",
"22207 14 08:24:05 INFO train : 444 loss 1.1298 elapsed 0.67 load 0.95\n",
"22207 14 08:24:06 INFO train : 445 loss 1.2080 elapsed 0.60 load 0.00\n",
"22207 14 08:24:06 INFO train : 446 loss 1.0579 elapsed 0.60 load 0.01\n",
"22207 14 08:24:07 INFO train : 447 loss 1.0997 elapsed 0.60 load 0.03\n",
"22207 14 08:24:09 INFO train : 448 loss 1.1046 elapsed 0.63 load 0.99\n",
"22207 14 08:24:09 INFO train : 449 loss 1.0658 elapsed 0.64 load 0.00\n",
"22207 14 08:24:10 INFO train : 450 loss 1.1513 elapsed 0.62 load 0.05\n",
"22207 14 08:24:11 INFO train : 451 loss 1.1315 elapsed 0.60 load 0.29\n",
"22207 14 08:24:13 INFO train : 452 loss 1.0923 elapsed 0.68 load 1.24\n",
"22207 14 08:24:13 INFO train : 453 loss 1.1237 elapsed 0.62 load 0.00\n",
"22207 14 08:24:14 INFO train : 454 loss 1.1008 elapsed 0.63 load 0.03\n",
"22207 14 08:24:15 INFO train : 455 loss 1.1064 elapsed 0.62 load 0.05\n",
"22207 14 08:24:16 INFO train : 456 loss 1.0808 elapsed 0.63 load 0.94\n",
"22207 14 08:24:17 INFO train : 457 loss 1.1213 elapsed 0.63 load 0.00\n",
"22207 14 08:24:18 INFO train : 458 loss 1.0642 elapsed 0.61 load 0.08\n",
"22207 14 08:24:18 INFO train : 459 loss 1.0861 elapsed 0.67 load 0.00\n",
"22207 14 08:24:20 INFO train : 460 loss 1.0630 elapsed 0.66 load 0.83\n",
"22207 14 08:24:21 INFO train : 461 loss 1.1024 elapsed 0.60 load 0.00\n",
"22207 14 08:24:21 INFO train : 462 loss 1.1569 elapsed 0.63 load 0.06\n",
"22207 14 08:24:22 INFO train : 463 loss 1.1344 elapsed 0.69 load 0.00\n",
"22207 14 08:24:23 INFO train : 464 loss 1.1185 elapsed 0.62 load 0.76\n",
"22207 14 08:24:24 INFO train : 465 loss 1.1201 elapsed 0.64 load 0.00\n",
"22207 14 08:24:25 INFO train : 466 loss 1.0886 elapsed 0.58 load 0.01\n",
"22207 14 08:24:25 INFO train : 467 loss 1.0784 elapsed 0.60 load 0.01\n",
"22207 14 08:24:27 INFO train : 468 loss 1.0831 elapsed 0.57 load 0.81\n",
"22207 14 08:24:27 INFO train : 469 loss 1.1135 elapsed 0.62 load 0.07\n",
"22207 14 08:24:28 INFO train : 470 loss 1.1823 elapsed 0.56 load 0.04\n",
"22207 14 08:24:29 INFO train : 471 loss 1.1054 elapsed 0.61 load 0.00\n",
"22207 14 08:24:30 INFO train : 472 loss 1.0986 elapsed 0.59 load 0.81\n",
"22207 14 08:24:31 INFO train : 473 loss 1.0926 elapsed 0.58 load 0.03\n",
"22207 14 08:24:31 INFO train : 474 loss 1.0820 elapsed 0.60 load 0.07\n",
"22207 14 08:24:32 INFO train : 475 loss 1.0860 elapsed 0.55 load 0.00\n",
"22207 14 08:24:33 INFO train : 476 loss 1.0128 elapsed 0.67 load 0.65\n",
"22207 14 08:24:34 INFO train : 477 loss 1.2051 elapsed 0.62 load 0.03\n",
"22207 14 08:24:35 INFO train : 478 loss 1.1204 elapsed 0.57 load 0.32\n",
"22207 14 08:24:36 INFO train : 479 loss 1.0639 elapsed 0.63 load 0.00\n",
"22207 14 08:24:37 INFO train : 480 loss 1.0493 elapsed 0.63 load 0.67\n",
"22207 14 08:24:38 INFO train : 481 loss 1.1090 elapsed 0.57 load 0.03\n",
"22207 14 08:24:38 INFO train : 482 loss 1.0762 elapsed 0.63 load 0.27\n",
"22207 14 08:24:39 INFO train : 483 loss 1.1077 elapsed 0.65 load 0.02\n",
"22207 14 08:24:41 INFO train : 484 loss 1.1087 elapsed 0.57 load 0.82\n",
"22207 14 08:24:41 INFO train : 485 loss 1.0880 elapsed 0.64 load 0.00\n",
"22207 14 08:24:42 INFO train : 486 loss 1.0707 elapsed 0.57 load 0.20\n",
"22207 14 08:24:43 INFO train : 487 loss 1.0773 elapsed 0.59 load 0.04\n",
"22207 14 08:24:44 INFO train : 488 loss 1.0921 elapsed 0.65 load 1.05\n",
"22207 14 08:24:45 INFO train : 489 loss 1.0507 elapsed 0.62 load 0.00\n",
"22207 14 08:24:46 INFO train : 490 loss 1.0870 elapsed 0.58 load 0.01\n",
"22207 14 08:24:46 INFO train : 491 loss 1.0841 elapsed 0.66 load 0.10\n",
"22207 14 08:24:48 INFO train : 492 loss 1.0916 elapsed 0.53 load 0.86\n",
"22207 14 08:24:48 INFO train : 493 loss 1.0581 elapsed 0.57 load 0.00\n",
"22207 14 08:24:49 INFO train : 494 loss 1.0616 elapsed 0.58 load 0.12\n",
"22207 14 08:24:50 INFO train : 495 loss 1.0682 elapsed 0.63 load 0.00\n",
"22207 14 08:24:52 INFO train : 496 loss 1.1180 elapsed 0.58 load 1.35\n",
"22207 14 08:24:52 INFO train : 497 loss 1.0778 elapsed 0.60 load 0.00\n",
"22207 14 08:24:53 INFO train : 498 loss 1.0741 elapsed 0.68 load 0.06\n",
"22207 14 08:24:54 INFO train : 499 loss 1.0739 elapsed 0.69 load 0.01\n",
"22207 14 08:24:55 INFO train : 500 loss 1.1120 elapsed 0.61 load 0.61\n",
"22207 14 08:24:55 INFO Running validation\n",
"22207 14 08:25:17 INFO Logging 20 images\n",
"22207 14 08:25:18 INFO Logging 20 audios\n",
"22207 14 08:25:21 INFO Logging 20 texts\n",
"22207 14 08:25:32 INFO val : 500 loss 0.9557861089706421\n",
"22207 14 08:25:32 INFO Saving model state at step 500 to checkpoints/fp_step_00000500.pt\n",
"22207 14 08:25:33 INFO train : 501 loss 1.0754 elapsed 0.51 load 0.00\n",
"22207 14 08:25:33 INFO train : 502 loss 1.0737 elapsed 0.56 load 0.00\n",
"22207 14 08:25:34 INFO train : 503 loss 1.0822 elapsed 0.62 load 0.06\n",
"22207 14 08:25:35 INFO train : 504 loss 1.0800 elapsed 0.60 load 0.07\n",
"22207 14 08:25:35 INFO train : 505 loss 1.0883 elapsed 0.60 load 0.02\n",
"22207 14 08:25:36 INFO train : 506 loss 1.1431 elapsed 0.60 load 0.00\n",
"22207 14 08:25:37 INFO train : 507 loss 1.0719 elapsed 0.62 load 0.00\n",
"22207 14 08:25:37 INFO train : 508 loss 1.1037 elapsed 0.57 load 0.01\n",
"22207 14 08:25:38 INFO train : 509 loss 1.0487 elapsed 0.62 load 0.00\n",
"22207 14 08:25:39 INFO train : 510 loss 1.0130 elapsed 0.62 load 0.08\n",
"22207 14 08:25:39 INFO train : 511 loss 1.1029 elapsed 0.62 load 0.04\n",
"22207 14 08:25:40 INFO train : 512 loss 1.0281 elapsed 0.62 load 0.03\n",
"22207 14 08:25:41 INFO train : 513 loss 1.0293 elapsed 0.63 load 0.01\n",
"22207 14 08:25:41 INFO train : 514 loss 1.0515 elapsed 0.63 load 0.01\n",
"22207 14 08:25:42 INFO train : 515 loss 1.0754 elapsed 0.58 load 0.06\n",
"22207 14 08:25:43 INFO train : 516 loss 1.0610 elapsed 0.66 load 0.07\n",
"22207 14 08:25:43 INFO train : 517 loss 1.0460 elapsed 0.63 load 0.01\n",
"22207 14 08:25:44 INFO train : 518 loss 1.0509 elapsed 0.65 load 0.01\n",
"22207 14 08:25:45 INFO train : 519 loss 1.0775 elapsed 0.64 load 0.01\n",
"22207 14 08:25:45 INFO train : 520 loss 1.0181 elapsed 0.70 load 0.01\n",
"22207 14 08:25:46 INFO train : 521 loss 1.0605 elapsed 0.68 load 0.01\n",
"22207 14 08:25:47 INFO train : 522 loss 1.0158 elapsed 0.57 load 0.38\n",
"22207 14 08:25:48 INFO train : 523 loss 1.0244 elapsed 0.58 load 0.02\n",
"22207 14 08:25:49 INFO train : 524 loss 1.0139 elapsed 0.63 load 0.33\n",
"22207 14 08:25:49 INFO train : 525 loss 1.0431 elapsed 0.63 load 0.05\n",
"22207 14 08:25:51 INFO train : 526 loss 0.9861 elapsed 0.54 load 0.58\n",
"22207 14 08:25:51 INFO train : 527 loss 1.0170 elapsed 0.58 load 0.07\n",
"22207 14 08:25:52 INFO train : 528 loss 0.9969 elapsed 0.61 load 0.37\n",
"22207 14 08:25:53 INFO train : 529 loss 1.0333 elapsed 0.58 load 0.02\n",
"22207 14 08:25:54 INFO train : 530 loss 1.0435 elapsed 0.61 load 0.91\n",
"22207 14 08:25:55 INFO train : 531 loss 1.0746 elapsed 0.61 load 0.08\n",
"22207 14 08:25:56 INFO train : 532 loss 1.0412 elapsed 0.57 load 0.08\n",
"22207 14 08:25:56 INFO train : 533 loss 1.1266 elapsed 0.62 load 0.00\n",
"22207 14 08:25:58 INFO train : 534 loss 0.9916 elapsed 0.66 load 1.31\n",
"22207 14 08:25:59 INFO train : 535 loss 1.0270 elapsed 0.64 load 0.01\n",
"22207 14 08:26:00 INFO train : 536 loss 1.0627 elapsed 0.63 load 0.03\n",
"22207 14 08:26:00 INFO train : 537 loss 1.0171 elapsed 0.70 load 0.02\n",
"22207 14 08:26:02 INFO train : 538 loss 1.0029 elapsed 0.51 load 0.94\n",
"22207 14 08:26:03 INFO train : 539 loss 1.0482 elapsed 0.65 load 0.03\n",
"22207 14 08:26:03 INFO train : 540 loss 1.0401 elapsed 0.66 load 0.04\n",
"22207 14 08:26:04 INFO train : 541 loss 1.0547 elapsed 0.63 load 0.01\n",
"22207 14 08:26:05 INFO train : 542 loss 1.0274 elapsed 0.58 load 0.90\n",
"22207 14 08:26:06 INFO train : 543 loss 0.9886 elapsed 0.63 load 0.01\n",
"22207 14 08:26:07 INFO train : 544 loss 1.0430 elapsed 0.54 load 0.04\n",
"22207 14 08:26:07 INFO train : 545 loss 1.0169 elapsed 0.56 load 0.00\n",
"22207 14 08:26:09 INFO train : 546 loss 1.0513 elapsed 0.55 load 0.87\n",
"22207 14 08:26:09 INFO train : 547 loss 1.0696 elapsed 0.60 load 0.01\n",
"22207 14 08:26:10 INFO train : 548 loss 1.0005 elapsed 0.60 load 0.01\n",
"22207 14 08:26:11 INFO train : 549 loss 1.0446 elapsed 0.63 load 0.01\n",
"22207 14 08:26:13 INFO train : 550 loss 1.0809 elapsed 0.56 load 1.42\n",
"22207 14 08:26:13 INFO train : 551 loss 1.0239 elapsed 0.66 load 0.00\n",
"22207 14 08:26:14 INFO train : 552 loss 1.0373 elapsed 0.65 load 0.01\n",
"22207 14 08:26:15 INFO train : 553 loss 1.0924 elapsed 0.68 load 0.07\n",
"22207 14 08:26:16 INFO train : 554 loss 1.0589 elapsed 0.57 load 1.03\n",
"22207 14 08:26:17 INFO train : 555 loss 1.0720 elapsed 0.54 load 0.00\n",
"22207 14 08:26:18 INFO train : 556 loss 1.0304 elapsed 0.59 load 0.00\n",
"22207 14 08:26:18 INFO train : 557 loss 1.0154 elapsed 0.66 load 0.01\n",
"22207 14 08:26:20 INFO train : 558 loss 0.9905 elapsed 0.64 load 0.97\n",
"22207 14 08:26:21 INFO train : 559 loss 1.0409 elapsed 0.60 load 0.00\n",
"22207 14 08:26:21 INFO train : 560 loss 0.9973 elapsed 0.62 load 0.00\n",
"22207 14 08:26:22 INFO train : 561 loss 1.0387 elapsed 0.61 load 0.01\n",
"22207 14 08:26:23 INFO train : 562 loss 1.0289 elapsed 0.61 load 0.72\n",
"22207 14 08:26:24 INFO train : 563 loss 1.0258 elapsed 0.69 load 0.03\n",
"22207 14 08:26:24 INFO train : 564 loss 1.0603 elapsed 0.50 load 0.01\n",
"22207 14 08:26:25 INFO train : 565 loss 1.0323 elapsed 0.53 load 0.25\n",
"22207 14 08:26:27 INFO train : 566 loss 1.0728 elapsed 0.58 load 0.84\n",
"22207 14 08:26:27 INFO train : 567 loss 0.9948 elapsed 0.57 load 0.00\n",
"22207 14 08:26:28 INFO train : 568 loss 1.0898 elapsed 0.65 load 0.01\n",
"22207 14 08:26:29 INFO train : 569 loss 0.9820 elapsed 0.61 load 0.60\n",
"22207 14 08:26:30 INFO train : 570 loss 1.0542 elapsed 0.62 load 0.44\n",
"22207 14 08:26:31 INFO train : 571 loss 1.0047 elapsed 0.64 load 0.00\n",
"22207 14 08:26:32 INFO train : 572 loss 1.0422 elapsed 0.60 load 0.02\n",
"22207 14 08:26:33 INFO train : 573 loss 1.0139 elapsed 0.57 load 0.38\n",
"22207 14 08:26:34 INFO train : 574 loss 1.0114 elapsed 0.60 load 0.55\n",
"22207 14 08:26:34 INFO train : 575 loss 1.0329 elapsed 0.55 load 0.00\n",
"22207 14 08:26:35 INFO train : 576 loss 1.0152 elapsed 0.66 load 0.03\n",
"22207 14 08:26:36 INFO train : 577 loss 1.0116 elapsed 0.58 load 0.69\n",
"22207 14 08:26:38 INFO train : 578 loss 1.0331 elapsed 0.59 load 0.53\n",
"22207 14 08:26:38 INFO train : 579 loss 1.0241 elapsed 0.64 load 0.00\n",
"22207 14 08:26:39 INFO train : 580 loss 0.9959 elapsed 0.58 load 0.02\n",
"22207 14 08:26:40 INFO train : 581 loss 1.0071 elapsed 0.62 load 0.15\n",
"22207 14 08:26:41 INFO train : 582 loss 1.0118 elapsed 0.60 load 0.95\n",
"22207 14 08:26:42 INFO train : 583 loss 0.9679 elapsed 0.65 load 0.00\n",
"22207 14 08:26:43 INFO train : 584 loss 1.1101 elapsed 0.64 load 0.03\n",
"22207 14 08:26:43 INFO train : 585 loss 1.0072 elapsed 0.62 load 0.01\n",
"22207 14 08:26:45 INFO train : 586 loss 0.9597 elapsed 0.60 load 1.23\n",
"22207 14 08:26:46 INFO train : 587 loss 1.0291 elapsed 0.67 load 0.00\n",
"22207 14 08:26:46 INFO train : 588 loss 1.0232 elapsed 0.61 load 0.02\n",
"22207 14 08:26:47 INFO train : 589 loss 0.9713 elapsed 0.62 load 0.01\n",
"22207 14 08:26:48 INFO train : 590 loss 1.0309 elapsed 0.66 load 0.66\n",
"22207 14 08:26:49 INFO train : 591 loss 0.9760 elapsed 0.65 load 0.00\n",
"22207 14 08:26:50 INFO train : 592 loss 1.0123 elapsed 0.66 load 0.00\n",
"22207 14 08:26:50 INFO train : 593 loss 1.0295 elapsed 0.58 load 0.00\n",
"22207 14 08:26:52 INFO train : 594 loss 1.0210 elapsed 0.70 load 0.50\n",
"22207 14 08:26:52 INFO train : 595 loss 1.1962 elapsed 0.68 load 0.00\n",
"22207 14 08:26:53 INFO train : 596 loss 1.0256 elapsed 0.60 load 0.03\n",
"22207 14 08:26:54 INFO train : 597 loss 1.0276 elapsed 0.58 load 0.02\n",
"22207 14 08:26:55 INFO train : 598 loss 0.9757 elapsed 0.64 load 0.50\n",
"22207 14 08:26:55 INFO train : 599 loss 1.0234 elapsed 0.65 load 0.01\n",
"22207 14 08:26:56 INFO train : 600 loss 0.9989 elapsed 0.55 load 0.54\n",
"22207 14 08:26:57 INFO train : 601 loss 1.0134 elapsed 0.55 load 0.06\n",
"22207 14 08:26:58 INFO train : 602 loss 1.0590 elapsed 0.60 load 0.33\n",
"22207 14 08:26:59 INFO train : 603 loss 1.0486 elapsed 0.62 load 0.01\n",
"22207 14 08:27:00 INFO train : 604 loss 1.0107 elapsed 0.56 load 0.88\n",
"22207 14 08:27:01 INFO train : 605 loss 1.0066 elapsed 0.57 load 0.00\n",
"22207 14 08:27:02 INFO train : 606 loss 0.9579 elapsed 0.63 load 0.22\n",
"22207 14 08:27:02 INFO train : 607 loss 0.9984 elapsed 0.62 load 0.04\n",
"22207 14 08:27:04 INFO train : 608 loss 0.9851 elapsed 0.56 load 1.40\n",
"22207 14 08:27:05 INFO train : 609 loss 0.9579 elapsed 0.59 load 0.02\n",
"22207 14 08:27:06 INFO train : 610 loss 1.0232 elapsed 0.65 load 0.02\n",
"22207 14 08:27:06 INFO train : 611 loss 1.0262 elapsed 0.67 load 0.03\n",
"22207 14 08:27:08 INFO train : 612 loss 1.0604 elapsed 0.66 load 0.83\n",
"22207 14 08:27:09 INFO train : 613 loss 1.0825 elapsed 0.56 load 0.07\n",
"22207 14 08:27:09 INFO train : 614 loss 0.9523 elapsed 0.60 load 0.06\n",
"22207 14 08:27:10 INFO train : 615 loss 1.0540 elapsed 0.70 load 0.02\n",
"22207 14 08:27:11 INFO train : 616 loss 1.0266 elapsed 0.69 load 0.85\n",
"22207 14 08:27:12 INFO train : 617 loss 1.0022 elapsed 0.60 load 0.00\n",
"22207 14 08:27:13 INFO train : 618 loss 1.0201 elapsed 0.59 load 0.08\n",
"22207 14 08:27:14 INFO train : 619 loss 1.0051 elapsed 0.70 load 0.00\n",
"22207 14 08:27:15 INFO train : 620 loss 1.0077 elapsed 0.69 load 0.66\n",
"22207 14 08:27:16 INFO train : 621 loss 1.0416 elapsed 0.67 load 0.00\n",
"22207 14 08:27:16 INFO train : 622 loss 1.0198 elapsed 0.56 load 0.06\n",
"22207 14 08:27:17 INFO train : 623 loss 1.0111 elapsed 0.76 load 0.03\n",
"22207 14 08:27:19 INFO train : 624 loss 1.0259 elapsed 0.65 load 0.83\n",
"22207 14 08:27:19 INFO train : 625 loss 1.0230 elapsed 0.61 load 0.00\n",
"22207 14 08:27:20 INFO train : 626 loss 0.9642 elapsed 0.62 load 0.06\n",
"22207 14 08:27:21 INFO train : 627 loss 1.0082 elapsed 0.67 load 0.02\n",
"22207 14 08:27:22 INFO train : 628 loss 0.9852 elapsed 0.60 load 1.16\n",
"22207 14 08:27:23 INFO train : 629 loss 0.9402 elapsed 0.65 load 0.01\n",
"22207 14 08:27:24 INFO train : 630 loss 1.0343 elapsed 0.75 load 0.03\n",
"22207 14 08:27:25 INFO train : 631 loss 1.0374 elapsed 0.71 load 0.04\n",
"22207 14 08:27:26 INFO train : 632 loss 1.0090 elapsed 0.59 load 0.61\n",
"22207 14 08:27:27 INFO train : 633 loss 0.9952 elapsed 0.73 load 0.00\n",
"22207 14 08:27:27 INFO train : 634 loss 1.0029 elapsed 0.61 load 0.03\n",
"22207 14 08:27:28 INFO train : 635 loss 1.0081 elapsed 0.57 load 0.01\n",
"22207 14 08:27:29 INFO train : 636 loss 0.9969 elapsed 0.57 load 0.75\n",
"22207 14 08:27:30 INFO train : 637 loss 0.9662 elapsed 0.60 load 0.03\n",
"22207 14 08:27:31 INFO train : 638 loss 0.9714 elapsed 0.75 load 0.01\n",
"22207 14 08:27:31 INFO train : 639 loss 0.9869 elapsed 0.66 load 0.01\n",
"22207 14 08:27:32 INFO train : 640 loss 0.9262 elapsed 0.61 load 0.45\n",
"22207 14 08:27:33 INFO train : 641 loss 1.0337 elapsed 0.70 load 0.09\n",
"22207 14 08:27:34 INFO train : 642 loss 0.9530 elapsed 0.69 load 0.00\n",
"22207 14 08:27:35 INFO train : 643 loss 0.9988 elapsed 0.70 load 0.01\n",
"22207 14 08:27:36 INFO train : 644 loss 0.9762 elapsed 0.71 load 0.73\n",
"22207 14 08:27:37 INFO train : 645 loss 0.9859 elapsed 0.72 load 0.13\n",
"22207 14 08:27:38 INFO train : 646 loss 1.0068 elapsed 0.71 load 0.00\n",
"22207 14 08:27:39 INFO train : 647 loss 0.9708 elapsed 0.68 load 0.00\n",
"22207 14 08:27:39 INFO train : 648 loss 0.9598 elapsed 0.71 load 0.03\n",
"22207 14 08:27:40 INFO train : 649 loss 0.9460 elapsed 0.68 load 0.16\n",
"22207 14 08:27:41 INFO train : 650 loss 1.0375 elapsed 0.62 load 0.00\n",
"22207 14 08:27:41 INFO train : 651 loss 0.9553 elapsed 0.56 load 0.02\n",
"22207 14 08:27:43 INFO train : 652 loss 0.9930 elapsed 0.61 load 0.53\n",
"22207 14 08:27:44 INFO train : 653 loss 0.9420 elapsed 0.65 load 0.38\n",
"22207 14 08:27:44 INFO train : 654 loss 0.9587 elapsed 0.63 load 0.13\n",
"22207 14 08:27:45 INFO train : 655 loss 0.9945 elapsed 0.76 load 0.00\n",
"22207 14 08:27:46 INFO train : 656 loss 0.9888 elapsed 0.54 load 0.18\n",
"22207 14 08:27:47 INFO train : 657 loss 0.9713 elapsed 0.68 load 0.66\n",
"22207 14 08:27:48 INFO train : 658 loss 0.9728 elapsed 0.61 load 0.01\n",
"22207 14 08:27:49 INFO train : 659 loss 0.9742 elapsed 0.75 load 0.00\n",
"22207 14 08:27:50 INFO train : 660 loss 0.9574 elapsed 0.65 load 0.57\n",
"22207 14 08:27:51 INFO train : 661 loss 0.9706 elapsed 0.59 load 0.30\n",
"22207 14 08:27:51 INFO train : 662 loss 1.0250 elapsed 0.65 load 0.00\n",
"22207 14 08:27:52 INFO train : 663 loss 0.9880 elapsed 0.76 load 0.00\n",
"22207 14 08:27:54 INFO train : 664 loss 1.0474 elapsed 0.64 load 0.76\n",
"22207 14 08:27:54 INFO train : 665 loss 1.0215 elapsed 0.59 load 0.01\n",
"22207 14 08:27:55 INFO train : 666 loss 0.9858 elapsed 0.65 load 0.04\n",
"22207 14 08:27:56 INFO train : 667 loss 0.9953 elapsed 0.62 load 0.00\n",
"22207 14 08:27:57 INFO train : 668 loss 0.9595 elapsed 0.58 load 0.93\n",
"22207 14 08:27:58 INFO train : 669 loss 0.9745 elapsed 0.71 load 0.38\n",
"22207 14 08:27:59 INFO train : 670 loss 0.9495 elapsed 0.66 load 0.01\n",
"22207 14 08:28:00 INFO train : 671 loss 1.0030 elapsed 0.61 load 0.00\n",
"22207 14 08:28:01 INFO train : 672 loss 0.9597 elapsed 0.61 load 0.75\n",
"22207 14 08:28:02 INFO train : 673 loss 0.9818 elapsed 0.70 load 0.23\n",
"22207 14 08:28:03 INFO train : 674 loss 1.0227 elapsed 0.72 load 0.07\n",
"22207 14 08:28:03 INFO train : 675 loss 0.9565 elapsed 0.62 load 0.00\n",
"22207 14 08:28:05 INFO train : 676 loss 1.0002 elapsed 0.61 load 1.12\n",
"22207 14 08:28:06 INFO train : 677 loss 0.9881 elapsed 0.74 load 0.04\n",
"22207 14 08:28:07 INFO train : 678 loss 0.9611 elapsed 0.64 load 0.06\n",
"22207 14 08:28:08 INFO train : 679 loss 0.9839 elapsed 0.80 load 0.00\n",
"22207 14 08:28:09 INFO train : 680 loss 0.9453 elapsed 0.63 load 0.64\n",
"22207 14 08:28:10 INFO train : 681 loss 1.0579 elapsed 0.58 load 0.08\n",
"22207 14 08:28:10 INFO train : 682 loss 0.9439 elapsed 0.61 load 0.18\n",
"22207 14 08:28:11 INFO train : 683 loss 0.9425 elapsed 0.73 load 0.00\n",
"22207 14 08:28:12 INFO train : 684 loss 0.9427 elapsed 0.63 load 0.19\n",
"22207 14 08:28:13 INFO train : 685 loss 0.9181 elapsed 0.58 load 0.40\n",
"22207 14 08:28:14 INFO train : 686 loss 0.9265 elapsed 0.72 load 0.06\n",
"22207 14 08:28:14 INFO train : 687 loss 0.9714 elapsed 0.58 load 0.00\n",
"22207 14 08:28:15 INFO train : 688 loss 0.9577 elapsed 0.53 load 0.29\n",
"22207 14 08:28:16 INFO train : 689 loss 0.9406 elapsed 0.54 load 0.63\n",
"22207 14 08:28:17 INFO train : 690 loss 1.0285 elapsed 0.68 load 0.00\n",
"22207 14 08:28:18 INFO train : 691 loss 0.9607 elapsed 0.56 load 0.00\n",
"22207 14 08:28:19 INFO train : 692 loss 0.9862 elapsed 0.66 load 0.33\n",
"22207 14 08:28:20 INFO train : 693 loss 1.0555 elapsed 0.65 load 0.48\n",
"22207 14 08:28:21 INFO train : 694 loss 0.9396 elapsed 0.71 load 0.08\n",
"22207 14 08:28:21 INFO train : 695 loss 0.9541 elapsed 0.72 load 0.00\n",
"22207 14 08:28:22 INFO train : 696 loss 0.9754 elapsed 0.68 load 0.01\n",
"22207 14 08:28:23 INFO train : 697 loss 1.0463 elapsed 0.60 load 0.31\n",
"22207 14 08:28:24 INFO train : 698 loss 0.9871 elapsed 0.69 load 0.43\n",
"22207 14 08:28:25 INFO train : 699 loss 0.9774 elapsed 0.57 load 0.00\n",
"22207 14 08:28:26 INFO train : 700 loss 0.9383 elapsed 0.64 load 0.11\n",
"22207 14 08:28:26 INFO train : 701 loss 0.9248 elapsed 0.53 load 0.28\n",
"22207 14 08:28:28 INFO train : 702 loss 0.9552 elapsed 0.61 load 0.65\n",
"22207 14 08:28:28 INFO train : 703 loss 0.9894 elapsed 0.63 load 0.00\n",
"22207 14 08:28:29 INFO train : 704 loss 0.9606 elapsed 0.63 load 0.28\n",
"22207 14 08:28:30 INFO train : 705 loss 0.9380 elapsed 0.55 load 0.00\n",
"22207 14 08:28:31 INFO train : 706 loss 0.9708 elapsed 0.61 load 0.52\n",
"22207 14 08:28:32 INFO train : 707 loss 0.9162 elapsed 0.61 load 0.00\n",
"22207 14 08:28:33 INFO train : 708 loss 0.9872 elapsed 0.62 load 0.50\n",
"22207 14 08:28:34 INFO train : 709 loss 0.9261 elapsed 0.80 load 0.01\n",
"22207 14 08:28:34 INFO train : 710 loss 0.9641 elapsed 0.61 load 0.09\n",
"22207 14 08:28:35 INFO train : 711 loss 1.0066 elapsed 0.71 load 0.00\n",
"22207 14 08:28:36 INFO train : 712 loss 1.0697 elapsed 0.59 load 0.54\n",
"22207 14 08:28:37 INFO train : 713 loss 0.9304 elapsed 0.65 load 0.01\n",
"22207 14 08:28:38 INFO train : 714 loss 0.9885 elapsed 0.69 load 0.04\n",
"22207 14 08:28:38 INFO train : 715 loss 0.9586 elapsed 0.73 load 0.00\n",
"22207 14 08:28:40 INFO train : 716 loss 0.9381 elapsed 0.73 load 0.86\n",
"22207 14 08:28:41 INFO train : 717 loss 0.9355 elapsed 0.75 load 0.02\n",
"22207 14 08:28:42 INFO train : 718 loss 0.9406 elapsed 0.64 load 0.08\n",
"22207 14 08:28:42 INFO train : 719 loss 0.9837 elapsed 0.68 load 0.00\n",
"22207 14 08:28:44 INFO train : 720 loss 0.9471 elapsed 0.70 load 0.49\n",
"22207 14 08:28:44 INFO train : 721 loss 0.9321 elapsed 0.67 load 0.03\n",
"22207 14 08:28:45 INFO train : 722 loss 0.9295 elapsed 0.74 load 0.00\n",
"22207 14 08:28:46 INFO train : 723 loss 1.0212 elapsed 0.76 load 0.05\n",
"22207 14 08:28:47 INFO train : 724 loss 1.0932 elapsed 0.65 load 0.37\n",
"22207 14 08:28:48 INFO train : 725 loss 0.9724 elapsed 0.69 load 0.01\n",
"22207 14 08:28:48 INFO train : 726 loss 1.0042 elapsed 0.67 load 0.01\n",
"22207 14 08:28:49 INFO train : 727 loss 1.0056 elapsed 0.60 load 0.01\n",
"22207 14 08:28:51 INFO train : 728 loss 0.9316 elapsed 0.76 load 1.28\n",
"22207 14 08:28:52 INFO train : 729 loss 0.9453 elapsed 0.72 load 0.01\n",
"22207 14 08:28:52 INFO train : 730 loss 0.9746 elapsed 0.58 load 0.03\n",
"22207 14 08:28:53 INFO train : 731 loss 0.9266 elapsed 0.55 load 0.01\n",
"22207 14 08:28:54 INFO train : 732 loss 0.9504 elapsed 0.60 load 0.39\n",
"22207 14 08:28:55 INFO train : 733 loss 0.9476 elapsed 0.64 load 0.01\n",
"22207 14 08:28:55 INFO train : 734 loss 0.9562 elapsed 0.56 load 0.06\n",
"22207 14 08:28:56 INFO train : 735 loss 0.9567 elapsed 0.66 load 0.01\n",
"22207 14 08:28:58 INFO train : 736 loss 0.9882 elapsed 0.59 load 0.96\n",
"22207 14 08:28:58 INFO train : 737 loss 0.9044 elapsed 0.63 load 0.08\n",
"22207 14 08:28:59 INFO train : 738 loss 0.9469 elapsed 0.56 load 0.01\n",
"22207 14 08:29:00 INFO train : 739 loss 0.9739 elapsed 0.57 load 0.00\n",
"22207 14 08:29:02 INFO train : 740 loss 0.9561 elapsed 0.68 load 1.33\n",
"22207 14 08:29:02 INFO train : 741 loss 0.9219 elapsed 0.64 load 0.01\n",
"22207 14 08:29:03 INFO train : 742 loss 0.9715 elapsed 0.54 load 0.03\n",
"22207 14 08:29:04 INFO train : 743 loss 0.9687 elapsed 0.64 load 0.01\n",
"22207 14 08:29:05 INFO train : 744 loss 0.9554 elapsed 0.54 load 0.75\n",
"22207 14 08:29:06 INFO train : 745 loss 0.9644 elapsed 0.61 load 0.00\n",
"22207 14 08:29:06 INFO train : 746 loss 0.9596 elapsed 0.66 load 0.02\n",
"22207 14 08:29:07 INFO train : 747 loss 0.9450 elapsed 0.48 load 0.02\n",
"22207 14 08:29:08 INFO train : 748 loss 0.9543 elapsed 0.62 load 0.96\n",
"22207 14 08:29:09 INFO train : 749 loss 0.9273 elapsed 0.61 load 0.04\n",
"22207 14 08:29:10 INFO train : 750 loss 0.9586 elapsed 0.66 load 0.03\n",
"22207 14 08:29:10 INFO train : 751 loss 0.9038 elapsed 0.58 load 0.06\n",
"22207 14 08:29:12 INFO train : 752 loss 0.9704 elapsed 0.56 load 1.14\n",
"22207 14 08:29:13 INFO train : 753 loss 1.0093 elapsed 0.60 load 0.00\n",
"22207 14 08:29:13 INFO train : 754 loss 0.9080 elapsed 0.57 load 0.04\n",
"22207 14 08:29:14 INFO train : 755 loss 0.9355 elapsed 0.66 load 0.00\n",
"22207 14 08:29:16 INFO train : 756 loss 0.9389 elapsed 0.61 load 0.98\n",
"22207 14 08:29:16 INFO train : 757 loss 0.8786 elapsed 0.60 load 0.07\n",
"22207 14 08:29:17 INFO train : 758 loss 0.9678 elapsed 0.60 load 0.00\n",
"22207 14 08:29:18 INFO train : 759 loss 0.9619 elapsed 0.69 load 0.00\n",
"22207 14 08:29:19 INFO train : 760 loss 0.9367 elapsed 0.63 load 0.60\n",
"22207 14 08:29:20 INFO train : 761 loss 0.9639 elapsed 0.66 load 0.03\n",
"22207 14 08:29:20 INFO train : 762 loss 0.9667 elapsed 0.64 load 0.01\n",
"22207 14 08:29:21 INFO train : 763 loss 0.9405 elapsed 0.62 load 0.00\n",
"22207 14 08:29:23 INFO train : 764 loss 0.9365 elapsed 0.65 load 0.98\n",
"22207 14 08:29:23 INFO train : 765 loss 0.9543 elapsed 0.62 load 0.05\n",
"22207 14 08:29:24 INFO train : 766 loss 0.9684 elapsed 0.62 load 0.00\n",
"22207 14 08:29:25 INFO train : 767 loss 0.9556 elapsed 0.69 load 0.01\n",
"22207 14 08:29:26 INFO train : 768 loss 0.9860 elapsed 0.64 load 1.05\n",
"22207 14 08:29:27 INFO train : 769 loss 0.9329 elapsed 0.67 load 0.01\n",
"22207 14 08:29:28 INFO train : 770 loss 1.0749 elapsed 0.68 load 0.00\n",
"22207 14 08:29:28 INFO train : 771 loss 0.9285 elapsed 0.68 load 0.00\n",
"22207 14 08:29:29 INFO train : 772 loss 0.9359 elapsed 0.62 load 0.42\n",
"22207 14 08:29:30 INFO train : 773 loss 0.9703 elapsed 0.57 load 0.05\n",
"22207 14 08:29:31 INFO train : 774 loss 0.9063 elapsed 0.60 load 0.04\n",
"22207 14 08:29:31 INFO train : 775 loss 0.9255 elapsed 0.60 load 0.00\n",
"22207 14 08:29:33 INFO train : 776 loss 0.9478 elapsed 0.52 load 0.99\n",
"22207 14 08:29:34 INFO train : 777 loss 0.9289 elapsed 0.63 load 0.13\n",
"22207 14 08:29:34 INFO train : 778 loss 0.9175 elapsed 0.65 load 0.00\n",
"22207 14 08:29:35 INFO train : 779 loss 0.9374 elapsed 0.60 load 0.00\n",
"22207 14 08:29:37 INFO train : 780 loss 0.9351 elapsed 0.58 load 1.27\n",
"22207 14 08:29:38 INFO train : 781 loss 0.9287 elapsed 0.63 load 0.04\n",
"22207 14 08:29:38 INFO train : 782 loss 0.9438 elapsed 0.61 load 0.00\n",
"22207 14 08:29:39 INFO train : 783 loss 0.8803 elapsed 0.62 load 0.00\n",
"22207 14 08:29:40 INFO train : 784 loss 0.9468 elapsed 0.56 load 0.71\n",
"22207 14 08:29:41 INFO train : 785 loss 0.8757 elapsed 0.60 load 0.15\n",
"22207 14 08:29:42 INFO train : 786 loss 0.9247 elapsed 0.58 load 0.00\n",
"22207 14 08:29:42 INFO train : 787 loss 0.8870 elapsed 0.57 load 0.00\n",
"22207 14 08:29:44 INFO train : 788 loss 0.9125 elapsed 0.56 load 0.84\n",
"22207 14 08:29:44 INFO train : 789 loss 0.9321 elapsed 0.67 load 0.12\n",
"22207 14 08:29:45 INFO train : 790 loss 0.9101 elapsed 0.60 load 0.00\n",
"22207 14 08:29:46 INFO train : 791 loss 0.9314 elapsed 0.62 load 0.00\n",
"22207 14 08:29:47 INFO train : 792 loss 0.9506 elapsed 0.66 load 1.02\n",
"22207 14 08:29:48 INFO train : 793 loss 0.9955 elapsed 0.58 load 0.02\n",
"22207 14 08:29:49 INFO train : 794 loss 0.9106 elapsed 0.70 load 0.05\n",
"22207 14 08:29:49 INFO train : 795 loss 0.8842 elapsed 0.67 load 0.00\n",
"22207 14 08:29:51 INFO train : 796 loss 0.9344 elapsed 0.57 load 0.75\n",
"22207 14 08:29:51 INFO train : 797 loss 0.9414 elapsed 0.53 load 0.04\n",
"22207 14 08:29:52 INFO train : 798 loss 0.9600 elapsed 0.56 load 0.00\n",
"22207 14 08:29:52 INFO train : 799 loss 0.8851 elapsed 0.52 load 0.00\n",
"22207 14 08:29:53 INFO train : 800 loss 0.9628 elapsed 0.49 load 0.01\n",
"22207 14 08:29:53 INFO train : 801 loss 0.9026 elapsed 0.49 load 0.00\n",
"22207 14 08:29:54 INFO train : 802 loss 0.9059 elapsed 0.14 load 0.00\n",
"22207 14 08:29:54 INFO Epoch num: 2\n",
"22207 14 08:29:58 INFO train : 803 loss 0.9066 elapsed 0.65 load 3.78\n",
"22207 14 08:29:59 INFO train : 804 loss 0.9662 elapsed 0.60 load 0.01\n",
"22207 14 08:29:59 INFO train : 805 loss 0.8884 elapsed 0.56 load 0.02\n",
"22207 14 08:30:00 INFO train : 806 loss 0.9176 elapsed 0.65 load 0.00\n",
"22207 14 08:30:01 INFO train : 807 loss 1.0116 elapsed 0.47 load 0.85\n",
"22207 14 08:30:02 INFO train : 808 loss 0.9108 elapsed 0.57 load 0.31\n",
"22207 14 08:30:03 INFO train : 809 loss 0.9777 elapsed 0.63 load 0.00\n",
"22207 14 08:30:03 INFO train : 810 loss 0.9272 elapsed 0.54 load 0.00\n",
"22207 14 08:30:05 INFO train : 811 loss 0.9721 elapsed 0.58 load 0.81\n",
"22207 14 08:30:06 INFO train : 812 loss 0.8850 elapsed 0.55 load 0.75\n",
"22207 14 08:30:07 INFO train : 813 loss 0.9142 elapsed 0.61 load 0.00\n",
"22207 14 08:30:07 INFO train : 814 loss 0.8975 elapsed 0.61 load 0.00\n",
"22207 14 08:30:09 INFO train : 815 loss 0.9142 elapsed 0.69 load 0.34\n",
"22207 14 08:30:10 INFO train : 816 loss 0.9481 elapsed 0.64 load 0.76\n",
"22207 14 08:30:11 INFO train : 817 loss 0.9405 elapsed 0.53 load 0.02\n",
"22207 14 08:30:11 INFO train : 818 loss 0.8891 elapsed 0.68 load 0.00\n",
"22207 14 08:30:12 INFO train : 819 loss 0.9279 elapsed 0.67 load 0.01\n",
"22207 14 08:30:14 INFO train : 820 loss 0.9112 elapsed 0.64 load 1.22\n",
"22207 14 08:30:15 INFO train : 821 loss 0.8973 elapsed 0.69 load 0.00\n",
"22207 14 08:30:15 INFO train : 822 loss 0.8464 elapsed 0.60 load 0.00\n",
"22207 14 08:30:16 INFO train : 823 loss 0.8894 elapsed 0.63 load 0.06\n",
"22207 14 08:30:18 INFO train : 824 loss 0.9468 elapsed 0.66 load 1.08\n",
"22207 14 08:30:18 INFO train : 825 loss 0.9513 elapsed 0.59 load 0.00\n",
"22207 14 08:30:19 INFO train : 826 loss 0.8615 elapsed 0.58 load 0.00\n",
"22207 14 08:30:19 INFO train : 827 loss 0.9216 elapsed 0.56 load 0.01\n",
"22207 14 08:30:21 INFO train : 828 loss 0.9198 elapsed 0.63 load 1.34\n",
"22207 14 08:30:22 INFO train : 829 loss 0.8860 elapsed 0.63 load 0.00\n",
"22207 14 08:30:23 INFO train : 830 loss 0.8749 elapsed 0.72 load 0.00\n",
"22207 14 08:30:24 INFO train : 831 loss 0.9457 elapsed 0.66 load 0.03\n",
"22207 14 08:30:25 INFO train : 832 loss 0.9104 elapsed 0.61 load 0.56\n",
"22207 14 08:30:25 INFO train : 833 loss 0.8554 elapsed 0.63 load 0.00\n",
"22207 14 08:30:26 INFO train : 834 loss 0.8760 elapsed 0.59 load 0.00\n",
"22207 14 08:30:27 INFO train : 835 loss 0.8503 elapsed 0.55 load 0.45\n",
"22207 14 08:30:29 INFO train : 836 loss 0.9291 elapsed 0.60 load 0.86\n",
"22207 14 08:30:29 INFO train : 837 loss 0.9001 elapsed 0.62 load 0.00\n",
"22207 14 08:30:30 INFO train : 838 loss 0.8832 elapsed 0.59 load 0.00\n",
"22207 14 08:30:31 INFO train : 839 loss 0.8919 elapsed 0.64 load 0.23\n",
"22207 14 08:30:31 INFO train : 840 loss 0.9690 elapsed 0.52 load 0.21\n",
"22207 14 08:30:32 INFO train : 841 loss 0.8881 elapsed 0.59 load 0.00\n",
"22207 14 08:30:33 INFO train : 842 loss 0.9140 elapsed 0.53 load 0.00\n",
"22207 14 08:30:34 INFO train : 843 loss 0.8639 elapsed 0.60 load 0.54\n",
"22207 14 08:30:35 INFO train : 844 loss 0.9301 elapsed 0.57 load 0.57\n",
"22207 14 08:30:36 INFO train : 845 loss 0.9129 elapsed 0.62 load 0.00\n",
"22207 14 08:30:36 INFO train : 846 loss 0.8991 elapsed 0.65 load 0.00\n",
"22207 14 08:30:37 INFO train : 847 loss 0.8653 elapsed 0.61 load 0.48\n",
"22207 14 08:30:39 INFO train : 848 loss 0.8585 elapsed 0.59 load 0.63\n",
"22207 14 08:30:39 INFO train : 849 loss 0.9068 elapsed 0.61 load 0.00\n",
"22207 14 08:30:40 INFO train : 850 loss 0.9182 elapsed 0.61 load 0.00\n",
"22207 14 08:30:41 INFO train : 851 loss 0.8667 elapsed 0.65 load 0.01\n",
"22207 14 08:30:42 INFO train : 852 loss 0.8985 elapsed 0.59 load 0.87\n",
"22207 14 08:30:43 INFO train : 853 loss 0.9000 elapsed 0.58 load 0.00\n",
"22207 14 08:30:43 INFO train : 854 loss 0.9023 elapsed 0.49 load 0.00\n",
"22207 14 08:30:44 INFO train : 855 loss 0.9146 elapsed 0.56 load 0.32\n",
"22207 14 08:30:46 INFO train : 856 loss 0.8843 elapsed 0.61 load 1.25\n",
"22207 14 08:30:47 INFO train : 857 loss 0.9289 elapsed 0.65 load 0.00\n",
"22207 14 08:30:47 INFO train : 858 loss 0.9180 elapsed 0.68 load 0.00\n",
"22207 14 08:30:48 INFO train : 859 loss 0.9027 elapsed 0.62 load 0.01\n",
"22207 14 08:30:50 INFO train : 860 loss 0.8689 elapsed 0.54 load 1.04\n",
"22207 14 08:30:50 INFO train : 861 loss 0.9084 elapsed 0.55 load 0.00\n",
"22207 14 08:30:51 INFO train : 862 loss 0.8760 elapsed 0.55 load 0.00\n",
"22207 14 08:30:51 INFO train : 863 loss 0.9176 elapsed 0.67 load 0.02\n",
"22207 14 08:30:53 INFO train : 864 loss 0.9640 elapsed 0.64 load 1.05\n",
"22207 14 08:30:54 INFO train : 865 loss 0.9527 elapsed 0.65 load 0.00\n",
"22207 14 08:30:54 INFO train : 866 loss 0.9011 elapsed 0.61 load 0.00\n",
"22207 14 08:30:55 INFO train : 867 loss 0.9166 elapsed 0.56 load 0.04\n",
"22207 14 08:30:56 INFO train : 868 loss 0.9029 elapsed 0.64 load 0.70\n",
"22207 14 08:30:57 INFO train : 869 loss 0.9314 elapsed 0.57 load 0.00\n",
"22207 14 08:30:58 INFO train : 870 loss 0.8833 elapsed 0.58 load 0.00\n",
"22207 14 08:30:59 INFO train : 871 loss 0.8612 elapsed 0.58 load 0.25\n",
"22207 14 08:31:00 INFO train : 872 loss 0.8864 elapsed 0.62 load 0.77\n",
"22207 14 08:31:01 INFO train : 873 loss 0.8947 elapsed 0.63 load 0.00\n",
"22207 14 08:31:01 INFO train : 874 loss 0.9252 elapsed 0.62 load 0.00\n",
"22207 14 08:31:02 INFO train : 875 loss 0.9142 elapsed 0.59 load 0.49\n",
"22207 14 08:31:03 INFO train : 876 loss 0.8828 elapsed 0.57 load 0.46\n",
"22207 14 08:31:04 INFO train : 877 loss 0.8811 elapsed 0.62 load 0.00\n",
"22207 14 08:31:05 INFO train : 878 loss 0.8970 elapsed 0.69 load 0.00\n",
"22207 14 08:31:06 INFO train : 879 loss 0.8772 elapsed 0.63 load 0.28\n",
"22207 14 08:31:07 INFO train : 880 loss 0.9066 elapsed 0.55 load 0.92\n",
"22207 14 08:31:08 INFO train : 881 loss 0.9182 elapsed 0.62 load 0.00\n",
"22207 14 08:31:08 INFO train : 882 loss 0.9025 elapsed 0.62 load 0.00\n",
"22207 14 08:31:09 INFO train : 883 loss 0.9324 elapsed 0.57 load 0.42\n",
"22207 14 08:31:11 INFO train : 884 loss 0.8848 elapsed 0.56 load 0.70\n",
"22207 14 08:31:11 INFO train : 885 loss 0.8898 elapsed 0.55 load 0.00\n",
"22207 14 08:31:12 INFO train : 886 loss 0.9003 elapsed 0.54 load 0.00\n",
"22207 14 08:31:13 INFO train : 887 loss 0.8940 elapsed 0.56 load 0.34\n",
"22207 14 08:31:14 INFO train : 888 loss 0.8714 elapsed 0.57 load 0.82\n",
"22207 14 08:31:15 INFO train : 889 loss 0.8596 elapsed 0.67 load 0.00\n",
"22207 14 08:31:15 INFO train : 890 loss 0.8772 elapsed 0.59 load 0.00\n",
"22207 14 08:31:16 INFO train : 891 loss 0.8885 elapsed 0.57 load 0.39\n",
"22207 14 08:31:18 INFO train : 892 loss 0.9713 elapsed 0.58 load 0.93\n",
"22207 14 08:31:19 INFO train : 893 loss 0.9534 elapsed 0.54 load 0.00\n",
"22207 14 08:31:19 INFO train : 894 loss 0.9170 elapsed 0.52 load 0.00\n",
"22207 14 08:31:20 INFO train : 895 loss 0.9185 elapsed 0.64 load 0.59\n",
"22207 14 08:31:22 INFO train : 896 loss 0.8948 elapsed 0.63 load 0.67\n",
"22207 14 08:31:22 INFO train : 897 loss 0.8871 elapsed 0.60 load 0.00\n",
"22207 14 08:31:23 INFO train : 898 loss 0.9309 elapsed 0.59 load 0.00\n",
"22207 14 08:31:24 INFO train : 899 loss 0.8892 elapsed 0.58 load 0.35\n",
"22207 14 08:31:25 INFO train : 900 loss 0.8717 elapsed 0.55 load 0.73\n",
"22207 14 08:31:26 INFO train : 901 loss 0.8963 elapsed 0.60 load 0.00\n",
"22207 14 08:31:26 INFO train : 902 loss 0.8767 elapsed 0.63 load 0.00\n",
"22207 14 08:31:27 INFO train : 903 loss 0.9057 elapsed 0.55 load 0.44\n",
"22207 14 08:31:28 INFO train : 904 loss 0.9000 elapsed 0.52 load 0.19\n",
"22207 14 08:31:29 INFO train : 905 loss 0.9612 elapsed 0.58 load 0.00\n",
"22207 14 08:31:29 INFO train : 906 loss 0.9153 elapsed 0.66 load 0.00\n",
"22207 14 08:31:31 INFO train : 907 loss 0.9490 elapsed 0.60 load 0.47\n",
"22207 14 08:31:31 INFO train : 908 loss 0.9451 elapsed 0.65 load 0.20\n",
"22207 14 08:31:32 INFO train : 909 loss 0.8912 elapsed 0.63 load 0.03\n",
"22207 14 08:31:33 INFO train : 910 loss 0.8262 elapsed 0.58 load 0.03\n",
"22207 14 08:31:34 INFO train : 911 loss 0.8663 elapsed 0.64 load 0.49\n",
"22207 14 08:31:35 INFO train : 912 loss 0.8942 elapsed 0.58 load 0.41\n",
"22207 14 08:31:36 INFO train : 913 loss 0.9414 elapsed 0.63 load 0.00\n",
"22207 14 08:31:36 INFO train : 914 loss 0.8884 elapsed 0.69 load 0.02\n",
"22207 14 08:31:38 INFO train : 915 loss 0.8606 elapsed 0.71 load 0.47\n",
"22207 14 08:31:38 INFO train : 916 loss 0.8488 elapsed 0.51 load 0.08\n",
"22207 14 08:31:39 INFO train : 917 loss 0.8882 elapsed 0.59 load 0.00\n",
"22207 14 08:31:39 INFO train : 918 loss 0.9616 elapsed 0.52 load 0.14\n",
"22207 14 08:31:41 INFO train : 919 loss 0.8905 elapsed 0.56 load 1.22\n",
"22207 14 08:31:42 INFO train : 920 loss 0.8665 elapsed 0.60 load 0.04\n",
"22207 14 08:31:43 INFO train : 921 loss 0.8449 elapsed 0.57 load 0.04\n",
"22207 14 08:31:43 INFO train : 922 loss 0.8743 elapsed 0.64 load 0.01\n",
"22207 14 08:31:45 INFO train : 923 loss 0.9189 elapsed 0.63 load 0.97\n",
"22207 14 08:31:46 INFO train : 924 loss 0.9310 elapsed 0.69 load 0.15\n",
"22207 14 08:31:46 INFO train : 925 loss 0.9340 elapsed 0.65 load 0.00\n",
"22207 14 08:31:47 INFO train : 926 loss 0.8839 elapsed 0.63 load 0.00\n",
"22207 14 08:31:49 INFO train : 927 loss 0.8578 elapsed 0.64 load 0.98\n",
"22207 14 08:31:49 INFO train : 928 loss 0.8905 elapsed 0.57 load 0.00\n",
"22207 14 08:31:50 INFO train : 929 loss 0.8402 elapsed 0.66 load 0.00\n",
"22207 14 08:31:51 INFO train : 930 loss 0.9449 elapsed 0.64 load 0.02\n",
"22207 14 08:31:52 INFO train : 931 loss 0.8940 elapsed 0.58 load 0.92\n",
"22207 14 08:31:53 INFO train : 932 loss 0.9497 elapsed 0.62 load 0.01\n",
"22207 14 08:31:53 INFO train : 933 loss 0.8766 elapsed 0.67 load 0.00\n",
"22207 14 08:31:54 INFO train : 934 loss 0.9367 elapsed 0.56 load 0.00\n",
"22207 14 08:31:56 INFO train : 935 loss 0.8683 elapsed 0.63 load 1.02\n",
"22207 14 08:31:56 INFO train : 936 loss 0.8989 elapsed 0.62 load 0.01\n",
"22207 14 08:31:57 INFO train : 937 loss 0.8913 elapsed 0.66 load 0.00\n",
"22207 14 08:31:58 INFO train : 938 loss 0.9048 elapsed 0.65 load 0.00\n",
"22207 14 08:31:59 INFO train : 939 loss 0.8613 elapsed 0.60 load 1.14\n",
"22207 14 08:32:00 INFO train : 940 loss 0.8189 elapsed 0.60 load 0.01\n",
"22207 14 08:32:01 INFO train : 941 loss 0.8996 elapsed 0.64 load 0.00\n",
"22207 14 08:32:01 INFO train : 942 loss 0.8941 elapsed 0.63 load 0.00\n",
"22207 14 08:32:03 INFO train : 943 loss 0.8406 elapsed 0.58 load 1.40\n",
"22207 14 08:32:04 INFO train : 944 loss 0.8863 elapsed 0.54 load 0.00\n",
"22207 14 08:32:05 INFO train : 945 loss 0.9075 elapsed 0.62 load 0.00\n",
"22207 14 08:32:05 INFO train : 946 loss 0.8827 elapsed 0.54 load 0.00\n",
"22207 14 08:32:07 INFO train : 947 loss 0.9300 elapsed 0.65 load 1.47\n",
"22207 14 08:32:08 INFO train : 948 loss 0.9189 elapsed 0.62 load 0.00\n",
"22207 14 08:32:09 INFO train : 949 loss 0.8501 elapsed 0.58 load 0.00\n",
"22207 14 08:32:09 INFO train : 950 loss 0.8634 elapsed 0.65 load 0.00\n",
"22207 14 08:32:11 INFO train : 951 loss 0.9390 elapsed 0.67 load 1.06\n",
"22207 14 08:32:12 INFO train : 952 loss 0.9046 elapsed 0.64 load 0.00\n",
"22207 14 08:32:12 INFO train : 953 loss 0.8997 elapsed 0.56 load 0.01\n",
"22207 14 08:32:13 INFO train : 954 loss 0.8601 elapsed 0.63 load 0.00\n",
"22207 14 08:32:14 INFO train : 955 loss 0.9478 elapsed 0.58 load 0.62\n",
"22207 14 08:32:15 INFO train : 956 loss 0.9496 elapsed 0.64 load 0.00\n",
"22207 14 08:32:15 INFO train : 957 loss 0.8890 elapsed 0.60 load 0.00\n",
"22207 14 08:32:16 INFO train : 958 loss 0.8889 elapsed 0.65 load 0.00\n",
"22207 14 08:32:18 INFO train : 959 loss 0.8975 elapsed 0.57 load 0.87\n",
"22207 14 08:32:18 INFO train : 960 loss 0.8652 elapsed 0.63 load 0.00\n",
"22207 14 08:32:19 INFO train : 961 loss 0.8644 elapsed 0.59 load 0.00\n",
"22207 14 08:32:19 INFO train : 962 loss 0.8843 elapsed 0.59 load 0.00\n",
"22207 14 08:32:21 INFO train : 963 loss 0.8895 elapsed 0.59 load 1.45\n",
"22207 14 08:32:22 INFO train : 964 loss 0.8723 elapsed 0.57 load 0.00\n",
"22207 14 08:32:23 INFO train : 965 loss 0.8373 elapsed 0.59 load 0.00\n",
"22207 14 08:32:23 INFO train : 966 loss 0.8683 elapsed 0.66 load 0.00\n",
"22207 14 08:32:25 INFO train : 967 loss 0.8890 elapsed 0.62 load 0.70\n",
"22207 14 08:32:25 INFO train : 968 loss 0.8535 elapsed 0.65 load 0.00\n",
"22207 14 08:32:26 INFO train : 969 loss 0.8478 elapsed 0.64 load 0.00\n",
"22207 14 08:32:27 INFO train : 970 loss 0.8951 elapsed 0.63 load 0.01\n",
"22207 14 08:32:28 INFO train : 971 loss 0.8950 elapsed 0.64 load 0.61\n",
"22207 14 08:32:29 INFO train : 972 loss 0.8649 elapsed 0.65 load 0.00\n",
"22207 14 08:32:29 INFO train : 973 loss 0.8608 elapsed 0.65 load 0.00\n",
"22207 14 08:32:30 INFO train : 974 loss 0.8944 elapsed 0.58 load 0.06\n",
"22207 14 08:32:31 INFO train : 975 loss 0.8625 elapsed 0.62 load 0.74\n",
"22207 14 08:32:32 INFO train : 976 loss 0.8916 elapsed 0.63 load 0.00\n",
"22207 14 08:32:33 INFO train : 977 loss 0.8706 elapsed 0.57 load 0.00\n",
"22207 14 08:32:33 INFO train : 978 loss 0.8460 elapsed 0.59 load 0.10\n",
"22207 14 08:32:35 INFO train : 979 loss 0.8896 elapsed 0.58 load 0.94\n",
"22207 14 08:32:35 INFO train : 980 loss 0.8669 elapsed 0.62 load 0.00\n",
"22207 14 08:32:36 INFO train : 981 loss 0.9057 elapsed 0.65 load 0.00\n",
"22207 14 08:32:37 INFO train : 982 loss 0.8857 elapsed 0.65 load 0.01\n",
"22207 14 08:32:38 INFO train : 983 loss 0.9634 elapsed 0.61 load 0.68\n",
"22207 14 08:32:39 INFO train : 984 loss 0.9021 elapsed 0.66 load 0.00\n",
"22207 14 08:32:39 INFO train : 985 loss 0.8990 elapsed 0.70 load 0.00\n",
"22207 14 08:32:40 INFO train : 986 loss 0.9219 elapsed 0.62 load 0.00\n",
"22207 14 08:32:42 INFO train : 987 loss 0.8513 elapsed 0.61 load 1.36\n",
"22207 14 08:32:43 INFO train : 988 loss 0.8568 elapsed 0.66 load 0.00\n",
"22207 14 08:32:43 INFO train : 989 loss 0.8766 elapsed 0.61 load 0.00\n",
"22207 14 08:32:44 INFO train : 990 loss 0.8480 elapsed 0.69 load 0.00\n",
"22207 14 08:32:46 INFO train : 991 loss 0.8493 elapsed 0.64 load 1.02\n",
"22207 14 08:32:46 INFO train : 992 loss 0.9672 elapsed 0.62 load 0.00\n",
"22207 14 08:32:47 INFO train : 993 loss 0.8787 elapsed 0.67 load 0.00\n",
"22207 14 08:32:48 INFO train : 994 loss 0.9595 elapsed 0.61 load 0.03\n",
"22207 14 08:32:49 INFO train : 995 loss 0.8669 elapsed 0.66 load 0.83\n",
"22207 14 08:32:50 INFO train : 996 loss 0.8786 elapsed 0.57 load 0.00\n",
"22207 14 08:32:51 INFO train : 997 loss 0.8384 elapsed 0.69 load 0.00\n",
"22207 14 08:32:51 INFO train : 998 loss 0.8816 elapsed 0.60 load 0.00\n",
"22207 14 08:32:53 INFO train : 999 loss 0.8557 elapsed 0.57 load 1.12\n",
"22207 14 08:32:54 INFO train : 1000 loss 0.9106 elapsed 0.65 load 0.00\n",
"22207 14 08:32:54 INFO Running validation\n",
"22207 14 08:33:15 INFO Logging 20 images\n",
"22207 14 08:33:16 INFO Logging 20 audios\n",
"22207 14 08:33:19 INFO Logging 20 texts\n",
"22207 14 08:33:30 INFO val : 1000 loss 0.7898404002189636\n",
"22207 14 08:33:30 INFO Saving model state at step 1000 to checkpoints/fp_step_00001000.pt\n",
"22207 14 08:33:31 INFO train : 1001 loss 0.8748 elapsed 0.53 load 0.00\n",
"22207 14 08:33:32 INFO train : 1002 loss 0.8904 elapsed 0.52 load 0.00\n",
"22207 14 08:33:33 INFO train : 1003 loss 0.8657 elapsed 0.67 load 0.01\n",
"22207 14 08:33:33 INFO train : 1004 loss 0.9250 elapsed 0.68 load 0.07\n",
"22207 14 08:33:34 INFO train : 1005 loss 0.8456 elapsed 0.57 load 0.00\n",
"22207 14 08:33:35 INFO train : 1006 loss 1.0120 elapsed 0.63 load 0.01\n",
"22207 14 08:33:35 INFO train : 1007 loss 0.8356 elapsed 0.55 load 0.07\n",
"22207 14 08:33:36 INFO train : 1008 loss 0.8775 elapsed 0.63 load 0.03\n",
"22207 14 08:33:37 INFO train : 1009 loss 0.8664 elapsed 0.50 load 0.03\n",
"22207 14 08:33:37 INFO train : 1010 loss 0.9066 elapsed 0.64 load 0.00\n",
"22207 14 08:33:38 INFO train : 1011 loss 0.8753 elapsed 0.58 load 0.05\n",
"22207 14 08:33:39 INFO train : 1012 loss 0.9474 elapsed 0.68 load 0.03\n",
"22207 14 08:33:39 INFO train : 1013 loss 0.8742 elapsed 0.62 load 0.01\n",
"22207 14 08:33:40 INFO train : 1014 loss 0.8682 elapsed 0.57 load 0.01\n",
"22207 14 08:33:40 INFO train : 1015 loss 0.8888 elapsed 0.63 load 0.02\n",
"22207 14 08:33:41 INFO train : 1016 loss 0.9108 elapsed 0.56 load 0.03\n",
"22207 14 08:33:42 INFO train : 1017 loss 0.8959 elapsed 0.61 load 0.04\n",
"22207 14 08:33:42 INFO train : 1018 loss 0.9006 elapsed 0.57 load 0.05\n",
"22207 14 08:33:43 INFO train : 1019 loss 0.9303 elapsed 0.69 load 0.01\n",
"22207 14 08:33:44 INFO train : 1020 loss 0.8287 elapsed 0.67 load 0.02\n",
"22207 14 08:33:45 INFO train : 1021 loss 0.8667 elapsed 0.58 load 0.37\n",
"22207 14 08:33:45 INFO train : 1022 loss 0.8629 elapsed 0.60 load 0.00\n",
"22207 14 08:33:46 INFO train : 1023 loss 0.9202 elapsed 0.65 load 0.08\n",
"22207 14 08:33:47 INFO train : 1024 loss 0.8397 elapsed 0.65 load 0.18\n",
"22207 14 08:33:48 INFO train : 1025 loss 0.8386 elapsed 0.62 load 0.83\n",
"22207 14 08:33:49 INFO train : 1026 loss 0.8397 elapsed 0.60 load 0.00\n",
"22207 14 08:33:50 INFO train : 1027 loss 0.8738 elapsed 0.54 load 0.00\n",
"22207 14 08:33:50 INFO train : 1028 loss 0.8147 elapsed 0.66 load 0.10\n",
"22207 14 08:33:52 INFO train : 1029 loss 0.8411 elapsed 0.56 load 0.95\n",
"22207 14 08:33:53 INFO train : 1030 loss 0.8841 elapsed 0.58 load 0.00\n",
"22207 14 08:33:53 INFO train : 1031 loss 0.8404 elapsed 0.57 load 0.01\n",
"22207 14 08:33:54 INFO train : 1032 loss 0.8791 elapsed 0.61 load 0.04\n",
"22207 14 08:33:56 INFO train : 1033 loss 0.8673 elapsed 0.63 load 1.12\n",
"22207 14 08:33:56 INFO train : 1034 loss 0.8733 elapsed 0.65 load 0.00\n",
"22207 14 08:33:57 INFO train : 1035 loss 0.8697 elapsed 0.62 load 0.02\n",
"22207 14 08:33:58 INFO train : 1036 loss 0.8551 elapsed 0.57 load 0.00\n",
"22207 14 08:33:59 INFO train : 1037 loss 0.8829 elapsed 0.59 load 1.19\n",
"22207 14 08:34:00 INFO train : 1038 loss 0.8519 elapsed 0.64 load 0.01\n",
"22207 14 08:34:01 INFO train : 1039 loss 0.8309 elapsed 0.58 load 0.08\n",
"22207 14 08:34:01 INFO train : 1040 loss 0.8742 elapsed 0.59 load 0.07\n",
"22207 14 08:34:03 INFO train : 1041 loss 0.8185 elapsed 0.59 load 0.72\n",
"22207 14 08:34:03 INFO train : 1042 loss 0.8662 elapsed 0.64 load 0.00\n",
"22207 14 08:34:04 INFO train : 1043 loss 0.9177 elapsed 0.59 load 0.02\n",
"22207 14 08:34:05 INFO train : 1044 loss 0.9005 elapsed 0.62 load 0.15\n",
"22207 14 08:34:06 INFO train : 1045 loss 0.8777 elapsed 0.62 load 0.72\n",
"22207 14 08:34:07 INFO train : 1046 loss 0.8413 elapsed 0.62 load 0.33\n",
"22207 14 08:34:08 INFO train : 1047 loss 0.8521 elapsed 0.65 load 0.03\n",
"22207 14 08:34:09 INFO train : 1048 loss 0.8825 elapsed 0.63 load 0.01\n",
"22207 14 08:34:10 INFO train : 1049 loss 0.8512 elapsed 0.55 load 0.47\n",
"22207 14 08:34:11 INFO train : 1050 loss 0.8730 elapsed 0.68 load 0.79\n",
"22207 14 08:34:12 INFO train : 1051 loss 0.8518 elapsed 0.60 load 0.00\n",
"22207 14 08:34:12 INFO train : 1052 loss 0.8850 elapsed 0.57 load 0.01\n",
"22207 14 08:34:13 INFO train : 1053 loss 0.9121 elapsed 0.59 load 0.23\n",
"22207 14 08:34:14 INFO train : 1054 loss 0.9186 elapsed 0.59 load 0.57\n",
"22207 14 08:34:15 INFO train : 1055 loss 0.8987 elapsed 0.59 load 0.00\n",
"22207 14 08:34:16 INFO train : 1056 loss 0.8492 elapsed 0.61 load 0.17\n",
"22207 14 08:34:17 INFO train : 1057 loss 0.9002 elapsed 0.56 load 0.17\n",
"22207 14 08:34:18 INFO train : 1058 loss 0.8770 elapsed 0.59 load 0.53\n",
"22207 14 08:34:18 INFO train : 1059 loss 0.8803 elapsed 0.67 load 0.00\n",
"22207 14 08:34:19 INFO train : 1060 loss 0.8976 elapsed 0.61 load 0.39\n",
"22207 14 08:34:20 INFO train : 1061 loss 0.8466 elapsed 0.61 load 0.00\n",
"22207 14 08:34:21 INFO train : 1062 loss 0.9334 elapsed 0.60 load 0.61\n",
"22207 14 08:34:22 INFO train : 1063 loss 0.8579 elapsed 0.53 load 0.00\n",
"22207 14 08:34:23 INFO train : 1064 loss 0.8410 elapsed 0.63 load 0.58\n",
"22207 14 08:34:24 INFO train : 1065 loss 0.8360 elapsed 0.58 load 0.02\n",
"22207 14 08:34:25 INFO train : 1066 loss 0.8924 elapsed 0.55 load 0.87\n",
"22207 14 08:34:26 INFO train : 1067 loss 0.8770 elapsed 0.74 load 0.00\n",
"22207 14 08:34:27 INFO train : 1068 loss 0.8377 elapsed 0.61 load 0.40\n",
"22207 14 08:34:28 INFO train : 1069 loss 0.9045 elapsed 0.56 load 0.01\n",
"22207 14 08:34:28 INFO train : 1070 loss 0.8727 elapsed 0.63 load 0.20\n",
"22207 14 08:34:29 INFO train : 1071 loss 0.9241 elapsed 0.60 load 0.00\n",
"22207 14 08:34:31 INFO train : 1072 loss 0.8653 elapsed 0.63 load 0.96\n",
"22207 14 08:34:31 INFO train : 1073 loss 0.8652 elapsed 0.68 load 0.00\n",
"22207 14 08:34:32 INFO train : 1074 loss 0.8732 elapsed 0.60 load 0.03\n",
"22207 14 08:34:33 INFO train : 1075 loss 0.8922 elapsed 0.56 load 0.00\n",
"22207 14 08:34:34 INFO train : 1076 loss 0.8328 elapsed 0.64 load 1.17\n",
"22207 14 08:34:35 INFO train : 1077 loss 0.8319 elapsed 0.67 load 0.00\n",
"22207 14 08:34:36 INFO train : 1078 loss 0.8612 elapsed 0.63 load 0.01\n",
"22207 14 08:34:36 INFO train : 1079 loss 0.8949 elapsed 0.60 load 0.00\n",
"22207 14 08:34:38 INFO train : 1080 loss 0.8805 elapsed 0.58 load 1.09\n",
"22207 14 08:34:39 INFO train : 1081 loss 0.8545 elapsed 0.53 load 0.06\n",
"22207 14 08:34:39 INFO train : 1082 loss 0.8835 elapsed 0.64 load 0.00\n",
"22207 14 08:34:40 INFO train : 1083 loss 0.8784 elapsed 0.60 load 0.01\n",
"22207 14 08:34:42 INFO train : 1084 loss 0.9228 elapsed 0.59 load 1.15\n",
"22207 14 08:34:42 INFO train : 1085 loss 0.8340 elapsed 0.65 load 0.03\n",
"22207 14 08:34:43 INFO train : 1086 loss 1.0386 elapsed 0.59 load 0.09\n",
"22207 14 08:34:44 INFO train : 1087 loss 0.8664 elapsed 0.58 load 0.07\n",
"22207 14 08:34:45 INFO train : 1088 loss 0.9315 elapsed 0.60 load 1.01\n",
"22207 14 08:34:46 INFO train : 1089 loss 0.8857 elapsed 0.60 load 0.08\n",
"22207 14 08:34:47 INFO train : 1090 loss 0.8479 elapsed 0.65 load 0.01\n",
"22207 14 08:34:47 INFO train : 1091 loss 0.8704 elapsed 0.64 load 0.03\n",
"22207 14 08:34:49 INFO train : 1092 loss 0.8246 elapsed 0.60 load 0.75\n",
"22207 14 08:34:50 INFO train : 1093 loss 0.8921 elapsed 0.57 load 0.09\n",
"22207 14 08:34:50 INFO train : 1094 loss 0.8648 elapsed 0.63 load 0.01\n",
"22207 14 08:34:51 INFO train : 1095 loss 0.8929 elapsed 0.53 load 0.02\n",
"22207 14 08:34:52 INFO train : 1096 loss 0.8776 elapsed 0.66 load 0.84\n",
"22207 14 08:34:53 INFO train : 1097 loss 0.8704 elapsed 0.70 load 0.30\n",
"22207 14 08:34:54 INFO train : 1098 loss 0.8227 elapsed 0.67 load 0.00\n",
"22207 14 08:34:55 INFO train : 1099 loss 0.8608 elapsed 0.69 load 0.01\n",
"22207 14 08:34:56 INFO train : 1100 loss 0.8206 elapsed 0.58 load 0.40\n",
"22207 14 08:34:57 INFO train : 1101 loss 0.7905 elapsed 0.61 load 0.69\n",
"22207 14 08:34:58 INFO train : 1102 loss 0.8427 elapsed 0.58 load 0.00\n",
"22207 14 08:34:58 INFO train : 1103 loss 0.8369 elapsed 0.59 load 0.09\n",
"22207 14 08:34:59 INFO train : 1104 loss 0.8672 elapsed 0.62 load 0.21\n",
"22207 14 08:35:01 INFO train : 1105 loss 0.8502 elapsed 0.65 load 0.67\n",
"22207 14 08:35:01 INFO train : 1106 loss 0.8946 elapsed 0.64 load 0.00\n",
"22207 14 08:35:02 INFO train : 1107 loss 0.8695 elapsed 0.63 load 0.01\n",
"22207 14 08:35:03 INFO train : 1108 loss 0.8524 elapsed 0.61 load 0.04\n",
"22207 14 08:35:04 INFO train : 1109 loss 0.8802 elapsed 0.60 load 0.91\n",
"22207 14 08:35:05 INFO train : 1110 loss 0.8658 elapsed 0.63 load 0.00\n",
"22207 14 08:35:05 INFO train : 1111 loss 0.8529 elapsed 0.58 load 0.01\n",
"22207 14 08:35:06 INFO train : 1112 loss 0.8464 elapsed 0.60 load 0.27\n",
"22207 14 08:35:08 INFO train : 1113 loss 0.8758 elapsed 0.65 load 0.72\n",
"22207 14 08:35:08 INFO train : 1114 loss 0.8960 elapsed 0.62 load 0.00\n",
"22207 14 08:35:09 INFO train : 1115 loss 0.8982 elapsed 0.58 load 0.02\n",
"22207 14 08:35:10 INFO train : 1116 loss 0.8700 elapsed 0.66 load 0.56\n",
"22207 14 08:35:11 INFO train : 1117 loss 0.8610 elapsed 0.56 load 0.06\n",
"22207 14 08:35:11 INFO train : 1118 loss 0.8683 elapsed 0.60 load 0.02\n",
"22207 14 08:35:12 INFO train : 1119 loss 0.8440 elapsed 0.70 load 0.00\n",
"22207 14 08:35:14 INFO train : 1120 loss 0.8781 elapsed 0.58 load 0.97\n",
"22207 14 08:35:15 INFO train : 1121 loss 0.8697 elapsed 0.62 load 0.08\n",
"22207 14 08:35:15 INFO train : 1122 loss 0.9313 elapsed 0.63 load 0.01\n",
"22207 14 08:35:16 INFO train : 1123 loss 0.8428 elapsed 0.56 load 0.07\n",
"22207 14 08:35:18 INFO train : 1124 loss 0.8246 elapsed 0.63 load 1.32\n",
"22207 14 08:35:19 INFO train : 1125 loss 0.8161 elapsed 0.64 load 0.11\n",
"22207 14 08:35:19 INFO train : 1126 loss 0.8452 elapsed 0.61 load 0.00\n",
"22207 14 08:35:20 INFO train : 1127 loss 0.8700 elapsed 0.57 load 0.02\n",
"22207 14 08:35:21 INFO train : 1128 loss 0.9064 elapsed 0.60 load 0.67\n",
"22207 14 08:35:22 INFO train : 1129 loss 0.8768 elapsed 0.58 load 0.45\n",
"22207 14 08:35:23 INFO train : 1130 loss 0.8584 elapsed 0.64 load 0.01\n",
"22207 14 08:35:24 INFO train : 1131 loss 0.8411 elapsed 0.61 load 0.02\n",
"22207 14 08:35:24 INFO train : 1132 loss 0.8498 elapsed 0.57 load 0.21\n",
"22207 14 08:35:26 INFO train : 1133 loss 0.8565 elapsed 0.58 load 0.70\n",
"22207 14 08:35:26 INFO train : 1134 loss 0.8511 elapsed 0.61 load 0.00\n",
"22207 14 08:35:27 INFO train : 1135 loss 0.8508 elapsed 0.63 load 0.01\n",
"22207 14 08:35:28 INFO train : 1136 loss 0.8653 elapsed 0.57 load 0.03\n",
"22207 14 08:35:30 INFO train : 1137 loss 0.8541 elapsed 0.60 load 1.31\n",
"22207 14 08:35:30 INFO train : 1138 loss 0.8619 elapsed 0.64 load 0.01\n",
"22207 14 08:35:31 INFO train : 1139 loss 0.8580 elapsed 0.66 load 0.00\n",
"22207 14 08:35:32 INFO train : 1140 loss 0.8115 elapsed 0.65 load 0.08\n",
"22207 14 08:35:33 INFO train : 1141 loss 0.8845 elapsed 0.62 load 0.83\n",
"22207 14 08:35:34 INFO train : 1142 loss 0.9107 elapsed 0.63 load 0.00\n",
"22207 14 08:35:34 INFO train : 1143 loss 0.8816 elapsed 0.65 load 0.00\n",
"22207 14 08:35:35 INFO train : 1144 loss 0.8472 elapsed 0.61 load 0.01\n",
"22207 14 08:35:36 INFO train : 1145 loss 0.8260 elapsed 0.55 load 0.70\n",
"22207 14 08:35:37 INFO train : 1146 loss 0.8247 elapsed 0.66 load 0.01\n",
"22207 14 08:35:38 INFO train : 1147 loss 0.8335 elapsed 0.57 load 0.00\n",
"22207 14 08:35:38 INFO train : 1148 loss 0.9160 elapsed 0.66 load 0.01\n",
"22207 14 08:35:40 INFO train : 1149 loss 0.8616 elapsed 0.51 load 1.17\n",
"22207 14 08:35:41 INFO train : 1150 loss 0.8243 elapsed 0.63 load 0.04\n",
"22207 14 08:35:41 INFO train : 1151 loss 0.8847 elapsed 0.65 load 0.00\n",
"22207 14 08:35:42 INFO train : 1152 loss 0.8856 elapsed 0.62 load 0.01\n",
"22207 14 08:35:44 INFO train : 1153 loss 0.8260 elapsed 0.66 load 0.85\n",
"22207 14 08:35:44 INFO train : 1154 loss 0.7907 elapsed 0.63 load 0.21\n",
"22207 14 08:35:45 INFO train : 1155 loss 0.8766 elapsed 0.66 load 0.00\n",
"22207 14 08:35:46 INFO train : 1156 loss 0.8386 elapsed 0.62 load 0.03\n",
"22207 14 08:35:47 INFO train : 1157 loss 0.8455 elapsed 0.59 load 0.79\n",
"22207 14 08:35:48 INFO train : 1158 loss 0.8343 elapsed 0.60 load 0.29\n",
"22207 14 08:35:49 INFO train : 1159 loss 0.8110 elapsed 0.69 load 0.00\n",
"22207 14 08:35:49 INFO train : 1160 loss 0.8430 elapsed 0.65 load 0.03\n",
"22207 14 08:35:51 INFO train : 1161 loss 0.8859 elapsed 0.61 load 0.65\n",
"22207 14 08:35:52 INFO train : 1162 loss 0.8156 elapsed 0.63 load 0.20\n",
"22207 14 08:35:52 INFO train : 1163 loss 0.8550 elapsed 0.66 load 0.00\n",
"22207 14 08:35:53 INFO train : 1164 loss 0.8569 elapsed 0.65 load 0.01\n",
"22207 14 08:35:55 INFO train : 1165 loss 0.8270 elapsed 0.54 load 1.11\n",
"22207 14 08:35:55 INFO train : 1166 loss 0.8574 elapsed 0.53 load 0.00\n",
"22207 14 08:35:56 INFO train : 1167 loss 0.8183 elapsed 0.71 load 0.00\n",
"22207 14 08:35:57 INFO train : 1168 loss 0.8654 elapsed 0.68 load 0.02\n",
"22207 14 08:35:58 INFO train : 1169 loss 0.8387 elapsed 0.58 load 1.03\n",
"22207 14 08:35:59 INFO train : 1170 loss 0.8709 elapsed 0.63 load 0.01\n",
"22207 14 08:36:00 INFO train : 1171 loss 0.8917 elapsed 0.65 load 0.00\n",
"22207 14 08:36:00 INFO train : 1172 loss 0.8481 elapsed 0.63 load 0.04\n",
"22207 14 08:36:02 INFO train : 1173 loss 0.8201 elapsed 0.65 load 0.78\n",
"22207 14 08:36:02 INFO train : 1174 loss 0.9127 elapsed 0.67 load 0.00\n",
"22207 14 08:36:03 INFO train : 1175 loss 0.8293 elapsed 0.68 load 0.01\n",
"22207 14 08:36:04 INFO train : 1176 loss 0.8301 elapsed 0.60 load 0.07\n",
"22207 14 08:36:06 INFO train : 1177 loss 0.8584 elapsed 0.54 load 1.17\n",
"22207 14 08:36:06 INFO train : 1178 loss 0.8086 elapsed 0.67 load 0.00\n",
"22207 14 08:36:07 INFO train : 1179 loss 0.8233 elapsed 0.65 load 0.00\n",
"22207 14 08:36:08 INFO train : 1180 loss 0.8935 elapsed 0.67 load 0.01\n",
"22207 14 08:36:09 INFO train : 1181 loss 0.8682 elapsed 0.60 load 0.78\n",
"22207 14 08:36:10 INFO train : 1182 loss 0.8757 elapsed 0.66 load 0.00\n",
"22207 14 08:36:10 INFO train : 1183 loss 0.8079 elapsed 0.67 load 0.00\n",
"22207 14 08:36:11 INFO train : 1184 loss 0.8311 elapsed 0.51 load 0.03\n",
"22207 14 08:36:12 INFO train : 1185 loss 0.8474 elapsed 0.62 load 0.85\n",
"22207 14 08:36:13 INFO train : 1186 loss 0.8429 elapsed 0.68 load 0.00\n",
"22207 14 08:36:14 INFO train : 1187 loss 0.8951 elapsed 0.63 load 0.00\n",
"22207 14 08:36:14 INFO train : 1188 loss 0.8379 elapsed 0.60 load 0.02\n",
"22207 14 08:36:16 INFO train : 1189 loss 0.7991 elapsed 0.57 load 1.05\n",
"22207 14 08:36:17 INFO train : 1190 loss 0.8814 elapsed 0.63 load 0.00\n",
"22207 14 08:36:17 INFO train : 1191 loss 0.8685 elapsed 0.63 load 0.00\n",
"22207 14 08:36:18 INFO train : 1192 loss 0.8819 elapsed 0.63 load 0.02\n",
"22207 14 08:36:20 INFO train : 1193 loss 0.8475 elapsed 0.62 load 0.93\n",
"22207 14 08:36:20 INFO train : 1194 loss 0.8035 elapsed 0.59 load 0.00\n",
"22207 14 08:36:21 INFO train : 1195 loss 0.8468 elapsed 0.59 load 0.09\n",
"22207 14 08:36:22 INFO train : 1196 loss 0.8942 elapsed 0.63 load 0.01\n",
"22207 14 08:36:23 INFO train : 1197 loss 0.8194 elapsed 0.63 load 0.93\n",
"22207 14 08:36:24 INFO train : 1198 loss 0.8393 elapsed 0.55 load 0.00\n",
"22207 14 08:36:24 INFO train : 1199 loss 0.8447 elapsed 0.51 load 0.00\n",
"22207 14 08:36:25 INFO train : 1200 loss 0.8727 elapsed 0.50 load 0.00\n",
"22207 14 08:36:25 INFO train : 1201 loss 0.8401 elapsed 0.48 load 0.00\n",
"22207 14 08:36:26 INFO train : 1202 loss 0.9194 elapsed 0.48 load 0.00\n",
"22207 14 08:36:26 INFO train : 1203 loss 0.8308 elapsed 0.12 load 0.00\n",
"22207 14 08:36:26 INFO Epoch num: 3\n",
"22207 14 08:36:30 INFO train : 1204 loss 0.8529 elapsed 0.55 load 3.84\n",
"22207 14 08:36:31 INFO train : 1205 loss 0.7920 elapsed 0.71 load 0.03\n",
"22207 14 08:36:32 INFO train : 1206 loss 0.7980 elapsed 0.57 load 0.01\n",
"22207 14 08:36:32 INFO train : 1207 loss 0.8280 elapsed 0.62 load 0.02\n",
"22207 14 08:36:34 INFO train : 1208 loss 0.8347 elapsed 0.60 load 1.02\n",
"22207 14 08:36:35 INFO train : 1209 loss 0.8565 elapsed 0.60 load 0.08\n",
"22207 14 08:36:35 INFO train : 1210 loss 0.8324 elapsed 0.57 load 0.00\n",
"22207 14 08:36:36 INFO train : 1211 loss 0.8080 elapsed 0.68 load 0.03\n",
"22207 14 08:36:38 INFO train : 1212 loss 0.8334 elapsed 0.63 load 0.88\n",
"22207 14 08:36:38 INFO train : 1213 loss 0.8566 elapsed 0.65 load 0.00\n",
"22207 14 08:36:39 INFO train : 1214 loss 0.7976 elapsed 0.67 load 0.05\n",
"22207 14 08:36:40 INFO train : 1215 loss 0.8283 elapsed 0.64 load 0.00\n",
"22207 14 08:36:41 INFO train : 1216 loss 0.7980 elapsed 0.62 load 0.95\n",
"22207 14 08:36:42 INFO train : 1217 loss 0.8284 elapsed 0.64 load 0.00\n",
"22207 14 08:36:43 INFO train : 1218 loss 0.8285 elapsed 0.61 load 0.11\n",
"22207 14 08:36:43 INFO train : 1219 loss 0.7927 elapsed 0.57 load 0.00\n",
"22207 14 08:36:45 INFO train : 1220 loss 0.8004 elapsed 0.57 load 0.98\n",
"22207 14 08:36:46 INFO train : 1221 loss 0.8813 elapsed 0.59 load 0.01\n",
"22207 14 08:36:46 INFO train : 1222 loss 0.7925 elapsed 0.55 load 0.05\n",
"22207 14 08:36:47 INFO train : 1223 loss 0.8351 elapsed 0.51 load 0.00\n",
"22207 14 08:36:48 INFO train : 1224 loss 0.8510 elapsed 0.56 load 0.95\n",
"22207 14 08:36:49 INFO train : 1225 loss 0.7962 elapsed 0.63 load 0.07\n",
"22207 14 08:36:50 INFO train : 1226 loss 0.7961 elapsed 0.59 load 0.00\n",
"22207 14 08:36:50 INFO train : 1227 loss 0.7819 elapsed 0.60 load 0.00\n",
"22207 14 08:36:52 INFO train : 1228 loss 0.8369 elapsed 0.62 load 0.97\n",
"22207 14 08:36:52 INFO train : 1229 loss 0.8146 elapsed 0.57 load 0.07\n",
"22207 14 08:36:53 INFO train : 1230 loss 0.8193 elapsed 0.61 load 0.04\n",
"22207 14 08:36:54 INFO train : 1231 loss 0.7932 elapsed 0.58 load 0.00\n",
"22207 14 08:36:55 INFO train : 1232 loss 0.8438 elapsed 0.54 load 1.05\n",
"22207 14 08:36:56 INFO train : 1233 loss 0.8077 elapsed 0.62 load 0.03\n",
"22207 14 08:36:57 INFO train : 1234 loss 0.8356 elapsed 0.66 load 0.06\n",
"22207 14 08:36:57 INFO train : 1235 loss 0.8614 elapsed 0.65 load 0.00\n",
"22207 14 08:36:59 INFO train : 1236 loss 0.8852 elapsed 0.67 load 1.34\n",
"22207 14 08:37:00 INFO train : 1237 loss 0.8145 elapsed 0.68 load 0.00\n",
"22207 14 08:37:01 INFO train : 1238 loss 0.8358 elapsed 0.61 load 0.04\n",
"22207 14 08:37:01 INFO train : 1239 loss 0.7878 elapsed 0.60 load 0.00\n",
"22207 14 08:37:03 INFO train : 1240 loss 0.7977 elapsed 0.66 load 1.12\n",
"22207 14 08:37:04 INFO train : 1241 loss 0.8241 elapsed 0.61 load 0.00\n",
"22207 14 08:37:04 INFO train : 1242 loss 0.8812 elapsed 0.64 load 0.02\n",
"22207 14 08:37:05 INFO train : 1243 loss 0.8291 elapsed 0.62 load 0.01\n",
"22207 14 08:37:07 INFO train : 1244 loss 0.8305 elapsed 0.57 load 0.94\n",
"22207 14 08:37:07 INFO train : 1245 loss 0.7754 elapsed 0.62 load 0.07\n",
"22207 14 08:37:08 INFO train : 1246 loss 0.8003 elapsed 0.60 load 0.00\n",
"22207 14 08:37:09 INFO train : 1247 loss 0.7787 elapsed 0.71 load 0.03\n",
"22207 14 08:37:10 INFO train : 1248 loss 0.8292 elapsed 0.63 load 0.96\n",
"22207 14 08:37:11 INFO train : 1249 loss 0.8155 elapsed 0.63 load 0.05\n",
"22207 14 08:37:12 INFO train : 1250 loss 0.7982 elapsed 0.66 load 0.00\n",
"22207 14 08:37:12 INFO train : 1251 loss 0.7692 elapsed 0.63 load 0.01\n",
"22207 14 08:37:14 INFO train : 1252 loss 0.8356 elapsed 0.56 load 0.58\n",
"22207 14 08:37:14 INFO train : 1253 loss 0.8641 elapsed 0.63 load 0.03\n",
"22207 14 08:37:15 INFO train : 1254 loss 0.8051 elapsed 0.57 load 0.00\n",
"22207 14 08:37:15 INFO train : 1255 loss 0.8089 elapsed 0.58 load 0.05\n",
"22207 14 08:37:17 INFO train : 1256 loss 0.8293 elapsed 0.58 load 1.17\n",
"22207 14 08:37:18 INFO train : 1257 loss 0.8373 elapsed 0.59 load 0.55\n",
"22207 14 08:37:19 INFO train : 1258 loss 0.8378 elapsed 0.63 load 0.00\n",
"22207 14 08:37:20 INFO train : 1259 loss 0.8300 elapsed 0.62 load 0.00\n",
"22207 14 08:37:21 INFO train : 1260 loss 0.8299 elapsed 0.62 load 0.44\n",
"22207 14 08:37:22 INFO train : 1261 loss 0.8216 elapsed 0.62 load 0.50\n",
"22207 14 08:37:23 INFO train : 1262 loss 0.8178 elapsed 0.56 load 0.00\n",
"22207 14 08:37:23 INFO train : 1263 loss 0.8845 elapsed 0.52 load 0.00\n",
"22207 14 08:37:25 INFO train : 1264 loss 0.8071 elapsed 0.61 load 0.89\n",
"22207 14 08:37:25 INFO train : 1265 loss 0.8077 elapsed 0.63 load 0.04\n",
"22207 14 08:37:26 INFO train : 1266 loss 0.8164 elapsed 0.61 load 0.00\n",
"22207 14 08:37:27 INFO train : 1267 loss 0.8190 elapsed 0.70 load 0.00\n",
"22207 14 08:37:28 INFO train : 1268 loss 0.8352 elapsed 0.57 load 0.70\n",
"22207 14 08:37:29 INFO train : 1269 loss 0.8145 elapsed 0.50 load 0.23\n",
"22207 14 08:37:29 INFO train : 1270 loss 0.7538 elapsed 0.57 load 0.00\n",
"22207 14 08:37:30 INFO train : 1271 loss 0.8318 elapsed 0.55 load 0.00\n",
"22207 14 08:37:32 INFO train : 1272 loss 0.8302 elapsed 0.60 load 1.46\n",
"22207 14 08:37:32 INFO train : 1273 loss 0.7776 elapsed 0.58 load 0.01\n",
"22207 14 08:37:33 INFO train : 1274 loss 0.8180 elapsed 0.62 load 0.00\n",
"22207 14 08:37:34 INFO train : 1275 loss 0.7845 elapsed 0.68 load 0.01\n",
"22207 14 08:37:35 INFO train : 1276 loss 0.7987 elapsed 0.52 load 0.75\n",
"22207 14 08:37:36 INFO train : 1277 loss 0.8139 elapsed 0.57 load 0.13\n",
"22207 14 08:37:36 INFO train : 1278 loss 0.8455 elapsed 0.62 load 0.00\n",
"22207 14 08:37:37 INFO train : 1279 loss 0.7974 elapsed 0.65 load 0.08\n",
"22207 14 08:37:39 INFO train : 1280 loss 0.8471 elapsed 0.63 load 1.09\n",
"22207 14 08:37:40 INFO train : 1281 loss 0.8917 elapsed 0.56 load 0.13\n",
"22207 14 08:37:40 INFO train : 1282 loss 0.8146 elapsed 0.64 load 0.00\n",
"22207 14 08:37:41 INFO train : 1283 loss 0.7740 elapsed 0.57 load 0.01\n",
"22207 14 08:37:42 INFO train : 1284 loss 0.8233 elapsed 0.67 load 0.81\n",
"22207 14 08:37:43 INFO train : 1285 loss 0.8009 elapsed 0.56 load 0.16\n",
"22207 14 08:37:44 INFO train : 1286 loss 0.8224 elapsed 0.64 load 0.00\n",
"22207 14 08:37:44 INFO train : 1287 loss 0.8012 elapsed 0.57 load 0.04\n",
"22207 14 08:37:46 INFO train : 1288 loss 0.8452 elapsed 0.57 load 0.84\n",
"22207 14 08:37:47 INFO train : 1289 loss 0.8075 elapsed 0.59 load 0.24\n",
"22207 14 08:37:47 INFO train : 1290 loss 0.8271 elapsed 0.55 load 0.00\n",
"22207 14 08:37:48 INFO train : 1291 loss 0.8264 elapsed 0.64 load 0.04\n",
"22207 14 08:37:49 INFO train : 1292 loss 0.7902 elapsed 0.65 load 0.76\n",
"22207 14 08:37:50 INFO train : 1293 loss 0.8163 elapsed 0.52 load 0.53\n",
"22207 14 08:37:51 INFO train : 1294 loss 0.7862 elapsed 0.56 load 0.00\n",
"22207 14 08:37:52 INFO train : 1295 loss 0.8176 elapsed 0.68 load 0.02\n",
"22207 14 08:37:53 INFO train : 1296 loss 0.8136 elapsed 0.58 load 0.24\n",
"22207 14 08:37:54 INFO train : 1297 loss 0.7980 elapsed 0.53 load 1.24\n",
"22207 14 08:37:55 INFO train : 1298 loss 0.8058 elapsed 0.58 load 0.00\n",
"22207 14 08:37:56 INFO train : 1299 loss 0.8293 elapsed 0.59 load 0.04\n",
"22207 14 08:37:56 INFO train : 1300 loss 0.8309 elapsed 0.63 load 0.00\n",
"22207 14 08:37:58 INFO train : 1301 loss 0.7990 elapsed 0.59 load 0.81\n",
"22207 14 08:37:58 INFO train : 1302 loss 0.8063 elapsed 0.68 load 0.00\n",
"22207 14 08:37:59 INFO train : 1303 loss 0.7917 elapsed 0.59 load 0.01\n",
"22207 14 08:38:00 INFO train : 1304 loss 0.8319 elapsed 0.60 load 0.53\n",
"22207 14 08:38:02 INFO train : 1305 loss 0.8018 elapsed 0.69 load 0.67\n",
"22207 14 08:38:02 INFO train : 1306 loss 0.8362 elapsed 0.62 load 0.00\n",
"22207 14 08:38:03 INFO train : 1307 loss 0.8896 elapsed 0.61 load 0.04\n",
"22207 14 08:38:04 INFO train : 1308 loss 0.8506 elapsed 0.55 load 0.80\n",
"22207 14 08:38:05 INFO train : 1309 loss 0.8561 elapsed 0.58 load 0.26\n",
"22207 14 08:38:06 INFO train : 1310 loss 0.8156 elapsed 0.66 load 0.00\n",
"22207 14 08:38:07 INFO train : 1311 loss 0.8953 elapsed 0.55 load 0.08\n",
"22207 14 08:38:08 INFO train : 1312 loss 0.7773 elapsed 0.57 load 0.71\n",
"22207 14 08:38:08 INFO train : 1313 loss 0.8292 elapsed 0.57 load 0.05\n",
"22207 14 08:38:09 INFO train : 1314 loss 0.8315 elapsed 0.60 load 0.00\n",
"22207 14 08:38:10 INFO train : 1315 loss 0.8115 elapsed 0.59 load 0.29\n",
"22207 14 08:38:11 INFO train : 1316 loss 0.7619 elapsed 0.62 load 0.67\n",
"22207 14 08:38:12 INFO train : 1317 loss 0.7948 elapsed 0.59 load 0.08\n",
"22207 14 08:38:13 INFO train : 1318 loss 0.8278 elapsed 0.56 load 0.00\n",
"22207 14 08:38:13 INFO train : 1319 loss 0.7690 elapsed 0.53 load 0.32\n",
"22207 14 08:38:15 INFO train : 1320 loss 0.8326 elapsed 0.63 load 0.71\n",
"22207 14 08:38:15 INFO train : 1321 loss 0.8710 elapsed 0.55 load 0.01\n",
"22207 14 08:38:16 INFO train : 1322 loss 0.7860 elapsed 0.62 load 0.00\n",
"22207 14 08:38:17 INFO train : 1323 loss 0.7724 elapsed 0.55 load 0.21\n",
"22207 14 08:38:18 INFO train : 1324 loss 0.7949 elapsed 0.59 load 0.59\n",
"22207 14 08:38:19 INFO train : 1325 loss 0.7923 elapsed 0.61 load 0.39\n",
"22207 14 08:38:20 INFO train : 1326 loss 0.8436 elapsed 0.50 load 0.00\n",
"22207 14 08:38:20 INFO train : 1327 loss 0.7716 elapsed 0.55 load 0.27\n",
"22207 14 08:38:22 INFO train : 1328 loss 0.8319 elapsed 0.65 load 0.45\n",
"22207 14 08:38:23 INFO train : 1329 loss 0.7754 elapsed 0.60 load 0.65\n",
"22207 14 08:38:23 INFO train : 1330 loss 0.8474 elapsed 0.54 load 0.00\n",
"22207 14 08:38:24 INFO train : 1331 loss 0.7831 elapsed 0.64 load 0.05\n",
"22207 14 08:38:25 INFO train : 1332 loss 0.8210 elapsed 0.54 load 0.21\n",
"22207 14 08:38:26 INFO train : 1333 loss 0.8128 elapsed 0.59 load 0.62\n",
"22207 14 08:38:27 INFO train : 1334 loss 0.8053 elapsed 0.64 load 0.00\n",
"22207 14 08:38:27 INFO train : 1335 loss 0.8144 elapsed 0.57 load 0.02\n",
"22207 14 08:38:28 INFO train : 1336 loss 0.7803 elapsed 0.62 load 0.32\n",
"22207 14 08:38:29 INFO train : 1337 loss 0.7934 elapsed 0.64 load 0.47\n",
"22207 14 08:38:30 INFO train : 1338 loss 0.7890 elapsed 0.67 load 0.00\n",
"22207 14 08:38:31 INFO train : 1339 loss 0.7985 elapsed 0.59 load 0.07\n",
"22207 14 08:38:32 INFO train : 1340 loss 0.8003 elapsed 0.62 load 0.96\n",
"22207 14 08:38:33 INFO train : 1341 loss 0.8254 elapsed 0.53 load 0.07\n",
"22207 14 08:38:34 INFO train : 1342 loss 0.8017 elapsed 0.62 load 0.00\n",
"22207 14 08:38:34 INFO train : 1343 loss 0.8271 elapsed 0.66 load 0.01\n",
"22207 14 08:38:36 INFO train : 1344 loss 0.7886 elapsed 0.62 load 0.75\n",
"22207 14 08:38:36 INFO train : 1345 loss 0.7988 elapsed 0.61 load 0.01\n",
"22207 14 08:38:37 INFO train : 1346 loss 0.8142 elapsed 0.53 load 0.00\n",
"22207 14 08:38:38 INFO train : 1347 loss 0.7724 elapsed 0.60 load 0.16\n",
"22207 14 08:38:39 INFO train : 1348 loss 0.7962 elapsed 0.62 load 0.91\n",
"22207 14 08:38:40 INFO train : 1349 loss 0.7616 elapsed 0.58 load 0.17\n",
"22207 14 08:38:41 INFO train : 1350 loss 0.8055 elapsed 0.57 load 0.00\n",
"22207 14 08:38:41 INFO train : 1351 loss 0.8310 elapsed 0.56 load 0.04\n",
"22207 14 08:38:43 INFO train : 1352 loss 0.7874 elapsed 0.54 load 0.96\n",
"22207 14 08:38:44 INFO train : 1353 loss 0.7717 elapsed 0.54 load 0.44\n",
"22207 14 08:38:44 INFO train : 1354 loss 0.8105 elapsed 0.64 load 0.00\n",
"22207 14 08:38:45 INFO train : 1355 loss 0.8069 elapsed 0.66 load 0.01\n",
"22207 14 08:38:46 INFO train : 1356 loss 0.7590 elapsed 0.61 load 0.32\n",
"22207 14 08:38:48 INFO train : 1357 loss 0.8224 elapsed 0.63 load 0.70\n",
"22207 14 08:38:48 INFO train : 1358 loss 0.7868 elapsed 0.61 load 0.00\n",
"22207 14 08:38:49 INFO train : 1359 loss 0.7803 elapsed 0.62 load 0.03\n",
"22207 14 08:38:50 INFO train : 1360 loss 0.7600 elapsed 0.57 load 0.17\n",
"22207 14 08:38:51 INFO train : 1361 loss 0.7985 elapsed 0.62 load 1.08\n",
"22207 14 08:38:52 INFO train : 1362 loss 0.7691 elapsed 0.57 load 0.01\n",
"22207 14 08:38:53 INFO train : 1363 loss 0.8384 elapsed 0.57 load 0.01\n",
"22207 14 08:38:53 INFO train : 1364 loss 0.8434 elapsed 0.62 load 0.04\n",
"22207 14 08:38:55 INFO train : 1365 loss 0.8216 elapsed 0.59 load 1.37\n",
"22207 14 08:38:56 INFO train : 1366 loss 0.8134 elapsed 0.57 load 0.00\n",
"22207 14 08:38:56 INFO train : 1367 loss 0.7690 elapsed 0.57 load 0.00\n",
"22207 14 08:38:57 INFO train : 1368 loss 0.8297 elapsed 0.62 load 0.08\n",
"22207 14 08:38:58 INFO train : 1369 loss 0.8124 elapsed 0.55 load 0.56\n",
"22207 14 08:38:59 INFO train : 1370 loss 0.7998 elapsed 0.59 load 0.00\n",
"22207 14 08:39:00 INFO train : 1371 loss 0.8862 elapsed 0.65 load 0.00\n",
"22207 14 08:39:00 INFO train : 1372 loss 0.8143 elapsed 0.63 load 0.02\n",
"22207 14 08:39:02 INFO train : 1373 loss 0.8017 elapsed 0.57 load 1.30\n",
"22207 14 08:39:03 INFO train : 1374 loss 0.7726 elapsed 0.65 load 0.04\n",
"22207 14 08:39:03 INFO train : 1375 loss 0.8208 elapsed 0.63 load 0.00\n",
"22207 14 08:39:04 INFO train : 1376 loss 0.7905 elapsed 0.58 load 0.10\n",
"22207 14 08:39:05 INFO train : 1377 loss 0.7829 elapsed 0.62 load 0.52\n",
"22207 14 08:39:06 INFO train : 1378 loss 0.8090 elapsed 0.61 load 0.00\n",
"22207 14 08:39:07 INFO train : 1379 loss 0.8323 elapsed 0.64 load 0.00\n",
"22207 14 08:39:07 INFO train : 1380 loss 0.8146 elapsed 0.62 load 0.01\n",
"22207 14 08:39:09 INFO train : 1381 loss 0.8147 elapsed 0.61 load 1.15\n",
"22207 14 08:39:10 INFO train : 1382 loss 0.8052 elapsed 0.70 load 0.00\n",
"22207 14 08:39:10 INFO train : 1383 loss 0.7783 elapsed 0.54 load 0.00\n",
"22207 14 08:39:11 INFO train : 1384 loss 0.8375 elapsed 0.64 load 0.12\n",
"22207 14 08:39:13 INFO train : 1385 loss 0.7845 elapsed 0.62 load 0.78\n",
"22207 14 08:39:13 INFO train : 1386 loss 0.8573 elapsed 0.60 load 0.00\n",
"22207 14 08:39:14 INFO train : 1387 loss 0.8250 elapsed 0.55 load 0.00\n",
"22207 14 08:39:14 INFO train : 1388 loss 0.7687 elapsed 0.61 load 0.03\n",
"22207 14 08:39:16 INFO train : 1389 loss 0.7915 elapsed 0.57 load 0.86\n",
"22207 14 08:39:16 INFO train : 1390 loss 0.8171 elapsed 0.58 load 0.00\n",
"22207 14 08:39:17 INFO train : 1391 loss 0.7908 elapsed 0.60 load 0.00\n",
"22207 14 08:39:18 INFO train : 1392 loss 0.7754 elapsed 0.61 load 0.14\n",
"22207 14 08:39:20 INFO train : 1393 loss 0.8327 elapsed 0.56 load 1.24\n",
"22207 14 08:39:20 INFO train : 1394 loss 0.9403 elapsed 0.60 load 0.00\n",
"22207 14 08:39:21 INFO train : 1395 loss 0.8269 elapsed 0.63 load 0.00\n",
"22207 14 08:39:22 INFO train : 1396 loss 0.8289 elapsed 0.64 load 0.04\n",
"22207 14 08:39:23 INFO train : 1397 loss 0.7812 elapsed 0.71 load 1.00\n",
"22207 14 08:39:24 INFO train : 1398 loss 0.8382 elapsed 0.70 load 0.00\n",
"22207 14 08:39:25 INFO train : 1399 loss 0.7973 elapsed 0.61 load 0.01\n",
"22207 14 08:39:25 INFO train : 1400 loss 0.7868 elapsed 0.60 load 0.06\n",
"22207 14 08:39:27 INFO train : 1401 loss 0.7870 elapsed 0.57 load 0.82\n",
"22207 14 08:39:27 INFO train : 1402 loss 0.7695 elapsed 0.49 load 0.00\n",
"22207 14 08:39:28 INFO train : 1403 loss 0.8076 elapsed 0.64 load 0.00\n",
"22207 14 08:39:29 INFO train : 1404 loss 0.8416 elapsed 0.51 load 0.27\n",
"22207 14 08:39:30 INFO train : 1405 loss 0.8304 elapsed 0.63 load 1.01\n",
"22207 14 08:39:31 INFO train : 1406 loss 0.8138 elapsed 0.65 load 0.00\n",
"22207 14 08:39:32 INFO train : 1407 loss 0.7612 elapsed 0.59 load 0.00\n",
"22207 14 08:39:32 INFO train : 1408 loss 0.7459 elapsed 0.65 load 0.04\n",
"22207 14 08:39:34 INFO train : 1409 loss 0.8042 elapsed 0.56 load 0.80\n",
"22207 14 08:39:34 INFO train : 1410 loss 0.7699 elapsed 0.58 load 0.00\n",
"22207 14 08:39:35 INFO train : 1411 loss 0.8031 elapsed 0.64 load 0.00\n",
"22207 14 08:39:36 INFO train : 1412 loss 0.8544 elapsed 0.59 load 0.13\n",
"22207 14 08:39:37 INFO train : 1413 loss 0.7589 elapsed 0.62 load 1.04\n",
"22207 14 08:39:38 INFO train : 1414 loss 0.7833 elapsed 0.64 load 0.00\n",
"22207 14 08:39:39 INFO train : 1415 loss 0.8021 elapsed 0.61 load 0.00\n",
"22207 14 08:39:39 INFO train : 1416 loss 0.8223 elapsed 0.58 load 0.08\n",
"22207 14 08:39:41 INFO train : 1417 loss 0.7786 elapsed 0.55 load 0.64\n",
"22207 14 08:39:41 INFO train : 1418 loss 0.7911 elapsed 0.66 load 0.00\n",
"22207 14 08:39:42 INFO train : 1419 loss 0.8289 elapsed 0.58 load 0.00\n",
"22207 14 08:39:43 INFO train : 1420 loss 0.8002 elapsed 0.64 load 0.03\n",
"22207 14 08:39:44 INFO train : 1421 loss 0.8035 elapsed 0.58 load 1.08\n",
"22207 14 08:39:45 INFO train : 1422 loss 0.8005 elapsed 0.65 load 0.00\n",
"22207 14 08:39:46 INFO train : 1423 loss 0.8094 elapsed 0.68 load 0.00\n",
"22207 14 08:39:46 INFO train : 1424 loss 0.7630 elapsed 0.59 load 0.13\n",
"22207 14 08:39:48 INFO train : 1425 loss 0.7785 elapsed 0.64 load 0.64\n",
"22207 14 08:39:48 INFO train : 1426 loss 0.7634 elapsed 0.67 load 0.00\n",
"22207 14 08:39:49 INFO train : 1427 loss 0.7961 elapsed 0.65 load 0.02\n",
"22207 14 08:39:50 INFO train : 1428 loss 0.7705 elapsed 0.56 load 0.23\n",
"22207 14 08:39:51 INFO train : 1429 loss 0.7620 elapsed 0.56 load 0.81\n",
"22207 14 08:39:52 INFO train : 1430 loss 0.8815 elapsed 0.56 load 0.00\n",
"22207 14 08:39:53 INFO train : 1431 loss 0.8040 elapsed 0.71 load 0.01\n",
"22207 14 08:39:53 INFO train : 1432 loss 0.7860 elapsed 0.59 load 0.05\n",
"22207 14 08:39:55 INFO train : 1433 loss 0.8385 elapsed 0.60 load 0.97\n",
"22207 14 08:39:56 INFO train : 1434 loss 0.7488 elapsed 0.60 load 0.00\n",
"22207 14 08:39:56 INFO train : 1435 loss 0.7685 elapsed 0.56 load 0.00\n",
"22207 14 08:39:57 INFO train : 1436 loss 0.8312 elapsed 0.68 load 0.07\n",
"22207 14 08:39:59 INFO train : 1437 loss 0.9154 elapsed 0.61 load 1.42\n",
"22207 14 08:40:00 INFO train : 1438 loss 0.8317 elapsed 0.71 load 0.01\n",
"22207 14 08:40:00 INFO train : 1439 loss 0.8020 elapsed 0.64 load 0.00\n",
"22207 14 08:40:01 INFO train : 1440 loss 0.7960 elapsed 0.62 load 0.01\n",
"22207 14 08:40:03 INFO train : 1441 loss 0.7577 elapsed 0.59 load 0.97\n",
"22207 14 08:40:03 INFO train : 1442 loss 0.7713 elapsed 0.50 load 0.00\n",
"22207 14 08:40:04 INFO train : 1443 loss 0.8001 elapsed 0.63 load 0.02\n",
"22207 14 08:40:04 INFO train : 1444 loss 0.8418 elapsed 0.64 load 0.10\n",
"22207 14 08:40:06 INFO train : 1445 loss 0.7737 elapsed 0.64 load 1.17\n",
"22207 14 08:40:07 INFO train : 1446 loss 0.7834 elapsed 0.66 load 0.02\n",
"22207 14 08:40:08 INFO train : 1447 loss 0.8455 elapsed 0.60 load 0.02\n",
"22207 14 08:40:08 INFO train : 1448 loss 0.7939 elapsed 0.57 load 0.04\n",
"22207 14 08:40:10 INFO train : 1449 loss 0.8046 elapsed 0.59 load 1.03\n",
"22207 14 08:40:11 INFO train : 1450 loss 0.7972 elapsed 0.65 load 0.03\n",
"22207 14 08:40:11 INFO train : 1451 loss 0.8247 elapsed 0.59 load 0.03\n",
"22207 14 08:40:12 INFO train : 1452 loss 0.7570 elapsed 0.65 load 0.07\n",
"22207 14 08:40:14 INFO train : 1453 loss 0.8311 elapsed 0.58 load 0.93\n",
"22207 14 08:40:14 INFO train : 1454 loss 0.8333 elapsed 0.53 load 0.00\n",
"22207 14 08:40:15 INFO train : 1455 loss 0.7903 elapsed 0.70 load 0.01\n",
"22207 14 08:40:16 INFO train : 1456 loss 0.8017 elapsed 0.69 load 0.01\n",
"22207 14 08:40:17 INFO train : 1457 loss 0.8124 elapsed 0.51 load 0.77\n",
"22207 14 08:40:18 INFO train : 1458 loss 0.8110 elapsed 0.63 load 0.06\n",
"22207 14 08:40:18 INFO train : 1459 loss 0.8274 elapsed 0.62 load 0.03\n",
"22207 14 08:40:19 INFO train : 1460 loss 0.7486 elapsed 0.66 load 0.00\n",
"22207 14 08:40:20 INFO train : 1461 loss 0.7867 elapsed 0.49 load 0.68\n",
"22207 14 08:40:21 INFO train : 1462 loss 0.7723 elapsed 0.56 load 0.00\n",
"22207 14 08:40:21 INFO train : 1463 loss 0.7479 elapsed 0.61 load 0.02\n",
"22207 14 08:40:22 INFO train : 1464 loss 0.8096 elapsed 0.55 load 0.04\n",
"22207 14 08:40:24 INFO train : 1465 loss 0.7899 elapsed 0.56 load 1.27\n",
"22207 14 08:40:24 INFO train : 1466 loss 0.7847 elapsed 0.63 load 0.00\n",
"22207 14 08:40:25 INFO train : 1467 loss 0.7873 elapsed 0.57 load 0.07\n",
"22207 14 08:40:26 INFO train : 1468 loss 0.7736 elapsed 0.67 load 0.00\n",
"22207 14 08:40:27 INFO train : 1469 loss 0.8595 elapsed 0.57 load 0.51\n",
"22207 14 08:40:27 INFO train : 1470 loss 0.8650 elapsed 0.55 load 0.00\n",
"22207 14 08:40:28 INFO train : 1471 loss 0.7800 elapsed 0.58 load 0.04\n",
"22207 14 08:40:29 INFO train : 1472 loss 0.7598 elapsed 0.58 load 0.00\n",
"22207 14 08:40:30 INFO train : 1473 loss 0.8151 elapsed 0.54 load 0.99\n",
"22207 14 08:40:31 INFO train : 1474 loss 0.8025 elapsed 0.52 load 0.00\n",
"22207 14 08:40:32 INFO train : 1475 loss 0.7996 elapsed 0.68 load 0.00\n",
"22207 14 08:40:32 INFO train : 1476 loss 0.8342 elapsed 0.60 load 0.05\n",
"22207 14 08:40:34 INFO train : 1477 loss 0.8509 elapsed 0.55 load 1.57\n",
"22207 14 08:40:35 INFO train : 1478 loss 0.8035 elapsed 0.66 load 0.00\n",
"22207 14 08:40:36 INFO train : 1479 loss 0.8958 elapsed 0.66 load 0.01\n",
"22207 14 08:40:36 INFO train : 1480 loss 0.8076 elapsed 0.62 load 0.03\n",
"22207 14 08:40:38 INFO train : 1481 loss 0.7528 elapsed 0.63 load 0.94\n",
"22207 14 08:40:39 INFO train : 1482 loss 0.7895 elapsed 0.64 load 0.00\n",
"22207 14 08:40:39 INFO train : 1483 loss 0.7980 elapsed 0.61 load 0.04\n",
"22207 14 08:40:40 INFO train : 1484 loss 0.7679 elapsed 0.59 load 0.14\n",
"22207 14 08:40:41 INFO train : 1485 loss 0.8368 elapsed 0.56 load 0.79\n",
"22207 14 08:40:42 INFO train : 1486 loss 0.7792 elapsed 0.65 load 0.00\n",
"22207 14 08:40:43 INFO train : 1487 loss 0.8224 elapsed 0.63 load 0.00\n",
"22207 14 08:40:44 INFO train : 1488 loss 0.8089 elapsed 0.58 load 0.12\n",
"22207 14 08:40:45 INFO train : 1489 loss 0.7643 elapsed 0.60 load 1.13\n",
"22207 14 08:40:46 INFO train : 1490 loss 0.8226 elapsed 0.61 load 0.00\n",
"22207 14 08:40:47 INFO train : 1491 loss 0.7563 elapsed 0.64 load 0.00\n",
"22207 14 08:40:47 INFO train : 1492 loss 0.7771 elapsed 0.59 load 0.05\n",
"22207 14 08:40:48 INFO train : 1493 loss 0.8628 elapsed 0.57 load 0.30\n",
"22207 14 08:40:49 INFO train : 1494 loss 0.7950 elapsed 0.63 load 0.00\n",
"22207 14 08:40:50 INFO train : 1495 loss 0.8039 elapsed 0.64 load 0.05\n",
"22207 14 08:40:50 INFO train : 1496 loss 0.7925 elapsed 0.57 load 0.07\n",
"22207 14 08:40:52 INFO train : 1497 loss 0.8219 elapsed 0.63 load 0.76\n",
"22207 14 08:40:52 INFO train : 1498 loss 0.8185 elapsed 0.54 load 0.00\n",
"22207 14 08:40:53 INFO train : 1499 loss 0.7564 elapsed 0.62 load 0.02\n",
"22207 14 08:40:53 INFO train : 1500 loss 0.7815 elapsed 0.61 load 0.01\n",
"22207 14 08:40:53 INFO Running validation\n",
"22207 14 08:41:15 INFO Logging 20 images\n",
"22207 14 08:41:16 INFO Logging 20 audios\n",
"22207 14 08:41:19 INFO Logging 20 texts\n",
"22207 14 08:41:30 INFO val : 1500 loss 0.7064799666404724\n",
"22207 14 08:41:30 INFO Saving model state at step 1500 to checkpoints/fp_step_00001500.pt\n",
"22207 14 08:41:31 INFO train : 1501 loss 0.7708 elapsed 0.52 load 0.00\n",
"22207 14 08:41:31 INFO train : 1502 loss 0.7702 elapsed 0.52 load 0.00\n",
"22207 14 08:41:32 INFO train : 1503 loss 0.7794 elapsed 0.53 load 0.01\n",
"22207 14 08:41:33 INFO train : 1504 loss 0.8370 elapsed 0.65 load 0.07\n",
"22207 14 08:41:33 INFO train : 1505 loss 0.7519 elapsed 0.57 load 0.01\n",
"22207 14 08:41:34 INFO train : 1506 loss 0.7691 elapsed 0.65 load 0.00\n",
"22207 14 08:41:35 INFO train : 1507 loss 0.7806 elapsed 0.65 load 0.01\n",
"22207 14 08:41:35 INFO train : 1508 loss 0.8467 elapsed 0.55 load 0.00\n",
"22207 14 08:41:36 INFO train : 1509 loss 0.8339 elapsed 0.54 load 0.00\n",
"22207 14 08:41:36 INFO train : 1510 loss 0.7534 elapsed 0.58 load 0.04\n",
"22207 14 08:41:37 INFO train : 1511 loss 0.7876 elapsed 0.51 load 0.10\n",
"22207 14 08:41:38 INFO train : 1512 loss 0.7712 elapsed 0.59 load 0.02\n",
"22207 14 08:41:38 INFO train : 1513 loss 0.8103 elapsed 0.56 load 0.05\n",
"22207 14 08:41:39 INFO train : 1514 loss 0.8125 elapsed 0.60 load 0.00\n",
"22207 14 08:41:40 INFO train : 1515 loss 0.7742 elapsed 0.59 load 0.01\n",
"22207 14 08:41:40 INFO train : 1516 loss 0.7451 elapsed 0.64 load 0.00\n",
"22207 14 08:41:41 INFO train : 1517 loss 0.7633 elapsed 0.61 load 0.06\n",
"22207 14 08:41:42 INFO train : 1518 loss 0.8231 elapsed 0.56 load 0.13\n",
"22207 14 08:41:42 INFO train : 1519 loss 0.7992 elapsed 0.62 load 0.32\n",
"22207 14 08:41:43 INFO train : 1520 loss 0.8047 elapsed 0.63 load 0.03\n",
"22207 14 08:41:44 INFO train : 1521 loss 0.8075 elapsed 0.60 load 0.16\n",
"22207 14 08:41:45 INFO train : 1522 loss 0.7743 elapsed 0.65 load 0.54\n",
"22207 14 08:41:46 INFO train : 1523 loss 0.7684 elapsed 0.61 load 0.07\n",
"22207 14 08:41:46 INFO train : 1524 loss 0.7837 elapsed 0.59 load 0.00\n",
"22207 14 08:41:48 INFO train : 1525 loss 0.8119 elapsed 0.59 load 0.76\n",
"22207 14 08:41:48 INFO train : 1526 loss 0.8185 elapsed 0.59 load 0.01\n",
"22207 14 08:41:49 INFO train : 1527 loss 0.7886 elapsed 0.70 load 0.00\n",
"22207 14 08:41:50 INFO train : 1528 loss 0.9084 elapsed 0.58 load 0.08\n",
"22207 14 08:41:51 INFO train : 1529 loss 0.7866 elapsed 0.62 load 0.94\n",
"22207 14 08:41:52 INFO train : 1530 loss 0.7920 elapsed 0.58 load 0.15\n",
"22207 14 08:41:53 INFO train : 1531 loss 0.7733 elapsed 0.69 load 0.02\n",
"22207 14 08:41:54 INFO train : 1532 loss 0.8456 elapsed 0.62 load 0.00\n",
"22207 14 08:41:55 INFO train : 1533 loss 0.7394 elapsed 0.61 load 1.16\n",
"22207 14 08:41:56 INFO train : 1534 loss 0.8229 elapsed 0.56 load 0.08\n",
"22207 14 08:41:57 INFO train : 1535 loss 0.8247 elapsed 0.65 load 0.00\n",
"22207 14 08:41:57 INFO train : 1536 loss 0.7602 elapsed 0.61 load 0.02\n",
"22207 14 08:41:59 INFO train : 1537 loss 0.7802 elapsed 0.57 load 1.11\n",
"22207 14 08:42:00 INFO train : 1538 loss 0.7524 elapsed 0.58 load 0.00\n",
"22207 14 08:42:00 INFO train : 1539 loss 0.7826 elapsed 0.63 load 0.01\n",
"22207 14 08:42:01 INFO train : 1540 loss 0.7775 elapsed 0.60 load 0.03\n",
"22207 14 08:42:03 INFO train : 1541 loss 0.7856 elapsed 0.60 load 1.28\n",
"22207 14 08:42:04 INFO train : 1542 loss 0.7972 elapsed 0.65 load 0.04\n",
"22207 14 08:42:04 INFO train : 1543 loss 0.7978 elapsed 0.61 load 0.06\n",
"22207 14 08:42:05 INFO train : 1544 loss 0.8085 elapsed 0.66 load 0.00\n",
"22207 14 08:42:06 INFO train : 1545 loss 0.7945 elapsed 0.50 load 0.84\n",
"22207 14 08:42:07 INFO train : 1546 loss 0.7945 elapsed 0.63 load 0.01\n",
"22207 14 08:42:08 INFO train : 1547 loss 0.8011 elapsed 0.65 load 0.04\n",
"22207 14 08:42:08 INFO train : 1548 loss 0.8443 elapsed 0.71 load 0.00\n",
"22207 14 08:42:10 INFO train : 1549 loss 0.7262 elapsed 0.62 load 0.54\n",
"22207 14 08:42:10 INFO train : 1550 loss 0.7619 elapsed 0.63 load 0.04\n",
"22207 14 08:42:11 INFO train : 1551 loss 0.8003 elapsed 0.66 load 0.00\n",
"22207 14 08:42:12 INFO train : 1552 loss 0.7925 elapsed 0.55 load 0.01\n",
"22207 14 08:42:13 INFO train : 1553 loss 0.7538 elapsed 0.65 load 0.92\n",
"22207 14 08:42:14 INFO train : 1554 loss 0.7889 elapsed 0.60 load 0.02\n",
"22207 14 08:42:15 INFO train : 1555 loss 0.7313 elapsed 0.61 load 0.12\n",
"22207 14 08:42:15 INFO train : 1556 loss 0.8062 elapsed 0.64 load 0.00\n",
"22207 14 08:42:17 INFO train : 1557 loss 0.8223 elapsed 0.52 load 0.83\n",
"22207 14 08:42:17 INFO train : 1558 loss 0.8615 elapsed 0.59 load 0.10\n",
"22207 14 08:42:18 INFO train : 1559 loss 0.7354 elapsed 0.68 load 0.01\n",
"22207 14 08:42:19 INFO train : 1560 loss 0.7770 elapsed 0.61 load 0.06\n",
"22207 14 08:42:20 INFO train : 1561 loss 0.7104 elapsed 0.53 load 0.76\n",
"22207 14 08:42:21 INFO train : 1562 loss 0.7831 elapsed 0.64 load 0.43\n",
"22207 14 08:42:22 INFO train : 1563 loss 0.7610 elapsed 0.65 load 0.00\n",
"22207 14 08:42:22 INFO train : 1564 loss 0.7793 elapsed 0.60 load 0.04\n",
"22207 14 08:42:24 INFO train : 1565 loss 0.7946 elapsed 0.66 load 0.88\n",
"22207 14 08:42:25 INFO train : 1566 loss 0.7912 elapsed 0.58 load 0.07\n",
"22207 14 08:42:25 INFO train : 1567 loss 0.7516 elapsed 0.56 load 0.00\n",
"22207 14 08:42:26 INFO train : 1568 loss 0.7579 elapsed 0.67 load 0.00\n",
"22207 14 08:42:28 INFO train : 1569 loss 0.7588 elapsed 0.63 load 1.04\n",
"22207 14 08:42:29 INFO train : 1570 loss 0.8209 elapsed 0.61 load 0.32\n",
"22207 14 08:42:29 INFO train : 1571 loss 0.7800 elapsed 0.61 load 0.00\n",
"22207 14 08:42:30 INFO train : 1572 loss 0.7363 elapsed 0.66 load 0.00\n",
"22207 14 08:42:31 INFO train : 1573 loss 0.8116 elapsed 0.65 load 0.30\n",
"22207 14 08:42:32 INFO train : 1574 loss 0.7455 elapsed 0.63 load 0.46\n",
"22207 14 08:42:33 INFO train : 1575 loss 0.8512 elapsed 0.59 load 0.01\n",
"22207 14 08:42:33 INFO train : 1576 loss 0.7618 elapsed 0.58 load 0.00\n",
"22207 14 08:42:34 INFO train : 1577 loss 0.7660 elapsed 0.57 load 0.61\n",
"22207 14 08:42:35 INFO train : 1578 loss 0.7519 elapsed 0.64 load 0.34\n",
"22207 14 08:42:36 INFO train : 1579 loss 0.7828 elapsed 0.59 load 0.00\n",
"22207 14 08:42:37 INFO train : 1580 loss 0.7802 elapsed 0.65 load 0.00\n",
"22207 14 08:42:38 INFO train : 1581 loss 0.7355 elapsed 0.56 load 0.83\n",
"22207 14 08:42:39 INFO train : 1582 loss 0.7823 elapsed 0.57 load 0.45\n",
"22207 14 08:42:40 INFO train : 1583 loss 0.7341 elapsed 0.70 load 0.00\n",
"22207 14 08:42:40 INFO train : 1584 loss 0.7713 elapsed 0.64 load 0.00\n",
"22207 14 08:42:42 INFO train : 1585 loss 0.7970 elapsed 0.57 load 0.80\n",
"22207 14 08:42:43 INFO train : 1586 loss 0.7542 elapsed 0.55 load 0.08\n",
"22207 14 08:42:43 INFO train : 1587 loss 0.7950 elapsed 0.56 load 0.00\n",
"22207 14 08:42:44 INFO train : 1588 loss 0.8286 elapsed 0.60 load 0.00\n",
"22207 14 08:42:45 INFO train : 1589 loss 0.8493 elapsed 0.56 load 0.95\n",
"22207 14 08:42:46 INFO train : 1590 loss 0.8311 elapsed 0.62 load 0.24\n",
"22207 14 08:42:47 INFO train : 1591 loss 0.7939 elapsed 0.61 load 0.02\n",
"22207 14 08:42:47 INFO train : 1592 loss 0.7597 elapsed 0.60 load 0.00\n",
"22207 14 08:42:49 INFO train : 1593 loss 0.7652 elapsed 0.56 load 0.76\n",
"22207 14 08:42:50 INFO train : 1594 loss 0.8051 elapsed 0.56 load 0.35\n",
"22207 14 08:42:50 INFO train : 1595 loss 0.7531 elapsed 0.67 load 0.00\n",
"22207 14 08:42:51 INFO train : 1596 loss 0.8280 elapsed 0.57 load 0.09\n",
"22207 14 08:42:53 INFO train : 1597 loss 0.8038 elapsed 0.68 load 0.83\n",
"22207 14 08:42:53 INFO train : 1598 loss 0.7821 elapsed 0.59 load 0.15\n",
"22207 14 08:42:54 INFO train : 1599 loss 0.7615 elapsed 0.61 load 0.00\n",
"22207 14 08:42:55 INFO train : 1600 loss 0.8184 elapsed 0.57 load 0.00\n",
"22207 14 08:42:55 INFO train : 1601 loss 0.7846 elapsed 0.50 load 0.04\n",
"22207 14 08:42:56 INFO train : 1602 loss 0.7679 elapsed 0.50 load 0.00\n",
"22207 14 08:42:56 INFO train : 1603 loss 0.7794 elapsed 0.48 load 0.00\n",
"22207 14 08:42:56 INFO train : 1604 loss 0.7884 elapsed 0.13 load 0.00\n",
"22207 14 08:42:56 INFO Epoch num: 4\n",
"22207 14 08:43:01 INFO train : 1605 loss 0.7671 elapsed 0.59 load 3.99\n",
"22207 14 08:43:02 INFO train : 1606 loss 0.7503 elapsed 0.63 load 0.00\n",
"22207 14 08:43:02 INFO train : 1607 loss 0.7586 elapsed 0.58 load 0.00\n",
"22207 14 08:43:03 INFO train : 1608 loss 0.7552 elapsed 0.53 load 0.01\n",
"22207 14 08:43:05 INFO train : 1609 loss 0.7270 elapsed 0.68 load 1.53\n",
"22207 14 08:43:06 INFO train : 1610 loss 0.7805 elapsed 0.63 load 0.04\n",
"22207 14 08:43:06 INFO train : 1611 loss 0.7861 elapsed 0.57 load 0.00\n",
"22207 14 08:43:07 INFO train : 1612 loss 0.7527 elapsed 0.65 load 0.00\n",
"22207 14 08:43:09 INFO train : 1613 loss 0.7444 elapsed 0.60 load 1.55\n",
"22207 14 08:43:10 INFO train : 1614 loss 0.7524 elapsed 0.57 load 0.00\n",
"22207 14 08:43:10 INFO train : 1615 loss 0.7530 elapsed 0.66 load 0.00\n",
"22207 14 08:43:11 INFO train : 1616 loss 0.7079 elapsed 0.59 load 0.00\n",
"22207 14 08:43:12 INFO train : 1617 loss 0.7431 elapsed 0.57 load 0.95\n",
"22207 14 08:43:13 INFO train : 1618 loss 0.7270 elapsed 0.58 load 0.00\n",
"22207 14 08:43:14 INFO train : 1619 loss 0.7399 elapsed 0.59 load 0.00\n",
"22207 14 08:43:14 INFO train : 1620 loss 0.8062 elapsed 0.52 load 0.00\n",
"22207 14 08:43:16 INFO train : 1621 loss 0.7249 elapsed 0.58 load 1.30\n",
"22207 14 08:43:17 INFO train : 1622 loss 0.7928 elapsed 0.60 load 0.00\n",
"22207 14 08:43:17 INFO train : 1623 loss 0.7364 elapsed 0.69 load 0.00\n",
"22207 14 08:43:18 INFO train : 1624 loss 0.7461 elapsed 0.57 load 0.00\n",
"22207 14 08:43:19 INFO train : 1625 loss 0.7316 elapsed 0.68 load 0.77\n",
"22207 14 08:43:20 INFO train : 1626 loss 0.7622 elapsed 0.64 load 0.00\n",
"22207 14 08:43:21 INFO train : 1627 loss 0.7747 elapsed 0.66 load 0.00\n",
"22207 14 08:43:21 INFO train : 1628 loss 0.7703 elapsed 0.58 load 0.00\n",
"22207 14 08:43:23 INFO train : 1629 loss 0.7660 elapsed 0.68 load 1.00\n",
"22207 14 08:43:24 INFO train : 1630 loss 0.7344 elapsed 0.60 load 0.01\n",
"22207 14 08:43:24 INFO train : 1631 loss 0.7600 elapsed 0.60 load 0.00\n",
"22207 14 08:43:25 INFO train : 1632 loss 0.7596 elapsed 0.61 load 0.00\n",
"22207 14 08:43:27 INFO train : 1633 loss 0.7386 elapsed 0.54 load 0.96\n",
"22207 14 08:43:27 INFO train : 1634 loss 0.7443 elapsed 0.55 load 0.00\n",
"22207 14 08:43:28 INFO train : 1635 loss 0.6882 elapsed 0.61 load 0.00\n",
"22207 14 08:43:28 INFO train : 1636 loss 0.7794 elapsed 0.58 load 0.00\n",
"22207 14 08:43:31 INFO train : 1637 loss 0.7397 elapsed 0.59 load 1.53\n",
"22207 14 08:43:31 INFO train : 1638 loss 0.7657 elapsed 0.60 load 0.00\n",
"22207 14 08:43:32 INFO train : 1639 loss 0.7251 elapsed 0.58 load 0.00\n",
"22207 14 08:43:32 INFO train : 1640 loss 0.7379 elapsed 0.60 load 0.00\n",
"22207 14 08:43:34 INFO train : 1641 loss 0.8060 elapsed 0.55 load 1.23\n",
"22207 14 08:43:35 INFO train : 1642 loss 0.7366 elapsed 0.53 load 0.00\n",
"22207 14 08:43:35 INFO train : 1643 loss 0.7271 elapsed 0.56 load 0.00\n",
"22207 14 08:43:36 INFO train : 1644 loss 0.7937 elapsed 0.66 load 0.00\n",
"22207 14 08:43:37 INFO train : 1645 loss 0.6853 elapsed 0.57 load 0.82\n",
"22207 14 08:43:38 INFO train : 1646 loss 0.7998 elapsed 0.59 load 0.00\n",
"22207 14 08:43:39 INFO train : 1647 loss 0.7560 elapsed 0.62 load 0.01\n",
"22207 14 08:43:39 INFO train : 1648 loss 0.7942 elapsed 0.59 load 0.00\n",
"22207 14 08:43:41 INFO train : 1649 loss 0.7814 elapsed 0.58 load 0.87\n",
"22207 14 08:43:41 INFO train : 1650 loss 0.7423 elapsed 0.56 load 0.00\n",
"22207 14 08:43:42 INFO train : 1651 loss 0.7550 elapsed 0.55 load 0.00\n",
"22207 14 08:43:43 INFO train : 1652 loss 0.7454 elapsed 0.58 load 0.00\n",
"22207 14 08:43:44 INFO train : 1653 loss 0.7572 elapsed 0.63 load 1.29\n",
"22207 14 08:43:45 INFO train : 1654 loss 0.7375 elapsed 0.60 load 0.07\n",
"22207 14 08:43:46 INFO train : 1655 loss 0.7383 elapsed 0.63 load 0.00\n",
"22207 14 08:43:47 INFO train : 1656 loss 0.7358 elapsed 0.65 load 0.00\n",
"22207 14 08:43:48 INFO train : 1657 loss 0.8232 elapsed 0.65 load 0.71\n",
"22207 14 08:43:49 INFO train : 1658 loss 0.7368 elapsed 0.66 load 0.05\n",
"22207 14 08:43:49 INFO train : 1659 loss 0.7288 elapsed 0.60 load 0.03\n",
"22207 14 08:43:50 INFO train : 1660 loss 0.7284 elapsed 0.56 load 0.01\n",
"22207 14 08:43:52 INFO train : 1661 loss 0.7336 elapsed 0.58 load 1.23\n",
"22207 14 08:43:52 INFO train : 1662 loss 0.7586 elapsed 0.66 load 0.00\n",
"22207 14 08:43:53 INFO train : 1663 loss 0.7384 elapsed 0.67 load 0.01\n",
"22207 14 08:43:54 INFO train : 1664 loss 0.7314 elapsed 0.71 load 0.00\n",
"22207 14 08:43:55 INFO train : 1665 loss 0.7178 elapsed 0.65 load 1.07\n",
"22207 14 08:43:56 INFO train : 1666 loss 0.7735 elapsed 0.63 load 0.01\n",
"22207 14 08:43:57 INFO train : 1667 loss 0.7872 elapsed 0.56 load 0.00\n",
"22207 14 08:43:57 INFO train : 1668 loss 0.7488 elapsed 0.59 load 0.00\n",
"22207 14 08:43:59 INFO train : 1669 loss 0.7484 elapsed 0.52 load 0.92\n",
"22207 14 08:44:00 INFO train : 1670 loss 0.8241 elapsed 0.63 load 0.00\n",
"22207 14 08:44:00 INFO train : 1671 loss 0.7968 elapsed 0.54 load 0.00\n",
"22207 14 08:44:01 INFO train : 1672 loss 0.7964 elapsed 0.58 load 0.00\n",
"22207 14 08:44:03 INFO train : 1673 loss 0.7519 elapsed 0.61 load 1.39\n",
"22207 14 08:44:03 INFO train : 1674 loss 0.7937 elapsed 0.63 load 0.00\n",
"22207 14 08:44:04 INFO train : 1675 loss 0.7827 elapsed 0.62 load 0.00\n",
"22207 14 08:44:05 INFO train : 1676 loss 0.7250 elapsed 0.60 load 0.10\n",
"22207 14 08:44:07 INFO train : 1677 loss 0.7530 elapsed 0.53 load 1.41\n",
"22207 14 08:44:07 INFO train : 1678 loss 0.7487 elapsed 0.63 load 0.00\n",
"22207 14 08:44:08 INFO train : 1679 loss 0.7878 elapsed 0.61 load 0.00\n",
"22207 14 08:44:09 INFO train : 1680 loss 0.7596 elapsed 0.66 load 0.00\n",
"22207 14 08:44:10 INFO train : 1681 loss 0.7500 elapsed 0.62 load 1.12\n",
"22207 14 08:44:11 INFO train : 1682 loss 0.7523 elapsed 0.62 load 0.00\n",
"22207 14 08:44:12 INFO train : 1683 loss 0.7615 elapsed 0.62 load 0.00\n",
"22207 14 08:44:12 INFO train : 1684 loss 0.7772 elapsed 0.62 load 0.00\n",
"22207 14 08:44:14 INFO train : 1685 loss 0.7427 elapsed 0.54 load 0.91\n",
"22207 14 08:44:14 INFO train : 1686 loss 0.7547 elapsed 0.52 load 0.00\n",
"22207 14 08:44:15 INFO train : 1687 loss 0.7684 elapsed 0.58 load 0.04\n",
"22207 14 08:44:16 INFO train : 1688 loss 0.7213 elapsed 0.54 load 0.00\n",
"22207 14 08:44:18 INFO train : 1689 loss 0.7539 elapsed 0.57 load 1.24\n",
"22207 14 08:44:18 INFO train : 1690 loss 0.7284 elapsed 0.55 load 0.00\n",
"22207 14 08:44:19 INFO train : 1691 loss 0.7258 elapsed 0.56 load 0.00\n",
"22207 14 08:44:19 INFO train : 1692 loss 0.7403 elapsed 0.73 load 0.00\n",
"22207 14 08:44:21 INFO train : 1693 loss 0.7450 elapsed 0.65 load 1.11\n",
"22207 14 08:44:22 INFO train : 1694 loss 0.7338 elapsed 0.64 load 0.00\n",
"22207 14 08:44:22 INFO train : 1695 loss 0.7388 elapsed 0.58 load 0.00\n",
"22207 14 08:44:23 INFO train : 1696 loss 0.7695 elapsed 0.58 load 0.00\n",
"22207 14 08:44:25 INFO train : 1697 loss 0.7386 elapsed 0.58 load 0.97\n",
"22207 14 08:44:25 INFO train : 1698 loss 0.7562 elapsed 0.58 load 0.00\n",
"22207 14 08:44:26 INFO train : 1699 loss 0.7570 elapsed 0.67 load 0.00\n",
"22207 14 08:44:27 INFO train : 1700 loss 0.7214 elapsed 0.62 load 0.00\n",
"22207 14 08:44:28 INFO train : 1701 loss 0.7499 elapsed 0.56 load 0.74\n",
"22207 14 08:44:29 INFO train : 1702 loss 0.7577 elapsed 0.61 load 0.00\n",
"22207 14 08:44:29 INFO train : 1703 loss 0.8067 elapsed 0.59 load 0.00\n",
"22207 14 08:44:30 INFO train : 1704 loss 0.7607 elapsed 0.60 load 0.00\n",
"22207 14 08:44:32 INFO train : 1705 loss 0.7603 elapsed 0.59 load 1.40\n",
"22207 14 08:44:33 INFO train : 1706 loss 0.7137 elapsed 0.64 load 0.00\n",
"22207 14 08:44:33 INFO train : 1707 loss 0.7209 elapsed 0.61 load 0.00\n",
"22207 14 08:44:34 INFO train : 1708 loss 0.7500 elapsed 0.68 load 0.00\n",
"22207 14 08:44:36 INFO train : 1709 loss 0.7155 elapsed 0.55 load 1.11\n",
"22207 14 08:44:36 INFO train : 1710 loss 0.7227 elapsed 0.65 load 0.00\n",
"22207 14 08:44:37 INFO train : 1711 loss 0.7551 elapsed 0.61 load 0.00\n",
"22207 14 08:44:38 INFO train : 1712 loss 0.7028 elapsed 0.63 load 0.00\n",
"22207 14 08:44:39 INFO train : 1713 loss 0.7438 elapsed 0.60 load 0.77\n",
"22207 14 08:44:40 INFO train : 1714 loss 0.7464 elapsed 0.66 load 0.00\n",
"22207 14 08:44:40 INFO train : 1715 loss 0.7568 elapsed 0.60 load 0.00\n",
"22207 14 08:44:41 INFO train : 1716 loss 0.7458 elapsed 0.53 load 0.00\n",
"22207 14 08:44:42 INFO train : 1717 loss 0.7541 elapsed 0.59 load 0.80\n",
"22207 14 08:44:43 INFO train : 1718 loss 0.7334 elapsed 0.65 load 0.00\n",
"22207 14 08:44:43 INFO train : 1719 loss 0.7253 elapsed 0.63 load 0.00\n",
"22207 14 08:44:44 INFO train : 1720 loss 0.7796 elapsed 0.66 load 0.00\n",
"22207 14 08:44:46 INFO train : 1721 loss 0.7670 elapsed 0.59 load 0.84\n",
"22207 14 08:44:46 INFO train : 1722 loss 0.7509 elapsed 0.66 load 0.00\n",
"22207 14 08:44:47 INFO train : 1723 loss 0.8255 elapsed 0.62 load 0.00\n",
"22207 14 08:44:48 INFO train : 1724 loss 0.7827 elapsed 0.68 load 0.00\n",
"22207 14 08:44:50 INFO train : 1725 loss 0.7878 elapsed 0.63 load 1.37\n",
"22207 14 08:44:50 INFO train : 1726 loss 0.7213 elapsed 0.63 load 0.00\n",
"22207 14 08:44:51 INFO train : 1727 loss 0.7507 elapsed 0.63 load 0.00\n",
"22207 14 08:44:52 INFO train : 1728 loss 0.7645 elapsed 0.65 load 0.00\n",
"22207 14 08:44:53 INFO train : 1729 loss 0.7586 elapsed 0.55 load 1.12\n",
"22207 14 08:44:54 INFO train : 1730 loss 0.7660 elapsed 0.57 load 0.00\n",
"22207 14 08:44:55 INFO train : 1731 loss 0.7627 elapsed 0.63 load 0.00\n",
"22207 14 08:44:55 INFO train : 1732 loss 0.7439 elapsed 0.55 load 0.00\n",
"22207 14 08:44:56 INFO train : 1733 loss 0.7319 elapsed 0.60 load 0.54\n",
"22207 14 08:44:57 INFO train : 1734 loss 0.7550 elapsed 0.62 load 0.00\n",
"22207 14 08:44:58 INFO train : 1735 loss 0.7453 elapsed 0.53 load 0.00\n",
"22207 14 08:44:58 INFO train : 1736 loss 0.7528 elapsed 0.64 load 0.00\n",
"22207 14 08:44:59 INFO train : 1737 loss 0.7447 elapsed 0.61 load 0.66\n",
"22207 14 08:45:00 INFO train : 1738 loss 0.7804 elapsed 0.55 load 0.00\n",
"22207 14 08:45:01 INFO train : 1739 loss 0.7325 elapsed 0.57 load 0.00\n",
"22207 14 08:45:01 INFO train : 1740 loss 0.7590 elapsed 0.58 load 0.00\n",
"22207 14 08:45:03 INFO train : 1741 loss 0.7569 elapsed 0.54 load 1.46\n",
"22207 14 08:45:04 INFO train : 1742 loss 0.7681 elapsed 0.71 load 0.00\n",
"22207 14 08:45:05 INFO train : 1743 loss 0.7704 elapsed 0.68 load 0.00\n",
"22207 14 08:45:05 INFO train : 1744 loss 0.7638 elapsed 0.66 load 0.00\n",
"22207 14 08:45:07 INFO train : 1745 loss 0.8097 elapsed 0.61 load 1.21\n",
"22207 14 08:45:08 INFO train : 1746 loss 0.7808 elapsed 0.64 load 0.00\n",
"22207 14 08:45:08 INFO train : 1747 loss 0.7839 elapsed 0.56 load 0.00\n",
"22207 14 08:45:09 INFO train : 1748 loss 0.7624 elapsed 0.60 load 0.00\n",
"22207 14 08:45:11 INFO train : 1749 loss 0.7609 elapsed 0.59 load 1.08\n",
"22207 14 08:45:12 INFO train : 1750 loss 0.7437 elapsed 0.73 load 0.04\n",
"22207 14 08:45:12 INFO train : 1751 loss 0.7805 elapsed 0.59 load 0.00\n",
"22207 14 08:45:13 INFO train : 1752 loss 0.7504 elapsed 0.59 load 0.01\n",
"22207 14 08:45:14 INFO train : 1753 loss 0.7511 elapsed 0.63 load 1.05\n",
"22207 14 08:45:15 INFO train : 1754 loss 0.7362 elapsed 0.58 load 0.00\n",
"22207 14 08:45:16 INFO train : 1755 loss 0.7560 elapsed 0.62 load 0.00\n",
"22207 14 08:45:16 INFO train : 1756 loss 0.8145 elapsed 0.55 load 0.00\n",
"22207 14 08:45:18 INFO train : 1757 loss 0.7434 elapsed 0.65 load 0.98\n",
"22207 14 08:45:19 INFO train : 1758 loss 0.7302 elapsed 0.61 load 0.00\n",
"22207 14 08:45:19 INFO train : 1759 loss 0.7643 elapsed 0.51 load 0.00\n",
"22207 14 08:45:20 INFO train : 1760 loss 0.7390 elapsed 0.65 load 0.00\n",
"22207 14 08:45:21 INFO train : 1761 loss 0.7858 elapsed 0.54 load 0.89\n",
"22207 14 08:45:22 INFO train : 1762 loss 0.7093 elapsed 0.63 load 0.00\n",
"22207 14 08:45:23 INFO train : 1763 loss 0.7777 elapsed 0.60 load 0.02\n",
"22207 14 08:45:23 INFO train : 1764 loss 0.7447 elapsed 0.65 load 0.05\n",
"22207 14 08:45:25 INFO train : 1765 loss 0.7258 elapsed 0.65 load 1.09\n",
"22207 14 08:45:26 INFO train : 1766 loss 0.7783 elapsed 0.62 load 0.00\n",
"22207 14 08:45:26 INFO train : 1767 loss 0.8381 elapsed 0.58 load 0.00\n",
"22207 14 08:45:27 INFO train : 1768 loss 0.7542 elapsed 0.57 load 0.00\n",
"22207 14 08:45:28 INFO train : 1769 loss 0.7647 elapsed 0.66 load 0.74\n",
"22207 14 08:45:29 INFO train : 1770 loss 0.7872 elapsed 0.69 load 0.01\n",
"22207 14 08:45:30 INFO train : 1771 loss 0.7995 elapsed 0.71 load 0.00\n",
"22207 14 08:45:30 INFO train : 1772 loss 0.7938 elapsed 0.60 load 0.00\n",
"22207 14 08:45:32 INFO train : 1773 loss 0.7366 elapsed 0.63 load 0.46\n",
"22207 14 08:45:32 INFO train : 1774 loss 0.7626 elapsed 0.66 load 0.00\n",
"22207 14 08:45:33 INFO train : 1775 loss 0.7775 elapsed 0.60 load 0.00\n",
"22207 14 08:45:33 INFO train : 1776 loss 0.7387 elapsed 0.59 load 0.00\n",
"22207 14 08:45:35 INFO train : 1777 loss 0.7313 elapsed 0.57 load 1.27\n",
"22207 14 08:45:36 INFO train : 1778 loss 0.7576 elapsed 0.56 load 0.02\n",
"22207 14 08:45:36 INFO train : 1779 loss 0.7683 elapsed 0.57 load 0.00\n",
"22207 14 08:45:37 INFO train : 1780 loss 0.7215 elapsed 0.60 load 0.00\n",
"22207 14 08:45:39 INFO train : 1781 loss 0.7262 elapsed 0.57 load 1.48\n",
"22207 14 08:45:40 INFO train : 1782 loss 0.7601 elapsed 0.63 load 0.05\n",
"22207 14 08:45:40 INFO train : 1783 loss 0.8282 elapsed 0.60 load 0.00\n",
"22207 14 08:45:41 INFO train : 1784 loss 0.7651 elapsed 0.60 load 0.00\n",
"22207 14 08:45:43 INFO train : 1785 loss 0.7619 elapsed 0.56 load 1.00\n",
"22207 14 08:45:43 INFO train : 1786 loss 0.7156 elapsed 0.60 load 0.01\n",
"22207 14 08:45:44 INFO train : 1787 loss 0.7780 elapsed 0.56 load 0.00\n",
"22207 14 08:45:44 INFO train : 1788 loss 0.7311 elapsed 0.58 load 0.01\n",
"22207 14 08:45:46 INFO train : 1789 loss 0.8198 elapsed 0.58 load 0.86\n",
"22207 14 08:45:46 INFO train : 1790 loss 0.7435 elapsed 0.56 load 0.00\n",
"22207 14 08:45:47 INFO train : 1791 loss 0.7516 elapsed 0.57 load 0.00\n",
"22207 14 08:45:48 INFO train : 1792 loss 0.8467 elapsed 0.53 load 0.00\n",
"22207 14 08:45:49 INFO train : 1793 loss 0.7286 elapsed 0.67 load 1.07\n",
"22207 14 08:45:50 INFO train : 1794 loss 0.7593 elapsed 0.65 load 0.00\n",
"22207 14 08:45:51 INFO train : 1795 loss 0.7270 elapsed 0.65 load 0.00\n",
"22207 14 08:45:51 INFO train : 1796 loss 0.7905 elapsed 0.64 load 0.00\n",
"22207 14 08:45:53 INFO train : 1797 loss 0.7443 elapsed 0.57 load 0.57\n",
"22207 14 08:45:53 INFO train : 1798 loss 0.7456 elapsed 0.56 load 0.00\n",
"22207 14 08:45:54 INFO train : 1799 loss 0.7500 elapsed 0.53 load 0.00\n",
"22207 14 08:45:54 INFO train : 1800 loss 0.7543 elapsed 0.55 load 0.00\n",
"22207 14 08:45:56 INFO train : 1801 loss 0.7777 elapsed 0.65 load 1.29\n",
"22207 14 08:45:57 INFO train : 1802 loss 0.7635 elapsed 0.62 load 0.00\n",
"22207 14 08:45:58 INFO train : 1803 loss 0.7832 elapsed 0.60 load 0.00\n",
"22207 14 08:45:58 INFO train : 1804 loss 0.8018 elapsed 0.66 load 0.00\n",
"22207 14 08:46:00 INFO train : 1805 loss 0.7838 elapsed 0.60 load 0.99\n",
"22207 14 08:46:00 INFO train : 1806 loss 0.7866 elapsed 0.52 load 0.00\n",
"22207 14 08:46:01 INFO train : 1807 loss 0.7776 elapsed 0.64 load 0.00\n",
"22207 14 08:46:02 INFO train : 1808 loss 0.7395 elapsed 0.60 load 0.00\n",
"22207 14 08:46:04 INFO train : 1809 loss 0.7586 elapsed 0.59 load 1.29\n",
"22207 14 08:46:04 INFO train : 1810 loss 0.8116 elapsed 0.64 load 0.00\n",
"22207 14 08:46:05 INFO train : 1811 loss 0.7524 elapsed 0.75 load 0.00\n",
"22207 14 08:46:06 INFO train : 1812 loss 0.7719 elapsed 0.64 load 0.00\n",
"22207 14 08:46:07 INFO train : 1813 loss 0.7574 elapsed 0.57 load 1.02\n",
"22207 14 08:46:08 INFO train : 1814 loss 0.7747 elapsed 0.61 load 0.00\n",
"22207 14 08:46:08 INFO train : 1815 loss 0.7476 elapsed 0.58 load 0.00\n",
"22207 14 08:46:09 INFO train : 1816 loss 0.7300 elapsed 0.63 load 0.00\n",
"22207 14 08:46:11 INFO train : 1817 loss 0.7714 elapsed 0.60 load 1.13\n",
"22207 14 08:46:11 INFO train : 1818 loss 0.7871 elapsed 0.63 load 0.00\n",
"22207 14 08:46:12 INFO train : 1819 loss 0.7231 elapsed 0.66 load 0.00\n",
"22207 14 08:46:13 INFO train : 1820 loss 0.7557 elapsed 0.64 load 0.00\n",
"22207 14 08:46:14 INFO train : 1821 loss 0.7564 elapsed 0.54 load 1.14\n",
"22207 14 08:46:15 INFO train : 1822 loss 0.7564 elapsed 0.65 load 0.00\n",
"22207 14 08:46:16 INFO train : 1823 loss 0.7674 elapsed 0.57 load 0.00\n",
"22207 14 08:46:16 INFO train : 1824 loss 0.7310 elapsed 0.62 load 0.00\n",
"22207 14 08:46:17 INFO train : 1825 loss 0.7332 elapsed 0.54 load 0.52\n",
"22207 14 08:46:18 INFO train : 1826 loss 0.7667 elapsed 0.54 load 0.00\n",
"22207 14 08:46:19 INFO train : 1827 loss 0.7359 elapsed 0.67 load 0.00\n",
"22207 14 08:46:19 INFO train : 1828 loss 0.7994 elapsed 0.66 load 0.01\n",
"22207 14 08:46:21 INFO train : 1829 loss 0.7555 elapsed 0.59 load 1.09\n",
"22207 14 08:46:22 INFO train : 1830 loss 0.7531 elapsed 0.74 load 0.00\n",
"22207 14 08:46:23 INFO train : 1831 loss 0.7753 elapsed 0.59 load 0.00\n",
"22207 14 08:46:23 INFO train : 1832 loss 0.7267 elapsed 0.57 load 0.00\n",
"22207 14 08:46:25 INFO train : 1833 loss 0.7347 elapsed 0.62 load 1.20\n",
"22207 14 08:46:26 INFO train : 1834 loss 0.7850 elapsed 0.63 load 0.00\n",
"22207 14 08:46:26 INFO train : 1835 loss 0.7677 elapsed 0.60 load 0.00\n",
"22207 14 08:46:27 INFO train : 1836 loss 0.7152 elapsed 0.51 load 0.00\n",
"22207 14 08:46:29 INFO train : 1837 loss 0.7253 elapsed 0.58 load 1.22\n",
"22207 14 08:46:29 INFO train : 1838 loss 0.7365 elapsed 0.70 load 0.00\n",
"22207 14 08:46:30 INFO train : 1839 loss 0.7374 elapsed 0.64 load 0.00\n",
"22207 14 08:46:31 INFO train : 1840 loss 0.7895 elapsed 0.67 load 0.00\n",
"22207 14 08:46:32 INFO train : 1841 loss 0.7634 elapsed 0.55 load 1.06\n",
"22207 14 08:46:33 INFO train : 1842 loss 0.7047 elapsed 0.63 load 0.00\n",
"22207 14 08:46:34 INFO train : 1843 loss 0.7347 elapsed 0.60 load 0.00\n",
"22207 14 08:46:34 INFO train : 1844 loss 0.7285 elapsed 0.61 load 0.00\n",
"22207 14 08:46:36 INFO train : 1845 loss 0.7482 elapsed 0.56 load 0.94\n",
"22207 14 08:46:36 INFO train : 1846 loss 0.7358 elapsed 0.60 load 0.00\n",
"22207 14 08:46:37 INFO train : 1847 loss 0.7443 elapsed 0.59 load 0.00\n",
"22207 14 08:46:38 INFO train : 1848 loss 0.7986 elapsed 0.60 load 0.00\n",
"22207 14 08:46:39 INFO train : 1849 loss 0.7259 elapsed 0.64 load 1.09\n",
"22207 14 08:46:40 INFO train : 1850 loss 0.7649 elapsed 0.64 load 0.00\n",
"22207 14 08:46:41 INFO train : 1851 loss 0.7420 elapsed 0.62 load 0.00\n",
"22207 14 08:46:41 INFO train : 1852 loss 0.7605 elapsed 0.69 load 0.00\n",
"22207 14 08:46:43 INFO train : 1853 loss 0.7277 elapsed 0.55 load 0.74\n",
"22207 14 08:46:43 INFO train : 1854 loss 0.7422 elapsed 0.60 load 0.00\n",
"22207 14 08:46:44 INFO train : 1855 loss 0.7608 elapsed 0.67 load 0.00\n",
"22207 14 08:46:45 INFO train : 1856 loss 0.7909 elapsed 0.60 load 0.00\n",
"22207 14 08:46:46 INFO train : 1857 loss 0.7501 elapsed 0.67 load 0.89\n",
"22207 14 08:46:47 INFO train : 1858 loss 0.7037 elapsed 0.62 load 0.00\n",
"22207 14 08:46:47 INFO train : 1859 loss 0.7634 elapsed 0.60 load 0.00\n",
"22207 14 08:46:48 INFO train : 1860 loss 0.7254 elapsed 0.62 load 0.00\n",
"22207 14 08:46:50 INFO train : 1861 loss 0.7680 elapsed 0.61 load 0.86\n",
"22207 14 08:46:50 INFO train : 1862 loss 0.7517 elapsed 0.62 load 0.00\n",
"22207 14 08:46:51 INFO train : 1863 loss 0.7266 elapsed 0.65 load 0.00\n",
"22207 14 08:46:52 INFO train : 1864 loss 0.7495 elapsed 0.57 load 0.00\n",
"22207 14 08:46:54 INFO train : 1865 loss 0.7259 elapsed 0.66 load 1.32\n",
"22207 14 08:46:54 INFO train : 1866 loss 0.8043 elapsed 0.63 load 0.00\n",
"22207 14 08:46:55 INFO train : 1867 loss 0.7134 elapsed 0.64 load 0.00\n",
"22207 14 08:46:56 INFO train : 1868 loss 0.7801 elapsed 0.60 load 0.00\n",
"22207 14 08:46:57 INFO train : 1869 loss 0.7263 elapsed 0.59 load 0.64\n",
"22207 14 08:46:57 INFO train : 1870 loss 0.7512 elapsed 0.67 load 0.00\n",
"22207 14 08:46:58 INFO train : 1871 loss 0.7399 elapsed 0.61 load 0.00\n",
"22207 14 08:46:59 INFO train : 1872 loss 0.7887 elapsed 0.66 load 0.00\n",
"22207 14 08:47:00 INFO train : 1873 loss 0.7601 elapsed 0.61 load 0.75\n",
"22207 14 08:47:01 INFO train : 1874 loss 0.7317 elapsed 0.62 load 0.00\n",
"22207 14 08:47:02 INFO train : 1875 loss 0.7733 elapsed 0.71 load 0.00\n",
"22207 14 08:47:02 INFO train : 1876 loss 0.7881 elapsed 0.64 load 0.00\n",
"22207 14 08:47:04 INFO train : 1877 loss 0.7645 elapsed 0.56 load 1.45\n",
"22207 14 08:47:05 INFO train : 1878 loss 0.6867 elapsed 0.61 load 0.00\n",
"22207 14 08:47:05 INFO train : 1879 loss 0.7081 elapsed 0.58 load 0.00\n",
"22207 14 08:47:06 INFO train : 1880 loss 0.7604 elapsed 0.63 load 0.00\n",
"22207 14 08:47:08 INFO train : 1881 loss 0.7454 elapsed 0.59 load 1.45\n",
"22207 14 08:47:09 INFO train : 1882 loss 0.7424 elapsed 0.57 load 0.00\n",
"22207 14 08:47:10 INFO train : 1883 loss 0.7382 elapsed 0.64 load 0.00\n",
"22207 14 08:47:10 INFO train : 1884 loss 0.7518 elapsed 0.54 load 0.00\n",
"22207 14 08:47:12 INFO train : 1885 loss 0.7756 elapsed 0.65 load 1.05\n",
"22207 14 08:47:12 INFO train : 1886 loss 0.7233 elapsed 0.62 load 0.00\n",
"22207 14 08:47:13 INFO train : 1887 loss 0.7540 elapsed 0.54 load 0.00\n",
"22207 14 08:47:14 INFO train : 1888 loss 0.7141 elapsed 0.58 load 0.06\n",
"22207 14 08:47:15 INFO train : 1889 loss 0.7875 elapsed 0.52 load 0.71\n",
"22207 14 08:47:16 INFO train : 1890 loss 0.7101 elapsed 0.65 load 0.00\n",
"22207 14 08:47:16 INFO train : 1891 loss 0.7544 elapsed 0.56 load 0.00\n",
"22207 14 08:47:17 INFO train : 1892 loss 0.7280 elapsed 0.61 load 0.00\n",
"22207 14 08:47:18 INFO train : 1893 loss 0.7064 elapsed 0.55 load 0.88\n",
"22207 14 08:47:19 INFO train : 1894 loss 0.7366 elapsed 0.59 load 0.00\n",
"22207 14 08:47:19 INFO train : 1895 loss 0.7682 elapsed 0.60 load 0.00\n",
"22207 14 08:47:20 INFO train : 1896 loss 0.7209 elapsed 0.63 load 0.00\n",
"22207 14 08:47:22 INFO train : 1897 loss 0.7137 elapsed 0.65 load 1.43\n",
"22207 14 08:47:23 INFO train : 1898 loss 0.7238 elapsed 0.59 load 0.00\n",
"22207 14 08:47:23 INFO train : 1899 loss 0.7279 elapsed 0.60 load 0.00\n",
"22207 14 08:47:24 INFO train : 1900 loss 0.8103 elapsed 0.65 load 0.00\n",
"22207 14 08:47:25 INFO train : 1901 loss 0.7838 elapsed 0.60 load 0.66\n",
"22207 14 08:47:26 INFO train : 1902 loss 0.7612 elapsed 0.63 load 0.00\n",
"22207 14 08:47:27 INFO train : 1903 loss 0.7604 elapsed 0.60 load 0.00\n",
"22207 14 08:47:27 INFO train : 1904 loss 0.7339 elapsed 0.64 load 0.00\n",
"22207 14 08:47:29 INFO train : 1905 loss 0.8142 elapsed 0.51 load 0.79\n",
"22207 14 08:47:29 INFO train : 1906 loss 0.7648 elapsed 0.63 load 0.00\n",
"22207 14 08:47:30 INFO train : 1907 loss 0.7312 elapsed 0.64 load 0.00\n",
"22207 14 08:47:31 INFO train : 1908 loss 0.7136 elapsed 0.64 load 0.00\n",
"22207 14 08:47:33 INFO train : 1909 loss 0.7512 elapsed 0.58 load 1.21\n",
"22207 14 08:47:33 INFO train : 1910 loss 0.7404 elapsed 0.58 load 0.00\n",
"22207 14 08:47:34 INFO train : 1911 loss 0.7053 elapsed 0.62 load 0.00\n",
"22207 14 08:47:34 INFO train : 1912 loss 0.7586 elapsed 0.60 load 0.03\n",
"22207 14 08:47:36 INFO train : 1913 loss 0.7319 elapsed 0.55 load 1.43\n",
"22207 14 08:47:37 INFO train : 1914 loss 0.7308 elapsed 0.66 load 0.00\n",
"22207 14 08:47:38 INFO train : 1915 loss 0.7583 elapsed 0.58 load 0.00\n",
"22207 14 08:47:38 INFO train : 1916 loss 0.7909 elapsed 0.69 load 0.00\n",
"22207 14 08:47:40 INFO train : 1917 loss 0.8102 elapsed 0.59 load 0.89\n",
"22207 14 08:47:41 INFO train : 1918 loss 0.7580 elapsed 0.66 load 0.00\n",
"22207 14 08:47:41 INFO train : 1919 loss 0.7704 elapsed 0.63 load 0.00\n",
"22207 14 08:47:42 INFO train : 1920 loss 0.7526 elapsed 0.65 load 0.00\n",
"22207 14 08:47:44 INFO train : 1921 loss 0.7841 elapsed 0.57 load 1.40\n",
"22207 14 08:47:45 INFO train : 1922 loss 0.7169 elapsed 0.63 load 0.00\n",
"22207 14 08:47:45 INFO train : 1923 loss 0.7503 elapsed 0.65 load 0.00\n",
"22207 14 08:47:46 INFO train : 1924 loss 0.7646 elapsed 0.60 load 0.00\n",
"22207 14 08:47:48 INFO train : 1925 loss 0.7631 elapsed 0.56 load 1.41\n",
"22207 14 08:47:48 INFO train : 1926 loss 0.7180 elapsed 0.57 load 0.01\n",
"22207 14 08:47:49 INFO train : 1927 loss 0.7334 elapsed 0.57 load 0.00\n",
"22207 14 08:47:50 INFO train : 1928 loss 0.7198 elapsed 0.63 load 0.00\n",
"22207 14 08:47:51 INFO train : 1929 loss 0.7510 elapsed 0.60 load 0.78\n",
"22207 14 08:47:52 INFO train : 1930 loss 0.7865 elapsed 0.63 load 0.00\n",
"22207 14 08:47:52 INFO train : 1931 loss 0.7599 elapsed 0.57 load 0.00\n",
"22207 14 08:47:53 INFO train : 1932 loss 0.7354 elapsed 0.55 load 0.00\n",
"22207 14 08:47:55 INFO train : 1933 loss 0.7434 elapsed 0.60 load 1.06\n",
"22207 14 08:47:55 INFO train : 1934 loss 0.7457 elapsed 0.64 load 0.01\n",
"22207 14 08:47:56 INFO train : 1935 loss 0.7423 elapsed 0.69 load 0.00\n",
"22207 14 08:47:57 INFO train : 1936 loss 0.7360 elapsed 0.58 load 0.07\n",
"22207 14 08:47:58 INFO train : 1937 loss 0.7011 elapsed 0.63 load 0.82\n",
"22207 14 08:47:59 INFO train : 1938 loss 0.7406 elapsed 0.55 load 0.00\n",
"22207 14 08:47:59 INFO train : 1939 loss 0.7175 elapsed 0.59 load 0.00\n",
"22207 14 08:48:00 INFO train : 1940 loss 0.7068 elapsed 0.60 load 0.00\n",
"22207 14 08:48:02 INFO train : 1941 loss 0.7746 elapsed 0.60 load 1.07\n",
"22207 14 08:48:02 INFO train : 1942 loss 0.7305 elapsed 0.54 load 0.00\n",
"22207 14 08:48:03 INFO train : 1943 loss 0.7160 elapsed 0.61 load 0.00\n",
"22207 14 08:48:04 INFO train : 1944 loss 0.7650 elapsed 0.60 load 0.00\n",
"22207 14 08:48:05 INFO train : 1945 loss 0.7411 elapsed 0.59 load 1.33\n",
"22207 14 08:48:06 INFO train : 1946 loss 0.7074 elapsed 0.61 load 0.00\n",
"22207 14 08:48:07 INFO train : 1947 loss 0.7586 elapsed 0.60 load 0.01\n",
"22207 14 08:48:07 INFO train : 1948 loss 0.8245 elapsed 0.56 load 0.00\n",
"22207 14 08:48:09 INFO train : 1949 loss 0.7414 elapsed 0.64 load 1.18\n",
"22207 14 08:48:10 INFO train : 1950 loss 0.7542 elapsed 0.68 load 0.00\n",
"22207 14 08:48:10 INFO train : 1951 loss 0.7902 elapsed 0.62 load 0.00\n",
"22207 14 08:48:11 INFO train : 1952 loss 0.7132 elapsed 0.64 load 0.01\n",
"22207 14 08:48:13 INFO train : 1953 loss 0.7469 elapsed 0.62 load 0.83\n",
"22207 14 08:48:13 INFO train : 1954 loss 0.7696 elapsed 0.58 load 0.00\n",
"22207 14 08:48:14 INFO train : 1955 loss 0.8243 elapsed 0.63 load 0.00\n",
"22207 14 08:48:15 INFO train : 1956 loss 0.7800 elapsed 0.71 load 0.00\n",
"22207 14 08:48:16 INFO train : 1957 loss 0.7581 elapsed 0.61 load 1.11\n",
"22207 14 08:48:17 INFO train : 1958 loss 0.8449 elapsed 0.57 load 0.00\n",
"22207 14 08:48:18 INFO train : 1959 loss 0.7637 elapsed 0.62 load 0.00\n",
"22207 14 08:48:18 INFO train : 1960 loss 0.7413 elapsed 0.73 load 0.00\n",
"22207 14 08:48:20 INFO train : 1961 loss 0.7586 elapsed 0.61 load 1.24\n",
"22207 14 08:48:21 INFO train : 1962 loss 0.7562 elapsed 0.65 load 0.00\n",
"22207 14 08:48:22 INFO train : 1963 loss 0.7268 elapsed 0.62 load 0.00\n",
"22207 14 08:48:22 INFO train : 1964 loss 0.7946 elapsed 0.64 load 0.00\n",
"22207 14 08:48:24 INFO train : 1965 loss 0.7049 elapsed 0.67 load 1.24\n",
"22207 14 08:48:25 INFO train : 1966 loss 0.7296 elapsed 0.58 load 0.00\n",
"22207 14 08:48:25 INFO train : 1967 loss 0.7463 elapsed 0.53 load 0.03\n",
"22207 14 08:48:26 INFO train : 1968 loss 0.7332 elapsed 0.65 load 0.04\n",
"22207 14 08:48:28 INFO train : 1969 loss 0.7788 elapsed 0.59 load 0.91\n",
"22207 14 08:48:28 INFO train : 1970 loss 0.7621 elapsed 0.61 load 0.00\n",
"22207 14 08:48:29 INFO train : 1971 loss 0.7214 elapsed 0.67 load 0.00\n",
"22207 14 08:48:30 INFO train : 1972 loss 0.8513 elapsed 0.72 load 0.00\n",
"22207 14 08:48:31 INFO train : 1973 loss 0.8005 elapsed 0.60 load 0.82\n",
"22207 14 08:48:32 INFO train : 1974 loss 0.7122 elapsed 0.56 load 0.00\n",
"22207 14 08:48:32 INFO train : 1975 loss 0.7350 elapsed 0.69 load 0.00\n",
"22207 14 08:48:33 INFO train : 1976 loss 0.7364 elapsed 0.64 load 0.00\n",
"22207 14 08:48:35 INFO train : 1977 loss 0.7617 elapsed 0.62 load 1.34\n",
"22207 14 08:48:36 INFO train : 1978 loss 0.7368 elapsed 0.64 load 0.00\n",
"22207 14 08:48:36 INFO train : 1979 loss 0.7036 elapsed 0.62 load 0.00\n",
"22207 14 08:48:37 INFO train : 1980 loss 0.7724 elapsed 0.57 load 0.00\n",
"22207 14 08:48:38 INFO train : 1981 loss 0.7810 elapsed 0.57 load 0.70\n",
"22207 14 08:48:39 INFO train : 1982 loss 0.7731 elapsed 0.67 load 0.00\n",
"22207 14 08:48:40 INFO train : 1983 loss 0.8049 elapsed 0.64 load 0.00\n",
"22207 14 08:48:40 INFO train : 1984 loss 0.6999 elapsed 0.68 load 0.00\n",
"22207 14 08:48:42 INFO train : 1985 loss 0.7295 elapsed 0.60 load 0.69\n",
"22207 14 08:48:42 INFO train : 1986 loss 0.7704 elapsed 0.74 load 0.01\n",
"22207 14 08:48:43 INFO train : 1987 loss 0.7441 elapsed 0.65 load 0.00\n",
"22207 14 08:48:44 INFO train : 1988 loss 0.7340 elapsed 0.72 load 0.00\n",
"22207 14 08:48:45 INFO train : 1989 loss 0.7690 elapsed 0.65 load 0.80\n",
"22207 14 08:48:46 INFO train : 1990 loss 0.7653 elapsed 0.63 load 0.00\n",
"22207 14 08:48:47 INFO train : 1991 loss 0.7237 elapsed 0.66 load 0.00\n",
"22207 14 08:48:47 INFO train : 1992 loss 0.7651 elapsed 0.62 load 0.00\n",
"22207 14 08:48:48 INFO train : 1993 loss 0.7465 elapsed 0.55 load 0.53\n",
"22207 14 08:48:49 INFO train : 1994 loss 0.7219 elapsed 0.63 load 0.00\n",
"22207 14 08:48:50 INFO train : 1995 loss 0.7805 elapsed 0.67 load 0.00\n",
"22207 14 08:48:50 INFO train : 1996 loss 0.7064 elapsed 0.64 load 0.00\n",
"22207 14 08:48:52 INFO train : 1997 loss 0.7388 elapsed 0.65 load 0.61\n",
"22207 14 08:48:52 INFO train : 1998 loss 0.7144 elapsed 0.68 load 0.00\n",
"22207 14 08:48:53 INFO train : 1999 loss 0.7383 elapsed 0.58 load 0.03\n",
"22207 14 08:48:54 INFO train : 2000 loss 0.7626 elapsed 0.58 load 0.00\n",
"22207 14 08:48:54 INFO Running validation\n",
"22207 14 08:49:22 INFO Logging 20 images\n",
"22207 14 08:49:23 INFO Logging 20 audios\n",
"22207 14 08:49:25 INFO Logging 20 texts\n",
"22207 14 08:49:37 INFO val : 2000 loss 0.67400062084198\n",
"22207 14 08:49:37 INFO Saving model state at step 2000 to checkpoints/fp_step_00002000.pt\n",
"22207 14 08:49:38 INFO train : 2001 loss 0.7977 elapsed 0.51 load 0.01\n",
"22207 14 08:49:38 INFO train : 2002 loss 0.8565 elapsed 0.47 load 0.00\n",
"22207 14 08:49:39 INFO train : 2003 loss 0.7704 elapsed 0.49 load 0.00\n",
"22207 14 08:49:39 INFO train : 2004 loss 0.7148 elapsed 0.48 load 0.00\n",
"22207 14 08:49:39 INFO train : 2005 loss 0.7675 elapsed 0.12 load 0.00\n",
"22207 14 08:49:39 INFO Epoch num: 5\n",
"22207 14 08:49:44 INFO train : 2006 loss 0.7003 elapsed 0.63 load 4.18\n",
"22207 14 08:49:45 INFO train : 2007 loss 0.7314 elapsed 0.56 load 0.01\n",
"22207 14 08:49:46 INFO train : 2008 loss 0.7353 elapsed 0.61 load 0.00\n",
"22207 14 08:49:46 INFO train : 2009 loss 0.7218 elapsed 0.61 load 0.00\n",
"22207 14 08:49:48 INFO train : 2010 loss 0.6772 elapsed 0.56 load 0.94\n",
"22207 14 08:49:48 INFO train : 2011 loss 0.7303 elapsed 0.54 load 0.00\n",
"22207 14 08:49:49 INFO train : 2012 loss 0.6949 elapsed 0.63 load 0.00\n",
"22207 14 08:49:50 INFO train : 2013 loss 0.7295 elapsed 0.61 load 0.00\n",
"22207 14 08:49:52 INFO train : 2014 loss 0.7360 elapsed 0.60 load 1.48\n",
"22207 14 08:49:52 INFO train : 2015 loss 0.7852 elapsed 0.59 load 0.00\n",
"22207 14 08:49:53 INFO train : 2016 loss 0.6761 elapsed 0.61 load 0.00\n",
"22207 14 08:49:54 INFO train : 2017 loss 0.7056 elapsed 0.65 load 0.00\n",
"22207 14 08:49:55 INFO train : 2018 loss 0.7420 elapsed 0.59 load 0.95\n",
"22207 14 08:49:56 INFO train : 2019 loss 0.7420 elapsed 0.56 load 0.00\n",
"22207 14 08:49:56 INFO train : 2020 loss 0.7324 elapsed 0.63 load 0.00\n",
"22207 14 08:49:57 INFO train : 2021 loss 0.7127 elapsed 0.63 load 0.00\n",
"22207 14 08:49:59 INFO train : 2022 loss 0.7512 elapsed 0.65 load 1.03\n",
"22207 14 08:49:59 INFO train : 2023 loss 0.7115 elapsed 0.58 load 0.00\n",
"22207 14 08:50:00 INFO train : 2024 loss 0.7497 elapsed 0.65 load 0.00\n",
"22207 14 08:50:01 INFO train : 2025 loss 0.7676 elapsed 0.63 load 0.01\n",
"22207 14 08:50:03 INFO train : 2026 loss 0.6893 elapsed 0.59 load 1.36\n",
"22207 14 08:50:03 INFO train : 2027 loss 0.8131 elapsed 0.65 load 0.00\n",
"22207 14 08:50:04 INFO train : 2028 loss 0.7707 elapsed 0.59 load 0.00\n",
"22207 14 08:50:04 INFO train : 2029 loss 0.7012 elapsed 0.57 load 0.03\n",
"22207 14 08:50:06 INFO train : 2030 loss 0.7193 elapsed 0.71 load 1.12\n",
"22207 14 08:50:07 INFO train : 2031 loss 0.6954 elapsed 0.60 load 0.00\n",
"22207 14 08:50:08 INFO train : 2032 loss 0.7595 elapsed 0.66 load 0.00\n",
"22207 14 08:50:08 INFO train : 2033 loss 0.6645 elapsed 0.58 load 0.00\n",
"22207 14 08:50:10 INFO train : 2034 loss 0.6911 elapsed 0.60 load 0.82\n",
"22207 14 08:50:10 INFO train : 2035 loss 0.6868 elapsed 0.69 load 0.01\n",
"22207 14 08:50:11 INFO train : 2036 loss 0.6951 elapsed 0.72 load 0.00\n",
"22207 14 08:50:12 INFO train : 2037 loss 0.6952 elapsed 0.69 load 0.01\n",
"22207 14 08:50:14 INFO train : 2038 loss 0.7211 elapsed 0.58 load 1.25\n",
"22207 14 08:50:14 INFO train : 2039 loss 0.7441 elapsed 0.63 load 0.00\n",
"22207 14 08:50:15 INFO train : 2040 loss 0.7368 elapsed 0.73 load 0.00\n",
"22207 14 08:50:16 INFO train : 2041 loss 0.7219 elapsed 0.57 load 0.00\n",
"22207 14 08:50:18 INFO train : 2042 loss 0.7116 elapsed 0.65 load 1.17\n",
"22207 14 08:50:18 INFO train : 2043 loss 0.6853 elapsed 0.59 load 0.00\n",
"22207 14 08:50:19 INFO train : 2044 loss 0.7218 elapsed 0.52 load 0.00\n",
"22207 14 08:50:19 INFO train : 2045 loss 0.6974 elapsed 0.52 load 0.00\n",
"22207 14 08:50:21 INFO train : 2046 loss 0.6765 elapsed 0.63 load 1.07\n",
"22207 14 08:50:22 INFO train : 2047 loss 0.7270 elapsed 0.63 load 0.00\n",
"22207 14 08:50:22 INFO train : 2048 loss 0.7041 elapsed 0.59 load 0.00\n",
"22207 14 08:50:23 INFO train : 2049 loss 0.7186 elapsed 0.63 load 0.01\n",
"22207 14 08:50:25 INFO train : 2050 loss 0.7018 elapsed 0.59 load 1.01\n",
"22207 14 08:50:25 INFO train : 2051 loss 0.7056 elapsed 0.61 load 0.00\n",
"22207 14 08:50:26 INFO train : 2052 loss 0.6873 elapsed 0.59 load 0.00\n",
"22207 14 08:50:26 INFO train : 2053 loss 0.6877 elapsed 0.65 load 0.01\n",
"22207 14 08:50:28 INFO train : 2054 loss 0.7139 elapsed 0.57 load 1.26\n",
"22207 14 08:50:29 INFO train : 2055 loss 0.7343 elapsed 0.67 load 0.00\n",
"22207 14 08:50:30 INFO train : 2056 loss 0.7263 elapsed 0.65 load 0.00\n",
"22207 14 08:50:30 INFO train : 2057 loss 0.6973 elapsed 0.53 load 0.03\n",
"22207 14 08:50:32 INFO train : 2058 loss 0.7495 elapsed 0.54 load 0.90\n",
"22207 14 08:50:32 INFO train : 2059 loss 0.7188 elapsed 0.53 load 0.02\n",
"22207 14 08:50:33 INFO train : 2060 loss 0.7314 elapsed 0.60 load 0.00\n",
"22207 14 08:50:33 INFO train : 2061 loss 0.6797 elapsed 0.60 load 0.00\n",
"22207 14 08:50:35 INFO train : 2062 loss 0.7105 elapsed 0.59 load 1.26\n",
"22207 14 08:50:36 INFO train : 2063 loss 0.7340 elapsed 0.60 load 0.00\n",
"22207 14 08:50:37 INFO train : 2064 loss 0.7106 elapsed 0.60 load 0.00\n",
"22207 14 08:50:37 INFO train : 2065 loss 0.7505 elapsed 0.66 load 0.01\n",
"22207 14 08:50:39 INFO train : 2066 loss 0.7088 elapsed 0.57 load 1.01\n",
"22207 14 08:50:40 INFO train : 2067 loss 0.7117 elapsed 0.71 load 0.00\n",
"22207 14 08:50:40 INFO train : 2068 loss 0.6863 elapsed 0.70 load 0.00\n",
"22207 14 08:50:41 INFO train : 2069 loss 0.7451 elapsed 0.65 load 0.01\n",
"22207 14 08:50:42 INFO train : 2070 loss 0.6817 elapsed 0.60 load 0.47\n",
"22207 14 08:50:43 INFO train : 2071 loss 0.7241 elapsed 0.67 load 0.00\n",
"22207 14 08:50:44 INFO train : 2072 loss 0.7055 elapsed 0.62 load 0.00\n",
"22207 14 08:50:44 INFO train : 2073 loss 0.7323 elapsed 0.54 load 0.00\n",
"22207 14 08:50:46 INFO train : 2074 loss 0.7180 elapsed 0.61 load 1.12\n",
"22207 14 08:50:47 INFO train : 2075 loss 0.6843 elapsed 0.61 load 0.00\n",
"22207 14 08:50:47 INFO train : 2076 loss 0.7043 elapsed 0.56 load 0.03\n",
"22207 14 08:50:48 INFO train : 2077 loss 0.7149 elapsed 0.60 load 0.02\n",
"22207 14 08:50:50 INFO train : 2078 loss 0.7531 elapsed 0.55 load 1.25\n",
"22207 14 08:50:50 INFO train : 2079 loss 0.7135 elapsed 0.61 load 0.00\n",
"22207 14 08:50:51 INFO train : 2080 loss 0.7150 elapsed 0.65 load 0.03\n",
"22207 14 08:50:52 INFO train : 2081 loss 0.8129 elapsed 0.64 load 0.02\n",
"22207 14 08:50:53 INFO train : 2082 loss 0.7124 elapsed 0.63 load 0.86\n",
"22207 14 08:50:54 INFO train : 2083 loss 0.7474 elapsed 0.51 load 0.00\n",
"22207 14 08:50:54 INFO train : 2084 loss 0.7178 elapsed 0.66 load 0.01\n",
"22207 14 08:50:55 INFO train : 2085 loss 0.7353 elapsed 0.68 load 0.03\n",
"22207 14 08:50:57 INFO train : 2086 loss 0.7025 elapsed 0.67 load 0.98\n",
"22207 14 08:50:57 INFO train : 2087 loss 0.7015 elapsed 0.61 load 0.00\n",
"22207 14 08:50:58 INFO train : 2088 loss 0.7403 elapsed 0.54 load 0.00\n",
"22207 14 08:50:59 INFO train : 2089 loss 0.7279 elapsed 0.67 load 0.01\n",
"22207 14 08:51:00 INFO train : 2090 loss 0.7257 elapsed 0.56 load 1.11\n",
"22207 14 08:51:01 INFO train : 2091 loss 0.7823 elapsed 0.68 load 0.00\n",
"22207 14 08:51:02 INFO train : 2092 loss 0.7244 elapsed 0.61 load 0.02\n",
"22207 14 08:51:02 INFO train : 2093 loss 0.7075 elapsed 0.63 load 0.04\n",
"22207 14 08:51:04 INFO train : 2094 loss 0.6895 elapsed 0.53 load 1.00\n",
"22207 14 08:51:05 INFO train : 2095 loss 0.6995 elapsed 0.62 load 0.00\n",
"22207 14 08:51:05 INFO train : 2096 loss 0.6881 elapsed 0.56 load 0.09\n",
"22207 14 08:51:06 INFO train : 2097 loss 0.7069 elapsed 0.59 load 0.07\n",
"22207 14 08:51:08 INFO train : 2098 loss 0.6994 elapsed 0.59 load 1.16\n",
"22207 14 08:51:08 INFO train : 2099 loss 0.7369 elapsed 0.60 load 0.00\n",
"22207 14 08:51:09 INFO train : 2100 loss 0.7224 elapsed 0.58 load 0.00\n",
"22207 14 08:51:10 INFO train : 2101 loss 0.7117 elapsed 0.61 load 0.40\n",
"22207 14 08:51:12 INFO train : 2102 loss 0.7069 elapsed 0.62 load 1.05\n",
"22207 14 08:51:12 INFO train : 2103 loss 0.7237 elapsed 0.59 load 0.00\n",
"22207 14 08:51:13 INFO train : 2104 loss 0.6871 elapsed 0.55 load 0.00\n",
"22207 14 08:51:14 INFO train : 2105 loss 0.7544 elapsed 0.59 load 0.07\n",
"22207 14 08:51:16 INFO train : 2106 loss 0.7353 elapsed 0.58 load 1.52\n",
"22207 14 08:51:16 INFO train : 2107 loss 0.7127 elapsed 0.67 load 0.00\n",
"22207 14 08:51:17 INFO train : 2108 loss 0.7236 elapsed 0.57 load 0.00\n",
"22207 14 08:51:18 INFO train : 2109 loss 0.7114 elapsed 0.56 load 0.05\n",
"22207 14 08:51:19 INFO train : 2110 loss 0.6838 elapsed 0.61 load 1.13\n",
"22207 14 08:51:20 INFO train : 2111 loss 0.6755 elapsed 0.62 load 0.00\n",
"22207 14 08:51:21 INFO train : 2112 loss 0.7361 elapsed 0.59 load 0.00\n",
"22207 14 08:51:21 INFO train : 2113 loss 0.7131 elapsed 0.59 load 0.01\n",
"22207 14 08:51:23 INFO train : 2114 loss 0.7030 elapsed 0.65 load 1.09\n",
"22207 14 08:51:24 INFO train : 2115 loss 0.7449 elapsed 0.64 load 0.00\n",
"22207 14 08:51:24 INFO train : 2116 loss 0.7468 elapsed 0.58 load 0.00\n",
"22207 14 08:51:25 INFO train : 2117 loss 0.6965 elapsed 0.55 load 0.07\n",
"22207 14 08:51:27 INFO train : 2118 loss 0.7057 elapsed 0.58 load 1.14\n",
"22207 14 08:51:27 INFO train : 2119 loss 0.7518 elapsed 0.67 load 0.00\n",
"22207 14 08:51:28 INFO train : 2120 loss 0.6963 elapsed 0.60 load 0.00\n",
"22207 14 08:51:29 INFO train : 2121 loss 0.7275 elapsed 0.61 load 0.06\n",
"22207 14 08:51:30 INFO train : 2122 loss 0.7190 elapsed 0.69 load 0.99\n",
"22207 14 08:51:31 INFO train : 2123 loss 0.7203 elapsed 0.57 load 0.00\n",
"22207 14 08:51:31 INFO train : 2124 loss 0.7539 elapsed 0.64 load 0.00\n",
"22207 14 08:51:32 INFO train : 2125 loss 0.6947 elapsed 0.60 load 0.05\n",
"22207 14 08:51:34 INFO train : 2126 loss 0.7246 elapsed 0.54 load 1.03\n",
"22207 14 08:51:34 INFO train : 2127 loss 0.7329 elapsed 0.60 load 0.01\n",
"22207 14 08:51:35 INFO train : 2128 loss 0.7293 elapsed 0.66 load 0.00\n",
"22207 14 08:51:36 INFO train : 2129 loss 0.7459 elapsed 0.68 load 0.04\n",
"22207 14 08:51:37 INFO train : 2130 loss 0.7134 elapsed 0.61 load 0.96\n",
"22207 14 08:51:38 INFO train : 2131 loss 0.6979 elapsed 0.66 load 0.00\n",
"22207 14 08:51:39 INFO train : 2132 loss 0.7148 elapsed 0.62 load 0.00\n",
"22207 14 08:51:39 INFO train : 2133 loss 0.7221 elapsed 0.63 load 0.03\n",
"22207 14 08:51:41 INFO train : 2134 loss 0.7252 elapsed 0.60 load 1.39\n",
"22207 14 08:51:42 INFO train : 2135 loss 0.7091 elapsed 0.61 load 0.00\n",
"22207 14 08:51:43 INFO train : 2136 loss 0.7584 elapsed 0.59 load 0.00\n",
"22207 14 08:51:43 INFO train : 2137 loss 0.7185 elapsed 0.63 load 0.05\n",
"22207 14 08:51:45 INFO train : 2138 loss 0.6856 elapsed 0.55 load 0.82\n",
"22207 14 08:51:45 INFO train : 2139 loss 0.7431 elapsed 0.55 load 0.05\n",
"22207 14 08:51:46 INFO train : 2140 loss 0.6823 elapsed 0.62 load 0.00\n",
"22207 14 08:51:47 INFO train : 2141 loss 0.7094 elapsed 0.62 load 0.01\n",
"22207 14 08:51:49 INFO train : 2142 loss 0.7517 elapsed 0.67 load 1.38\n",
"22207 14 08:51:49 INFO train : 2143 loss 0.7592 elapsed 0.62 load 0.00\n",
"22207 14 08:51:50 INFO train : 2144 loss 0.6994 elapsed 0.60 load 0.05\n",
"22207 14 08:51:51 INFO train : 2145 loss 0.6682 elapsed 0.52 load 0.05\n",
"22207 14 08:51:52 INFO train : 2146 loss 0.7555 elapsed 0.61 load 0.74\n",
"22207 14 08:51:53 INFO train : 2147 loss 0.7013 elapsed 0.63 load 0.00\n",
"22207 14 08:51:53 INFO train : 2148 loss 0.7449 elapsed 0.57 load 0.00\n",
"22207 14 08:51:54 INFO train : 2149 loss 0.7298 elapsed 0.59 load 0.06\n",
"22207 14 08:51:55 INFO train : 2150 loss 0.7368 elapsed 0.60 load 0.82\n",
"22207 14 08:51:56 INFO train : 2151 loss 0.7273 elapsed 0.65 load 0.00\n",
"22207 14 08:51:57 INFO train : 2152 loss 0.7141 elapsed 0.65 load 0.00\n",
"22207 14 08:51:58 INFO train : 2153 loss 0.7025 elapsed 0.58 load 0.09\n",
"22207 14 08:51:59 INFO train : 2154 loss 0.6930 elapsed 0.53 load 1.00\n",
"22207 14 08:52:00 INFO train : 2155 loss 0.7292 elapsed 0.64 load 0.00\n",
"22207 14 08:52:00 INFO train : 2156 loss 0.7025 elapsed 0.60 load 0.00\n",
"22207 14 08:52:01 INFO train : 2157 loss 0.7356 elapsed 0.64 load 0.03\n",
"22207 14 08:52:02 INFO train : 2158 loss 0.6984 elapsed 0.54 load 0.69\n",
"22207 14 08:52:03 INFO train : 2159 loss 0.6803 elapsed 0.61 load 0.00\n",
"22207 14 08:52:04 INFO train : 2160 loss 0.7300 elapsed 0.71 load 0.00\n",
"22207 14 08:52:04 INFO train : 2161 loss 0.7309 elapsed 0.57 load 0.01\n",
"22207 14 08:52:06 INFO train : 2162 loss 0.7093 elapsed 0.60 load 1.35\n",
"22207 14 08:52:07 INFO train : 2163 loss 0.7128 elapsed 0.59 load 0.00\n",
"22207 14 08:52:08 INFO train : 2164 loss 0.7145 elapsed 0.68 load 0.00\n",
"22207 14 08:52:08 INFO train : 2165 loss 0.7078 elapsed 0.75 load 0.03\n",
"22207 14 08:52:10 INFO train : 2166 loss 0.7264 elapsed 0.56 load 0.70\n",
"22207 14 08:52:10 INFO train : 2167 loss 0.7174 elapsed 0.60 load 0.00\n",
"22207 14 08:52:11 INFO train : 2168 loss 0.7169 elapsed 0.58 load 0.00\n",
"22207 14 08:52:12 INFO train : 2169 loss 0.7099 elapsed 0.56 load 0.14\n",
"22207 14 08:52:13 INFO train : 2170 loss 0.6947 elapsed 0.54 load 1.13\n",
"22207 14 08:52:14 INFO train : 2171 loss 0.7073 elapsed 0.63 load 0.00\n",
"22207 14 08:52:15 INFO train : 2172 loss 0.6730 elapsed 0.63 load 0.00\n",
"22207 14 08:52:15 INFO train : 2173 loss 0.6826 elapsed 0.50 load 0.09\n",
"22207 14 08:52:17 INFO train : 2174 loss 0.6688 elapsed 0.57 load 1.39\n",
"22207 14 08:52:18 INFO train : 2175 loss 0.7170 elapsed 0.63 load 0.00\n",
"22207 14 08:52:19 INFO train : 2176 loss 0.7264 elapsed 0.66 load 0.00\n",
"22207 14 08:52:19 INFO train : 2177 loss 0.7668 elapsed 0.53 load 0.02\n",
"22207 14 08:52:21 INFO train : 2178 loss 0.7450 elapsed 0.59 load 1.33\n",
"22207 14 08:52:22 INFO train : 2179 loss 0.6904 elapsed 0.61 load 0.00\n",
"22207 14 08:52:22 INFO train : 2180 loss 0.7403 elapsed 0.72 load 0.00\n",
"22207 14 08:52:23 INFO train : 2181 loss 0.7086 elapsed 0.68 load 0.09\n",
"22207 14 08:52:24 INFO train : 2182 loss 0.7182 elapsed 0.60 load 0.53\n",
"22207 14 08:52:25 INFO train : 2183 loss 0.7316 elapsed 0.61 load 0.00\n",
"22207 14 08:52:26 INFO train : 2184 loss 0.6888 elapsed 0.65 load 0.00\n",
"22207 14 08:52:26 INFO train : 2185 loss 0.6998 elapsed 0.59 load 0.01\n",
"22207 14 08:52:28 INFO train : 2186 loss 0.7176 elapsed 0.62 load 1.03\n",
"22207 14 08:52:29 INFO train : 2187 loss 0.7560 elapsed 0.56 load 0.00\n",
"22207 14 08:52:29 INFO train : 2188 loss 0.7155 elapsed 0.66 load 0.00\n",
"22207 14 08:52:30 INFO train : 2189 loss 0.7134 elapsed 0.69 load 0.10\n",
"22207 14 08:52:32 INFO train : 2190 loss 0.7164 elapsed 0.62 load 0.91\n",
"22207 14 08:52:32 INFO train : 2191 loss 0.7462 elapsed 0.65 load 0.00\n",
"22207 14 08:52:33 INFO train : 2192 loss 0.7366 elapsed 0.54 load 0.00\n",
"22207 14 08:52:33 INFO train : 2193 loss 0.7292 elapsed 0.64 load 0.01\n",
"22207 14 08:52:35 INFO train : 2194 loss 0.7227 elapsed 0.57 load 0.96\n",
"22207 14 08:52:36 INFO train : 2195 loss 0.7752 elapsed 0.62 load 0.01\n",
"22207 14 08:52:36 INFO train : 2196 loss 0.7251 elapsed 0.68 load 0.00\n",
"22207 14 08:52:37 INFO train : 2197 loss 0.7505 elapsed 0.56 load 0.07\n",
"22207 14 08:52:39 INFO train : 2198 loss 0.6982 elapsed 0.71 load 0.97\n",
"22207 14 08:52:39 INFO train : 2199 loss 0.7234 elapsed 0.65 load 0.00\n",
"22207 14 08:52:40 INFO train : 2200 loss 0.7262 elapsed 0.55 load 0.00\n",
"22207 14 08:52:41 INFO train : 2201 loss 0.7039 elapsed 0.56 load 0.04\n",
"22207 14 08:52:42 INFO train : 2202 loss 0.6916 elapsed 0.57 load 0.71\n",
"22207 14 08:52:43 INFO train : 2203 loss 0.7187 elapsed 0.64 load 0.00\n",
"22207 14 08:52:43 INFO train : 2204 loss 0.6842 elapsed 0.62 load 0.00\n",
"22207 14 08:52:44 INFO train : 2205 loss 0.7002 elapsed 0.59 load 0.07\n",
"22207 14 08:52:46 INFO train : 2206 loss 0.7004 elapsed 0.65 load 1.01\n",
"22207 14 08:52:46 INFO train : 2207 loss 0.7127 elapsed 0.59 load 0.00\n",
"22207 14 08:52:47 INFO train : 2208 loss 0.7259 elapsed 0.64 load 0.00\n",
"22207 14 08:52:48 INFO train : 2209 loss 0.7910 elapsed 0.66 load 0.02\n",
"22207 14 08:52:49 INFO train : 2210 loss 0.7204 elapsed 0.60 load 1.05\n",
"22207 14 08:52:50 INFO train : 2211 loss 0.7326 elapsed 0.58 load 0.00\n",
"22207 14 08:52:50 INFO train : 2212 loss 0.7364 elapsed 0.59 load 0.00\n",
"22207 14 08:52:51 INFO train : 2213 loss 0.7192 elapsed 0.64 load 0.00\n",
"22207 14 08:52:53 INFO train : 2214 loss 0.7063 elapsed 0.61 load 1.32\n",
"22207 14 08:52:54 INFO train : 2215 loss 0.7046 elapsed 0.63 load 0.00\n",
"22207 14 08:52:54 INFO train : 2216 loss 0.6612 elapsed 0.58 load 0.00\n",
"22207 14 08:52:55 INFO train : 2217 loss 0.7085 elapsed 0.58 load 0.01\n",
"22207 14 08:52:57 INFO train : 2218 loss 0.7412 elapsed 0.63 load 1.30\n",
"22207 14 08:52:57 INFO train : 2219 loss 0.6689 elapsed 0.56 load 0.02\n",
"22207 14 08:52:58 INFO train : 2220 loss 0.7127 elapsed 0.59 load 0.00\n",
"22207 14 08:52:59 INFO train : 2221 loss 0.7418 elapsed 0.61 load 0.02\n",
"22207 14 08:53:01 INFO train : 2222 loss 0.6886 elapsed 0.67 load 1.78\n",
"22207 14 08:53:02 INFO train : 2223 loss 0.7046 elapsed 0.63 load 0.00\n",
"22207 14 08:53:03 INFO train : 2224 loss 0.6885 elapsed 0.67 load 0.00\n",
"22207 14 08:53:03 INFO train : 2225 loss 0.6946 elapsed 0.59 load 0.03\n",
"22207 14 08:53:05 INFO train : 2226 loss 0.7485 elapsed 0.56 load 1.10\n",
"22207 14 08:53:06 INFO train : 2227 loss 0.7131 elapsed 0.63 load 0.04\n",
"22207 14 08:53:06 INFO train : 2228 loss 0.7171 elapsed 0.60 load 0.00\n",
"22207 14 08:53:07 INFO train : 2229 loss 0.7370 elapsed 0.76 load 0.00\n",
"22207 14 08:53:08 INFO train : 2230 loss 0.7193 elapsed 0.59 load 0.71\n",
"22207 14 08:53:09 INFO train : 2231 loss 0.7075 elapsed 0.59 load 0.00\n",
"22207 14 08:53:09 INFO train : 2232 loss 0.7570 elapsed 0.60 load 0.03\n",
"22207 14 08:53:10 INFO train : 2233 loss 0.7093 elapsed 0.63 load 0.00\n",
"22207 14 08:53:12 INFO train : 2234 loss 0.6890 elapsed 0.59 load 1.16\n",
"22207 14 08:53:13 INFO train : 2235 loss 0.7733 elapsed 0.59 load 0.00\n",
"22207 14 08:53:13 INFO train : 2236 loss 0.7229 elapsed 0.62 load 0.00\n",
"22207 14 08:53:14 INFO train : 2237 loss 0.7792 elapsed 0.62 load 0.00\n",
"22207 14 08:53:15 INFO train : 2238 loss 0.6760 elapsed 0.60 load 0.77\n",
"22207 14 08:53:16 INFO train : 2239 loss 0.7280 elapsed 0.64 load 0.00\n",
"22207 14 08:53:17 INFO train : 2240 loss 0.6940 elapsed 0.59 load 0.00\n",
"22207 14 08:53:17 INFO train : 2241 loss 0.7515 elapsed 0.57 load 0.00\n",
"22207 14 08:53:19 INFO train : 2242 loss 0.7297 elapsed 0.59 load 1.05\n",
"22207 14 08:53:20 INFO train : 2243 loss 0.7102 elapsed 0.65 load 0.00\n",
"22207 14 08:53:20 INFO train : 2244 loss 0.7171 elapsed 0.65 load 0.00\n",
"22207 14 08:53:21 INFO train : 2245 loss 0.7580 elapsed 0.59 load 0.04\n",
"22207 14 08:53:22 INFO train : 2246 loss 0.7334 elapsed 0.60 load 0.77\n",
"22207 14 08:53:23 INFO train : 2247 loss 0.7261 elapsed 0.56 load 0.02\n",
"22207 14 08:53:24 INFO train : 2248 loss 0.7420 elapsed 0.64 load 0.00\n",
"22207 14 08:53:24 INFO train : 2249 loss 0.6937 elapsed 0.57 load 0.00\n",
"22207 14 08:53:25 INFO train : 2250 loss 0.7202 elapsed 0.56 load 0.65\n",
"22207 14 08:53:26 INFO train : 2251 loss 0.6814 elapsed 0.61 load 0.00\n",
"22207 14 08:53:27 INFO train : 2252 loss 0.6892 elapsed 0.62 load 0.00\n",
"22207 14 08:53:27 INFO train : 2253 loss 0.6957 elapsed 0.62 load 0.01\n",
"22207 14 08:53:29 INFO train : 2254 loss 0.6939 elapsed 0.54 load 1.18\n",
"22207 14 08:53:30 INFO train : 2255 loss 0.7966 elapsed 0.57 load 0.00\n",
"22207 14 08:53:30 INFO train : 2256 loss 0.7498 elapsed 0.60 load 0.00\n",
"22207 14 08:53:31 INFO train : 2257 loss 0.7230 elapsed 0.55 load 0.01\n",
"22207 14 08:53:32 INFO train : 2258 loss 0.7225 elapsed 0.59 load 0.79\n",
"22207 14 08:53:33 INFO train : 2259 loss 0.7650 elapsed 0.56 load 0.00\n",
"22207 14 08:53:33 INFO train : 2260 loss 0.7228 elapsed 0.59 load 0.00\n",
"22207 14 08:53:34 INFO train : 2261 loss 0.7195 elapsed 0.72 load 0.01\n",
"22207 14 08:53:36 INFO train : 2262 loss 0.6983 elapsed 0.65 load 0.98\n",
"22207 14 08:53:37 INFO train : 2263 loss 0.7169 elapsed 0.61 load 0.00\n",
"22207 14 08:53:37 INFO train : 2264 loss 0.6941 elapsed 0.61 load 0.00\n",
"22207 14 08:53:38 INFO train : 2265 loss 0.6944 elapsed 0.63 load 0.06\n",
"22207 14 08:53:40 INFO train : 2266 loss 0.7032 elapsed 0.64 load 1.04\n",
"22207 14 08:53:40 INFO train : 2267 loss 0.7454 elapsed 0.56 load 0.00\n",
"22207 14 08:53:41 INFO train : 2268 loss 0.6937 elapsed 0.59 load 0.00\n",
"22207 14 08:53:41 INFO train : 2269 loss 0.6937 elapsed 0.52 load 0.07\n",
"22207 14 08:53:43 INFO train : 2270 loss 0.7022 elapsed 0.56 load 0.90\n",
"22207 14 08:53:43 INFO train : 2271 loss 0.7340 elapsed 0.59 load 0.00\n",
"22207 14 08:53:44 INFO train : 2272 loss 0.7228 elapsed 0.65 load 0.00\n",
"22207 14 08:53:45 INFO train : 2273 loss 0.7448 elapsed 0.50 load 0.01\n",
"22207 14 08:53:47 INFO train : 2274 loss 0.7496 elapsed 0.60 load 1.29\n",
"22207 14 08:53:47 INFO train : 2275 loss 0.7695 elapsed 0.59 load 0.01\n",
"22207 14 08:53:48 INFO train : 2276 loss 0.6894 elapsed 0.56 load 0.00\n",
"22207 14 08:53:48 INFO train : 2277 loss 0.7407 elapsed 0.56 load 0.00\n",
"22207 14 08:53:50 INFO train : 2278 loss 0.7090 elapsed 0.56 load 1.35\n",
"22207 14 08:53:51 INFO train : 2279 loss 0.7206 elapsed 0.61 load 0.00\n",
"22207 14 08:53:51 INFO train : 2280 loss 0.6804 elapsed 0.59 load 0.00\n",
"22207 14 08:53:52 INFO train : 2281 loss 0.7152 elapsed 0.61 load 0.00\n",
"22207 14 08:53:54 INFO train : 2282 loss 0.7059 elapsed 0.67 load 1.50\n",
"22207 14 08:53:55 INFO train : 2283 loss 0.6715 elapsed 0.58 load 0.00\n",
"22207 14 08:53:56 INFO train : 2284 loss 0.7159 elapsed 0.59 load 0.00\n",
"22207 14 08:53:56 INFO train : 2285 loss 0.6738 elapsed 0.63 load 0.01\n",
"22207 14 08:53:58 INFO train : 2286 loss 0.7321 elapsed 0.55 load 1.18\n",
"22207 14 08:53:59 INFO train : 2287 loss 0.7123 elapsed 0.68 load 0.00\n",
"22207 14 08:53:59 INFO train : 2288 loss 0.6973 elapsed 0.60 load 0.00\n",
"22207 14 08:54:00 INFO train : 2289 loss 0.7053 elapsed 0.65 load 0.02\n",
"22207 14 08:54:01 INFO train : 2290 loss 0.7038 elapsed 0.56 load 0.85\n",
"22207 14 08:54:02 INFO train : 2291 loss 0.7269 elapsed 0.63 load 0.00\n",
"22207 14 08:54:03 INFO train : 2292 loss 0.7377 elapsed 0.68 load 0.00\n",
"22207 14 08:54:03 INFO train : 2293 loss 0.7098 elapsed 0.59 load 0.06\n",
"22207 14 08:54:05 INFO train : 2294 loss 0.7294 elapsed 0.64 load 0.83\n",
"22207 14 08:54:06 INFO train : 2295 loss 0.7065 elapsed 0.67 load 0.00\n",
"22207 14 08:54:06 INFO train : 2296 loss 0.7171 elapsed 0.63 load 0.00\n",
"22207 14 08:54:07 INFO train : 2297 loss 0.7203 elapsed 0.62 load 0.03\n",
"22207 14 08:54:09 INFO train : 2298 loss 0.6963 elapsed 0.61 load 1.25\n",
"22207 14 08:54:09 INFO train : 2299 loss 0.7289 elapsed 0.60 load 0.00\n",
"22207 14 08:54:10 INFO train : 2300 loss 0.6887 elapsed 0.69 load 0.00\n",
"22207 14 08:54:11 INFO train : 2301 loss 0.6938 elapsed 0.65 load 0.03\n",
"22207 14 08:54:12 INFO train : 2302 loss 0.7219 elapsed 0.65 load 1.14\n",
"22207 14 08:54:13 INFO train : 2303 loss 0.7382 elapsed 0.66 load 0.00\n",
"22207 14 08:54:14 INFO train : 2304 loss 0.7050 elapsed 0.73 load 0.00\n",
"22207 14 08:54:15 INFO train : 2305 loss 0.7363 elapsed 0.54 load 0.07\n",
"22207 14 08:54:16 INFO train : 2306 loss 0.6991 elapsed 0.60 load 0.70\n",
"22207 14 08:54:16 INFO train : 2307 loss 0.7576 elapsed 0.54 load 0.00\n",
"22207 14 08:54:17 INFO train : 2308 loss 0.7501 elapsed 0.58 load 0.00\n",
"22207 14 08:54:18 INFO train : 2309 loss 0.7382 elapsed 0.55 load 0.03\n",
"22207 14 08:54:20 INFO train : 2310 loss 0.7039 elapsed 0.62 load 1.16\n",
"22207 14 08:54:20 INFO train : 2311 loss 0.7091 elapsed 0.63 load 0.00\n",
"22207 14 08:54:21 INFO train : 2312 loss 0.6881 elapsed 0.74 load 0.00\n",
"22207 14 08:54:22 INFO train : 2313 loss 0.7014 elapsed 0.56 load 0.02\n",
"22207 14 08:54:23 INFO train : 2314 loss 0.6627 elapsed 0.55 load 1.29\n",
"22207 14 08:54:24 INFO train : 2315 loss 0.7192 elapsed 0.59 load 0.00\n",
"22207 14 08:54:25 INFO train : 2316 loss 0.7343 elapsed 0.53 load 0.00\n",
"22207 14 08:54:25 INFO train : 2317 loss 0.6951 elapsed 0.50 load 0.00\n",
"22207 14 08:54:27 INFO train : 2318 loss 0.6923 elapsed 0.56 load 1.55\n",
"22207 14 08:54:28 INFO train : 2319 loss 0.6996 elapsed 0.60 load 0.00\n",
"22207 14 08:54:28 INFO train : 2320 loss 0.6868 elapsed 0.67 load 0.00\n",
"22207 14 08:54:29 INFO train : 2321 loss 0.7168 elapsed 0.62 load 0.01\n",
"22207 14 08:54:31 INFO train : 2322 loss 0.6914 elapsed 0.61 load 1.23\n",
"22207 14 08:54:32 INFO train : 2323 loss 0.6989 elapsed 0.60 load 0.00\n",
"22207 14 08:54:32 INFO train : 2324 loss 0.6988 elapsed 0.69 load 0.00\n",
"22207 14 08:54:33 INFO train : 2325 loss 0.7313 elapsed 0.67 load 0.00\n",
"22207 14 08:54:34 INFO train : 2326 loss 0.6821 elapsed 0.65 load 0.68\n",
"22207 14 08:54:35 INFO train : 2327 loss 0.7373 elapsed 0.61 load 0.01\n",
"22207 14 08:54:36 INFO train : 2328 loss 0.6969 elapsed 0.72 load 0.00\n",
"22207 14 08:54:36 INFO train : 2329 loss 0.7199 elapsed 0.55 load 0.00\n",
"22207 14 08:54:37 INFO train : 2330 loss 0.6932 elapsed 0.54 load 0.45\n",
"22207 14 08:54:38 INFO train : 2331 loss 0.6797 elapsed 0.66 load 0.00\n",
"22207 14 08:54:39 INFO train : 2332 loss 0.7154 elapsed 0.61 load 0.00\n",
"22207 14 08:54:39 INFO train : 2333 loss 0.6769 elapsed 0.59 load 0.05\n",
"22207 14 08:54:41 INFO train : 2334 loss 0.7133 elapsed 0.56 load 0.78\n",
"22207 14 08:54:41 INFO train : 2335 loss 0.7172 elapsed 0.60 load 0.02\n",
"22207 14 08:54:42 INFO train : 2336 loss 0.7292 elapsed 0.63 load 0.00\n",
"22207 14 08:54:43 INFO train : 2337 loss 0.7293 elapsed 0.64 load 0.01\n",
"22207 14 08:54:45 INFO train : 2338 loss 0.6741 elapsed 0.62 load 1.54\n",
"22207 14 08:54:45 INFO train : 2339 loss 0.7610 elapsed 0.58 load 0.00\n",
"22207 14 08:54:46 INFO train : 2340 loss 0.6976 elapsed 0.50 load 0.00\n",
"22207 14 08:54:47 INFO train : 2341 loss 0.7078 elapsed 0.60 load 0.01\n",
"22207 14 08:54:48 INFO train : 2342 loss 0.7935 elapsed 0.64 load 1.16\n",
"22207 14 08:54:49 INFO train : 2343 loss 0.7709 elapsed 0.62 load 0.00\n",
"22207 14 08:54:50 INFO train : 2344 loss 0.6820 elapsed 0.64 load 0.00\n",
"22207 14 08:54:50 INFO train : 2345 loss 0.6844 elapsed 0.61 load 0.00\n",
"22207 14 08:54:52 INFO train : 2346 loss 0.7342 elapsed 0.50 load 1.24\n",
"22207 14 08:54:53 INFO train : 2347 loss 0.7195 elapsed 0.60 load 0.00\n",
"22207 14 08:54:53 INFO train : 2348 loss 0.7393 elapsed 0.57 load 0.00\n",
"22207 14 08:54:54 INFO train : 2349 loss 0.6912 elapsed 0.60 load 0.00\n",
"22207 14 08:54:56 INFO train : 2350 loss 0.7620 elapsed 0.63 load 1.00\n",
"22207 14 08:54:56 INFO train : 2351 loss 0.6895 elapsed 0.76 load 0.00\n",
"22207 14 08:54:57 INFO train : 2352 loss 0.6844 elapsed 0.67 load 0.01\n",
"22207 14 08:54:58 INFO train : 2353 loss 0.6822 elapsed 0.70 load 0.01\n",
"22207 14 08:54:59 INFO train : 2354 loss 0.7114 elapsed 0.55 load 0.57\n",
"22207 14 08:55:00 INFO train : 2355 loss 0.7161 elapsed 0.64 load 0.00\n",
"22207 14 08:55:00 INFO train : 2356 loss 0.7090 elapsed 0.68 load 0.00\n",
"22207 14 08:55:01 INFO train : 2357 loss 0.7314 elapsed 0.56 load 0.02\n",
"22207 14 08:55:02 INFO train : 2358 loss 0.6872 elapsed 0.58 load 0.67\n",
"22207 14 08:55:03 INFO train : 2359 loss 0.7004 elapsed 0.59 load 0.00\n",
"22207 14 08:55:03 INFO train : 2360 loss 0.7277 elapsed 0.60 load 0.00\n",
"22207 14 08:55:04 INFO train : 2361 loss 0.6885 elapsed 0.65 load 0.02\n",
"22207 14 08:55:05 INFO train : 2362 loss 0.7105 elapsed 0.55 load 0.71\n",
"22207 14 08:55:06 INFO train : 2363 loss 0.7630 elapsed 0.56 load 0.00\n",
"22207 14 08:55:07 INFO train : 2364 loss 0.7419 elapsed 0.63 load 0.00\n",
"22207 14 08:55:07 INFO train : 2365 loss 0.7584 elapsed 0.61 load 0.04\n",
"22207 14 08:55:09 INFO train : 2366 loss 0.7060 elapsed 0.54 load 1.03\n",
"22207 14 08:55:10 INFO train : 2367 loss 0.7635 elapsed 0.65 load 0.00\n",
"22207 14 08:55:10 INFO train : 2368 loss 0.7351 elapsed 0.64 load 0.00\n",
"22207 14 08:55:11 INFO train : 2369 loss 0.7433 elapsed 0.60 load 0.00\n",
"22207 14 08:55:12 INFO train : 2370 loss 0.7358 elapsed 0.62 load 0.94\n",
"22207 14 08:55:13 INFO train : 2371 loss 0.7071 elapsed 0.56 load 0.00\n",
"22207 14 08:55:14 INFO train : 2372 loss 0.7117 elapsed 0.53 load 0.08\n",
"22207 14 08:55:14 INFO train : 2373 loss 0.7612 elapsed 0.63 load 0.04\n",
"22207 14 08:55:16 INFO train : 2374 loss 0.6931 elapsed 0.59 load 1.19\n",
"22207 14 08:55:17 INFO train : 2375 loss 0.7456 elapsed 0.54 load 0.00\n",
"22207 14 08:55:17 INFO train : 2376 loss 0.7197 elapsed 0.65 load 0.04\n",
"22207 14 08:55:18 INFO train : 2377 loss 0.7345 elapsed 0.64 load 0.00\n",
"22207 14 08:55:20 INFO train : 2378 loss 0.7154 elapsed 0.61 load 0.97\n",
"22207 14 08:55:20 INFO train : 2379 loss 0.7566 elapsed 0.64 load 0.00\n",
"22207 14 08:55:21 INFO train : 2380 loss 0.7710 elapsed 0.66 load 0.02\n",
"22207 14 08:55:22 INFO train : 2381 loss 0.6630 elapsed 0.63 load 0.00\n",
"22207 14 08:55:23 INFO train : 2382 loss 0.6930 elapsed 0.57 load 0.86\n",
"22207 14 08:55:24 INFO train : 2383 loss 0.6914 elapsed 0.62 load 0.00\n",
"22207 14 08:55:24 INFO train : 2384 loss 0.6739 elapsed 0.66 load 0.03\n",
"22207 14 08:55:25 INFO train : 2385 loss 0.7101 elapsed 0.52 load 0.00\n",
"22207 14 08:55:27 INFO train : 2386 loss 0.7168 elapsed 0.62 load 1.62\n",
"22207 14 08:55:28 INFO train : 2387 loss 0.7007 elapsed 0.67 load 0.00\n",
"22207 14 08:55:29 INFO train : 2388 loss 0.6741 elapsed 0.60 load 0.00\n",
"22207 14 08:55:29 INFO train : 2389 loss 0.6855 elapsed 0.67 load 0.00\n",
"22207 14 08:55:31 INFO train : 2390 loss 0.7398 elapsed 0.62 load 0.71\n",
"22207 14 08:55:31 INFO train : 2391 loss 0.7567 elapsed 0.67 load 0.00\n",
"22207 14 08:55:32 INFO train : 2392 loss 0.7214 elapsed 0.58 load 0.04\n",
"22207 14 08:55:33 INFO train : 2393 loss 0.7294 elapsed 0.59 load 0.00\n",
"22207 14 08:55:34 INFO train : 2394 loss 0.7227 elapsed 0.60 load 1.03\n",
"22207 14 08:55:35 INFO train : 2395 loss 0.7213 elapsed 0.55 load 0.00\n",
"22207 14 08:55:35 INFO train : 2396 loss 0.7052 elapsed 0.58 load 0.00\n",
"22207 14 08:55:36 INFO train : 2397 loss 0.7292 elapsed 0.57 load 0.00\n",
"22207 14 08:55:38 INFO train : 2398 loss 0.7016 elapsed 0.62 load 1.20\n",
"22207 14 08:55:39 INFO train : 2399 loss 0.7036 elapsed 0.64 load 0.00\n",
"22207 14 08:55:39 INFO train : 2400 loss 0.7118 elapsed 0.55 load 0.00\n",
"22207 14 08:55:40 INFO train : 2401 loss 0.6911 elapsed 0.53 load 0.00\n",
"22207 14 08:55:40 INFO train : 2402 loss 0.6974 elapsed 0.50 load 0.10\n",
"22207 14 08:55:41 INFO train : 2403 loss 0.7129 elapsed 0.49 load 0.00\n",
"22207 14 08:55:41 INFO train : 2404 loss 0.7378 elapsed 0.49 load 0.00\n",
"22207 14 08:55:42 INFO train : 2405 loss 0.6580 elapsed 0.50 load 0.00\n",
"22207 14 08:55:42 INFO train : 2406 loss 0.7455 elapsed 0.13 load 0.00\n",
"22207 14 08:55:42 INFO Epoch num: 6\n",
"22207 14 08:55:47 INFO train : 2407 loss 0.6960 elapsed 0.60 load 4.11\n",
"22207 14 08:55:47 INFO train : 2408 loss 0.6720 elapsed 0.55 load 0.00\n",
"22207 14 08:55:48 INFO train : 2409 loss 0.6613 elapsed 0.57 load 0.00\n",
"22207 14 08:55:48 INFO train : 2410 loss 0.6794 elapsed 0.51 load 0.00\n",
"22207 14 08:55:50 INFO train : 2411 loss 0.6895 elapsed 0.57 load 0.89\n",
"22207 14 08:55:51 INFO train : 2412 loss 0.6918 elapsed 0.61 load 0.06\n",
"22207 14 08:55:51 INFO train : 2413 loss 0.7058 elapsed 0.63 load 0.00\n",
"22207 14 08:55:52 INFO train : 2414 loss 0.6909 elapsed 0.70 load 0.00\n",
"22207 14 08:55:54 INFO train : 2415 loss 0.6555 elapsed 0.56 load 1.12\n",
"22207 14 08:55:54 INFO train : 2416 loss 0.6689 elapsed 0.57 load 0.10\n",
"22207 14 08:55:55 INFO train : 2417 loss 0.7187 elapsed 0.71 load 0.00\n",
"22207 14 08:55:56 INFO train : 2418 loss 0.7140 elapsed 0.64 load 0.00\n",
"22207 14 08:55:57 INFO train : 2419 loss 0.6849 elapsed 0.65 load 1.02\n",
"22207 14 08:55:58 INFO train : 2420 loss 0.6643 elapsed 0.64 load 0.01\n",
"22207 14 08:55:59 INFO train : 2421 loss 0.6743 elapsed 0.61 load 0.00\n",
"22207 14 08:55:59 INFO train : 2422 loss 0.6833 elapsed 0.69 load 0.00\n",
"22207 14 08:56:01 INFO train : 2423 loss 0.6854 elapsed 0.58 load 0.80\n",
"22207 14 08:56:02 INFO train : 2424 loss 0.6801 elapsed 0.59 load 0.04\n",
"22207 14 08:56:02 INFO train : 2425 loss 0.6848 elapsed 0.63 load 0.00\n",
"22207 14 08:56:03 INFO train : 2426 loss 0.6808 elapsed 0.62 load 0.00\n",
"22207 14 08:56:04 INFO train : 2427 loss 0.7090 elapsed 0.58 load 0.74\n",
"22207 14 08:56:05 INFO train : 2428 loss 0.6722 elapsed 0.64 load 0.10\n",
"22207 14 08:56:05 INFO train : 2429 loss 0.6522 elapsed 0.57 load 0.00\n",
"22207 14 08:56:06 INFO train : 2430 loss 0.6517 elapsed 0.60 load 0.00\n",
"22207 14 08:56:08 INFO train : 2431 loss 0.7485 elapsed 0.57 load 1.16\n",
"22207 14 08:56:09 INFO train : 2432 loss 0.7295 elapsed 0.64 load 0.16\n",
"22207 14 08:56:09 INFO train : 2433 loss 0.7282 elapsed 0.57 load 0.00\n",
"22207 14 08:56:10 INFO train : 2434 loss 0.7248 elapsed 0.64 load 0.00\n",
"22207 14 08:56:11 INFO train : 2435 loss 0.7054 elapsed 0.68 load 0.89\n",
"22207 14 08:56:12 INFO train : 2436 loss 0.6610 elapsed 0.68 load 0.01\n",
"22207 14 08:56:13 INFO train : 2437 loss 0.6932 elapsed 0.68 load 0.01\n",
"22207 14 08:56:14 INFO train : 2438 loss 0.7037 elapsed 0.58 load 0.00\n",
"22207 14 08:56:15 INFO train : 2439 loss 0.6427 elapsed 0.61 load 0.80\n",
"22207 14 08:56:16 INFO train : 2440 loss 0.6471 elapsed 0.53 load 0.01\n",
"22207 14 08:56:16 INFO train : 2441 loss 0.6673 elapsed 0.61 load 0.00\n",
"22207 14 08:56:17 INFO train : 2442 loss 0.6641 elapsed 0.63 load 0.00\n",
"22207 14 08:56:18 INFO train : 2443 loss 0.6430 elapsed 0.51 load 0.91\n",
"22207 14 08:56:19 INFO train : 2444 loss 0.6768 elapsed 0.60 load 0.02\n",
"22207 14 08:56:20 INFO train : 2445 loss 0.6915 elapsed 0.65 load 0.05\n",
"22207 14 08:56:20 INFO train : 2446 loss 0.6606 elapsed 0.60 load 0.00\n",
"22207 14 08:56:22 INFO train : 2447 loss 0.6930 elapsed 0.56 load 0.67\n",
"22207 14 08:56:22 INFO train : 2448 loss 0.6598 elapsed 0.60 load 0.05\n",
"22207 14 08:56:23 INFO train : 2449 loss 0.6613 elapsed 0.63 load 0.01\n",
"22207 14 08:56:24 INFO train : 2450 loss 0.6748 elapsed 0.67 load 0.00\n",
"22207 14 08:56:25 INFO train : 2451 loss 0.6255 elapsed 0.57 load 1.10\n",
"22207 14 08:56:26 INFO train : 2452 loss 0.7853 elapsed 0.55 load 0.01\n",
"22207 14 08:56:26 INFO train : 2453 loss 0.6653 elapsed 0.62 load 0.00\n",
"22207 14 08:56:27 INFO train : 2454 loss 0.6724 elapsed 0.61 load 0.03\n",
"22207 14 08:56:29 INFO train : 2455 loss 0.6667 elapsed 0.59 load 0.93\n",
"22207 14 08:56:29 INFO train : 2456 loss 0.6716 elapsed 0.55 load 0.05\n",
"22207 14 08:56:30 INFO train : 2457 loss 0.6849 elapsed 0.60 load 0.01\n",
"22207 14 08:56:31 INFO train : 2458 loss 0.6837 elapsed 0.63 load 0.00\n",
"22207 14 08:56:32 INFO train : 2459 loss 0.6708 elapsed 0.59 load 0.92\n",
"22207 14 08:56:33 INFO train : 2460 loss 0.6576 elapsed 0.62 load 0.15\n",
"22207 14 08:56:34 INFO train : 2461 loss 0.6679 elapsed 0.69 load 0.00\n",
"22207 14 08:56:34 INFO train : 2462 loss 0.6718 elapsed 0.57 load 0.00\n",
"22207 14 08:56:36 INFO train : 2463 loss 0.6806 elapsed 0.57 load 1.19\n",
"22207 14 08:56:37 INFO train : 2464 loss 0.6656 elapsed 0.55 load 0.09\n",
"22207 14 08:56:37 INFO train : 2465 loss 0.6476 elapsed 0.62 load 0.05\n",
"22207 14 08:56:38 INFO train : 2466 loss 0.6821 elapsed 0.56 load 0.00\n",
"22207 14 08:56:40 INFO train : 2467 loss 0.6725 elapsed 0.60 load 1.13\n",
"22207 14 08:56:40 INFO train : 2468 loss 0.7139 elapsed 0.65 load 0.03\n",
"22207 14 08:56:41 INFO train : 2469 loss 0.6864 elapsed 0.64 load 0.01\n",
"22207 14 08:56:42 INFO train : 2470 loss 0.7273 elapsed 0.56 load 0.00\n",
"22207 14 08:56:43 INFO train : 2471 loss 0.7066 elapsed 0.52 load 0.81\n",
"22207 14 08:56:44 INFO train : 2472 loss 0.6465 elapsed 0.58 load 0.08\n",
"22207 14 08:56:44 INFO train : 2473 loss 0.6936 elapsed 0.65 load 0.01\n",
"22207 14 08:56:45 INFO train : 2474 loss 0.6870 elapsed 0.65 load 0.00\n",
"22207 14 08:56:47 INFO train : 2475 loss 0.7311 elapsed 0.61 load 1.20\n",
"22207 14 08:56:48 INFO train : 2476 loss 0.6753 elapsed 0.65 load 0.01\n",
"22207 14 08:56:48 INFO train : 2477 loss 0.7033 elapsed 0.56 load 0.02\n",
"22207 14 08:56:49 INFO train : 2478 loss 0.6645 elapsed 0.68 load 0.00\n",
"22207 14 08:56:50 INFO train : 2479 loss 0.6998 elapsed 0.71 load 0.67\n",
"22207 14 08:56:51 INFO train : 2480 loss 0.7145 elapsed 0.70 load 0.04\n",
"22207 14 08:56:52 INFO train : 2481 loss 0.6741 elapsed 0.64 load 0.00\n",
"22207 14 08:56:52 INFO train : 2482 loss 0.6742 elapsed 0.63 load 0.00\n",
"22207 14 08:56:54 INFO train : 2483 loss 0.6806 elapsed 0.53 load 0.81\n",
"22207 14 08:56:54 INFO train : 2484 loss 0.6570 elapsed 0.59 load 0.02\n",
"22207 14 08:56:55 INFO train : 2485 loss 0.6742 elapsed 0.68 load 0.00\n",
"22207 14 08:56:56 INFO train : 2486 loss 0.6795 elapsed 0.66 load 0.00\n",
"22207 14 08:56:57 INFO train : 2487 loss 0.6820 elapsed 0.63 load 0.82\n",
"22207 14 08:56:58 INFO train : 2488 loss 0.6899 elapsed 0.60 load 0.10\n",
"22207 14 08:56:59 INFO train : 2489 loss 0.6903 elapsed 0.68 load 0.00\n",
"22207 14 08:56:59 INFO train : 2490 loss 0.7025 elapsed 0.62 load 0.00\n",
"22207 14 08:57:01 INFO train : 2491 loss 0.6453 elapsed 0.56 load 0.84\n",
"22207 14 08:57:01 INFO train : 2492 loss 0.6311 elapsed 0.63 load 0.01\n",
"22207 14 08:57:02 INFO train : 2493 loss 0.7128 elapsed 0.70 load 0.00\n",
"22207 14 08:57:03 INFO train : 2494 loss 0.6870 elapsed 0.63 load 0.00\n",
"22207 14 08:57:05 INFO train : 2495 loss 0.6944 elapsed 0.60 load 1.18\n",
"22207 14 08:57:05 INFO train : 2496 loss 0.7015 elapsed 0.59 load 0.00\n",
"22207 14 08:57:06 INFO train : 2497 loss 0.6938 elapsed 0.66 load 0.00\n",
"22207 14 08:57:06 INFO train : 2498 loss 0.6950 elapsed 0.52 load 0.00\n",
"22207 14 08:57:08 INFO train : 2499 loss 0.7151 elapsed 0.55 load 1.15\n",
"22207 14 08:57:09 INFO train : 2500 loss 0.7078 elapsed 0.59 load 0.00\n",
"22207 14 08:57:09 INFO Running validation\n",
"22207 14 08:57:30 INFO Logging 20 images\n",
"22207 14 08:57:31 INFO Logging 20 audios\n",
"22207 14 08:57:34 INFO Logging 20 texts\n",
"22207 14 08:57:45 INFO val : 2500 loss 0.6631200909614563\n",
"22207 14 08:57:45 INFO Saving model state at step 2500 to checkpoints/fp_step_00002500.pt\n",
"22207 14 08:57:46 INFO train : 2501 loss 0.6741 elapsed 0.49 load 0.00\n",
"22207 14 08:57:46 INFO train : 2502 loss 0.6793 elapsed 0.51 load 0.00\n",
"22207 14 08:57:47 INFO train : 2503 loss 0.6562 elapsed 0.59 load 0.01\n",
"22207 14 08:57:48 INFO train : 2504 loss 0.6689 elapsed 0.60 load 0.03\n",
"22207 14 08:57:48 INFO train : 2505 loss 0.6891 elapsed 0.58 load 0.00\n",
"22207 14 08:57:49 INFO train : 2506 loss 0.6558 elapsed 0.59 load 0.08\n",
"22207 14 08:57:50 INFO train : 2507 loss 0.6780 elapsed 0.64 load 0.01\n",
"22207 14 08:57:50 INFO train : 2508 loss 0.7043 elapsed 0.60 load 0.01\n",
"22207 14 08:57:51 INFO train : 2509 loss 0.6591 elapsed 0.60 load 0.00\n",
"22207 14 08:57:51 INFO train : 2510 loss 0.6919 elapsed 0.53 load 0.01\n",
"22207 14 08:57:52 INFO train : 2511 loss 0.6652 elapsed 0.54 load 0.01\n",
"22207 14 08:57:53 INFO train : 2512 loss 0.6709 elapsed 0.57 load 0.05\n",
"22207 14 08:57:53 INFO train : 2513 loss 0.7019 elapsed 0.62 load 0.01\n",
"22207 14 08:57:54 INFO train : 2514 loss 0.6677 elapsed 0.61 load 0.01\n",
"22207 14 08:57:55 INFO train : 2515 loss 0.6807 elapsed 0.55 load 0.04\n",
"22207 14 08:57:55 INFO train : 2516 loss 0.7081 elapsed 0.66 load 0.05\n",
"22207 14 08:57:56 INFO train : 2517 loss 0.6981 elapsed 0.55 load 0.09\n",
"22207 14 08:57:57 INFO train : 2518 loss 0.7012 elapsed 0.62 load 0.01\n",
"22207 14 08:57:57 INFO train : 2519 loss 0.6785 elapsed 0.53 load 0.05\n",
"22207 14 08:57:58 INFO train : 2520 loss 0.6636 elapsed 0.58 load 0.03\n",
"22207 14 08:57:59 INFO train : 2521 loss 0.6822 elapsed 0.67 load 0.01\n",
"22207 14 08:58:00 INFO train : 2522 loss 0.6790 elapsed 0.59 load 0.72\n",
"22207 14 08:58:01 INFO train : 2523 loss 0.6875 elapsed 0.51 load 0.04\n",
"22207 14 08:58:01 INFO train : 2524 loss 0.6753 elapsed 0.58 load 0.00\n",
"22207 14 08:58:02 INFO train : 2525 loss 0.6769 elapsed 0.69 load 0.35\n",
"22207 14 08:58:03 INFO train : 2526 loss 0.6692 elapsed 0.60 load 0.54\n",
"22207 14 08:58:04 INFO train : 2527 loss 0.6896 elapsed 0.58 load 0.29\n",
"22207 14 08:58:05 INFO train : 2528 loss 0.6997 elapsed 0.61 load 0.01\n",
"22207 14 08:58:06 INFO train : 2529 loss 0.6795 elapsed 0.60 load 0.07\n",
"22207 14 08:58:07 INFO train : 2530 loss 0.6977 elapsed 0.61 load 0.74\n",
"22207 14 08:58:08 INFO train : 2531 loss 0.6829 elapsed 0.59 load 0.49\n",
"22207 14 08:58:09 INFO train : 2532 loss 0.6816 elapsed 0.55 load 0.09\n",
"22207 14 08:58:09 INFO train : 2533 loss 0.6948 elapsed 0.56 load 0.03\n",
"22207 14 08:58:11 INFO train : 2534 loss 0.7260 elapsed 0.63 load 0.68\n",
"22207 14 08:58:12 INFO train : 2535 loss 0.6649 elapsed 0.61 load 0.36\n",
"22207 14 08:58:12 INFO train : 2536 loss 0.7135 elapsed 0.60 load 0.00\n",
"22207 14 08:58:13 INFO train : 2537 loss 0.6607 elapsed 0.63 load 0.48\n",
"22207 14 08:58:14 INFO train : 2538 loss 0.6709 elapsed 0.67 load 0.17\n",
"22207 14 08:58:16 INFO train : 2539 loss 0.6915 elapsed 0.53 load 0.83\n",
"22207 14 08:58:16 INFO train : 2540 loss 0.6783 elapsed 0.58 load 0.00\n",
"22207 14 08:58:17 INFO train : 2541 loss 0.7112 elapsed 0.56 load 0.06\n",
"22207 14 08:58:18 INFO train : 2542 loss 0.6519 elapsed 0.61 load 0.01\n",
"22207 14 08:58:19 INFO train : 2543 loss 0.6463 elapsed 0.59 load 1.00\n",
"22207 14 08:58:20 INFO train : 2544 loss 0.6876 elapsed 0.66 load 0.00\n",
"22207 14 08:58:21 INFO train : 2545 loss 0.6574 elapsed 0.62 load 0.03\n",
"22207 14 08:58:21 INFO train : 2546 loss 0.6295 elapsed 0.62 load 0.01\n",
"22207 14 08:58:23 INFO train : 2547 loss 0.6909 elapsed 0.52 load 1.16\n",
"22207 14 08:58:24 INFO train : 2548 loss 0.6720 elapsed 0.67 load 0.00\n",
"22207 14 08:58:24 INFO train : 2549 loss 0.6829 elapsed 0.71 load 0.06\n",
"22207 14 08:58:25 INFO train : 2550 loss 0.6668 elapsed 0.54 load 0.09\n",
"22207 14 08:58:27 INFO train : 2551 loss 0.7626 elapsed 0.61 load 1.43\n",
"22207 14 08:58:28 INFO train : 2552 loss 0.6819 elapsed 0.67 load 0.00\n",
"22207 14 08:58:29 INFO train : 2553 loss 0.6940 elapsed 0.69 load 0.00\n",
"22207 14 08:58:29 INFO train : 2554 loss 0.6544 elapsed 0.64 load 0.02\n",
"22207 14 08:58:31 INFO train : 2555 loss 0.6549 elapsed 0.60 load 1.09\n",
"22207 14 08:58:32 INFO train : 2556 loss 0.6693 elapsed 0.61 load 0.00\n",
"22207 14 08:58:32 INFO train : 2557 loss 0.6737 elapsed 0.67 load 0.00\n",
"22207 14 08:58:33 INFO train : 2558 loss 0.7139 elapsed 0.54 load 0.01\n",
"22207 14 08:58:34 INFO train : 2559 loss 0.6554 elapsed 0.59 load 0.67\n",
"22207 14 08:58:35 INFO train : 2560 loss 0.6459 elapsed 0.51 load 0.00\n",
"22207 14 08:58:35 INFO train : 2561 loss 0.6900 elapsed 0.66 load 0.01\n",
"22207 14 08:58:36 INFO train : 2562 loss 0.7222 elapsed 0.60 load 0.00\n",
"22207 14 08:58:38 INFO train : 2563 loss 0.7147 elapsed 0.56 load 1.37\n",
"22207 14 08:58:39 INFO train : 2564 loss 0.6795 elapsed 0.68 load 0.00\n",
"22207 14 08:58:39 INFO train : 2565 loss 0.6808 elapsed 0.66 load 0.00\n",
"22207 14 08:58:40 INFO train : 2566 loss 0.6494 elapsed 0.66 load 0.01\n",
"22207 14 08:58:41 INFO train : 2567 loss 0.6858 elapsed 0.70 load 0.73\n",
"22207 14 08:58:42 INFO train : 2568 loss 0.7184 elapsed 0.54 load 0.04\n",
"22207 14 08:58:43 INFO train : 2569 loss 0.7605 elapsed 0.56 load 0.05\n",
"22207 14 08:58:43 INFO train : 2570 loss 0.7128 elapsed 0.55 load 0.06\n",
"22207 14 08:58:45 INFO train : 2571 loss 0.6787 elapsed 0.61 load 1.04\n",
"22207 14 08:58:46 INFO train : 2572 loss 0.6705 elapsed 0.68 load 0.01\n",
"22207 14 08:58:46 INFO train : 2573 loss 0.7274 elapsed 0.64 load 0.02\n",
"22207 14 08:58:47 INFO train : 2574 loss 0.7530 elapsed 0.59 load 0.05\n",
"22207 14 08:58:49 INFO train : 2575 loss 0.6771 elapsed 0.60 load 1.12\n",
"22207 14 08:58:49 INFO train : 2576 loss 0.6511 elapsed 0.60 load 0.01\n",
"22207 14 08:58:50 INFO train : 2577 loss 0.6489 elapsed 0.65 load 0.00\n",
"22207 14 08:58:51 INFO train : 2578 loss 0.6584 elapsed 0.61 load 0.00\n",
"22207 14 08:58:52 INFO train : 2579 loss 0.6854 elapsed 0.55 load 1.07\n",
"22207 14 08:58:53 INFO train : 2580 loss 0.6823 elapsed 0.50 load 0.03\n",
"22207 14 08:58:54 INFO train : 2581 loss 0.6877 elapsed 0.69 load 0.00\n",
"22207 14 08:58:54 INFO train : 2582 loss 0.6506 elapsed 0.67 load 0.00\n",
"22207 14 08:58:56 INFO train : 2583 loss 0.6426 elapsed 0.57 load 1.06\n",
"22207 14 08:58:57 INFO train : 2584 loss 0.6799 elapsed 0.54 load 0.09\n",
"22207 14 08:58:57 INFO train : 2585 loss 0.6742 elapsed 0.63 load 0.00\n",
"22207 14 08:58:58 INFO train : 2586 loss 0.6601 elapsed 0.60 load 0.00\n",
"22207 14 08:59:00 INFO train : 2587 loss 0.7174 elapsed 0.53 load 1.46\n",
"22207 14 08:59:01 INFO train : 2588 loss 0.6896 elapsed 0.56 load 0.00\n",
"22207 14 08:59:01 INFO train : 2589 loss 0.7131 elapsed 0.65 load 0.00\n",
"22207 14 08:59:02 INFO train : 2590 loss 0.6951 elapsed 0.60 load 0.00\n",
"22207 14 08:59:04 INFO train : 2591 loss 0.7069 elapsed 0.60 load 1.58\n",
"22207 14 08:59:05 INFO train : 2592 loss 0.6996 elapsed 0.54 load 0.01\n",
"22207 14 08:59:05 INFO train : 2593 loss 0.6772 elapsed 0.55 load 0.00\n",
"22207 14 08:59:06 INFO train : 2594 loss 0.6800 elapsed 0.66 load 0.03\n",
"22207 14 08:59:08 INFO train : 2595 loss 0.6633 elapsed 0.58 load 1.04\n",
"22207 14 08:59:08 INFO train : 2596 loss 0.6742 elapsed 0.72 load 0.01\n",
"22207 14 08:59:09 INFO train : 2597 loss 0.6371 elapsed 0.66 load 0.00\n",
"22207 14 08:59:10 INFO train : 2598 loss 0.7075 elapsed 0.58 load 0.00\n",
"22207 14 08:59:11 INFO train : 2599 loss 0.6391 elapsed 0.62 load 0.93\n",
"22207 14 08:59:12 INFO train : 2600 loss 0.6735 elapsed 0.63 load 0.06\n",
"22207 14 08:59:12 INFO train : 2601 loss 0.7174 elapsed 0.60 load 0.00\n",
"22207 14 08:59:13 INFO train : 2602 loss 0.6589 elapsed 0.63 load 0.00\n",
"22207 14 08:59:15 INFO train : 2603 loss 0.6536 elapsed 0.62 load 1.02\n",
"22207 14 08:59:16 INFO train : 2604 loss 0.6595 elapsed 0.59 load 0.08\n",
"22207 14 08:59:16 INFO train : 2605 loss 0.7509 elapsed 0.57 load 0.00\n",
"22207 14 08:59:17 INFO train : 2606 loss 0.6873 elapsed 0.50 load 0.00\n",
"22207 14 08:59:19 INFO train : 2607 loss 0.6917 elapsed 0.61 load 1.39\n",
"22207 14 08:59:19 INFO train : 2608 loss 0.6826 elapsed 0.63 load 0.01\n",
"22207 14 08:59:20 INFO train : 2609 loss 0.7003 elapsed 0.62 load 0.00\n",
"22207 14 08:59:21 INFO train : 2610 loss 0.7032 elapsed 0.61 load 0.00\n",
"22207 14 08:59:22 INFO train : 2611 loss 0.7291 elapsed 0.59 load 1.03\n",
"22207 14 08:59:23 INFO train : 2612 loss 0.6721 elapsed 0.61 load 0.04\n",
"22207 14 08:59:24 INFO train : 2613 loss 0.6681 elapsed 0.61 load 0.00\n",
"22207 14 08:59:24 INFO train : 2614 loss 0.6561 elapsed 0.67 load 0.00\n",
"22207 14 08:59:26 INFO train : 2615 loss 0.6781 elapsed 0.59 load 0.67\n",
"22207 14 08:59:26 INFO train : 2616 loss 0.7156 elapsed 0.71 load 0.01\n",
"22207 14 08:59:27 INFO train : 2617 loss 0.7005 elapsed 0.62 load 0.00\n",
"22207 14 08:59:28 INFO train : 2618 loss 0.6989 elapsed 0.60 load 0.00\n",
"22207 14 08:59:29 INFO train : 2619 loss 0.6924 elapsed 0.51 load 0.92\n",
"22207 14 08:59:30 INFO train : 2620 loss 0.6679 elapsed 0.61 load 0.01\n",
"22207 14 08:59:30 INFO train : 2621 loss 0.6615 elapsed 0.56 load 0.01\n",
"22207 14 08:59:31 INFO train : 2622 loss 0.6660 elapsed 0.65 load 0.00\n",
"22207 14 08:59:33 INFO train : 2623 loss 0.6683 elapsed 0.63 load 0.95\n",
"22207 14 08:59:33 INFO train : 2624 loss 0.6568 elapsed 0.64 load 0.02\n",
"22207 14 08:59:34 INFO train : 2625 loss 0.7334 elapsed 0.61 load 0.00\n",
"22207 14 08:59:35 INFO train : 2626 loss 0.6788 elapsed 0.63 load 0.02\n",
"22207 14 08:59:36 INFO train : 2627 loss 0.6603 elapsed 0.59 load 0.72\n",
"22207 14 08:59:37 INFO train : 2628 loss 0.6661 elapsed 0.57 load 0.58\n",
"22207 14 08:59:38 INFO train : 2629 loss 0.6582 elapsed 0.56 load 0.00\n",
"22207 14 08:59:38 INFO train : 2630 loss 0.6978 elapsed 0.64 load 0.00\n",
"22207 14 08:59:39 INFO train : 2631 loss 0.6615 elapsed 0.61 load 0.20\n",
"22207 14 08:59:41 INFO train : 2632 loss 0.7156 elapsed 0.60 load 0.79\n",
"22207 14 08:59:41 INFO train : 2633 loss 0.7243 elapsed 0.63 load 0.00\n",
"22207 14 08:59:42 INFO train : 2634 loss 0.6682 elapsed 0.55 load 0.00\n",
"22207 14 08:59:43 INFO train : 2635 loss 0.6874 elapsed 0.57 load 0.23\n",
"22207 14 08:59:44 INFO train : 2636 loss 0.6424 elapsed 0.57 load 0.88\n",
"22207 14 08:59:45 INFO train : 2637 loss 0.6700 elapsed 0.54 load 0.00\n",
"22207 14 08:59:45 INFO train : 2638 loss 0.7023 elapsed 0.58 load 0.01\n",
"22207 14 08:59:46 INFO train : 2639 loss 0.6798 elapsed 0.56 load 0.56\n",
"22207 14 08:59:48 INFO train : 2640 loss 0.7864 elapsed 0.62 load 0.62\n",
"22207 14 08:59:48 INFO train : 2641 loss 0.6752 elapsed 0.59 load 0.00\n",
"22207 14 08:59:49 INFO train : 2642 loss 0.6961 elapsed 0.52 load 0.01\n",
"22207 14 08:59:50 INFO train : 2643 loss 0.6962 elapsed 0.56 load 0.51\n",
"22207 14 08:59:51 INFO train : 2644 loss 0.6668 elapsed 0.61 load 0.38\n",
"22207 14 08:59:52 INFO train : 2645 loss 0.7070 elapsed 0.60 load 0.00\n",
"22207 14 08:59:52 INFO train : 2646 loss 0.6968 elapsed 0.56 load 0.00\n",
"22207 14 08:59:54 INFO train : 2647 loss 0.7030 elapsed 0.64 load 0.97\n",
"22207 14 08:59:55 INFO train : 2648 loss 0.6931 elapsed 0.58 load 0.30\n",
"22207 14 08:59:55 INFO train : 2649 loss 0.6536 elapsed 0.57 load 0.00\n",
"22207 14 08:59:56 INFO train : 2650 loss 0.6856 elapsed 0.61 load 0.03\n",
"22207 14 08:59:57 INFO train : 2651 loss 0.7170 elapsed 0.62 load 0.68\n",
"22207 14 08:59:58 INFO train : 2652 loss 0.6804 elapsed 0.57 load 0.06\n",
"22207 14 08:59:58 INFO train : 2653 loss 0.6785 elapsed 0.60 load 0.00\n",
"22207 14 08:59:59 INFO train : 2654 loss 0.7083 elapsed 0.66 load 0.00\n",
"22207 14 09:00:01 INFO train : 2655 loss 0.6914 elapsed 0.59 load 0.89\n",
"22207 14 09:00:01 INFO train : 2656 loss 0.6910 elapsed 0.62 load 0.00\n",
"22207 14 09:00:02 INFO train : 2657 loss 0.6731 elapsed 0.62 load 0.04\n",
"22207 14 09:00:03 INFO train : 2658 loss 0.6875 elapsed 0.58 load 0.00\n",
"22207 14 09:00:04 INFO train : 2659 loss 0.6779 elapsed 0.55 load 0.87\n",
"22207 14 09:00:05 INFO train : 2660 loss 0.6751 elapsed 0.58 load 0.60\n",
"22207 14 09:00:06 INFO train : 2661 loss 0.6313 elapsed 0.55 load 0.00\n",
"22207 14 09:00:07 INFO train : 2662 loss 0.7506 elapsed 0.64 load 0.00\n",
"22207 14 09:00:08 INFO train : 2663 loss 0.7043 elapsed 0.58 load 0.68\n",
"22207 14 09:00:09 INFO train : 2664 loss 0.6753 elapsed 0.58 load 0.13\n",
"22207 14 09:00:09 INFO train : 2665 loss 0.6856 elapsed 0.58 load 0.01\n",
"22207 14 09:00:10 INFO train : 2666 loss 0.6615 elapsed 0.62 load 0.00\n",
"22207 14 09:00:11 INFO train : 2667 loss 0.6805 elapsed 0.64 load 0.90\n",
"22207 14 09:00:12 INFO train : 2668 loss 0.7228 elapsed 0.61 load 0.01\n",
"22207 14 09:00:13 INFO train : 2669 loss 0.7170 elapsed 0.65 load 0.17\n",
"22207 14 09:00:13 INFO train : 2670 loss 0.6933 elapsed 0.62 load 0.00\n",
"22207 14 09:00:15 INFO train : 2671 loss 0.7159 elapsed 0.64 load 1.02\n",
"22207 14 09:00:16 INFO train : 2672 loss 0.6673 elapsed 0.56 load 0.01\n",
"22207 14 09:00:16 INFO train : 2673 loss 0.6868 elapsed 0.55 load 0.08\n",
"22207 14 09:00:17 INFO train : 2674 loss 0.6793 elapsed 0.64 load 0.00\n",
"22207 14 09:00:19 INFO train : 2675 loss 0.7047 elapsed 0.51 load 1.05\n",
"22207 14 09:00:19 INFO train : 2676 loss 0.6893 elapsed 0.56 load 0.02\n",
"22207 14 09:00:20 INFO train : 2677 loss 0.7068 elapsed 0.56 load 0.05\n",
"22207 14 09:00:21 INFO train : 2678 loss 0.6518 elapsed 0.55 load 0.00\n",
"22207 14 09:00:22 INFO train : 2679 loss 0.6767 elapsed 0.55 load 1.18\n",
"22207 14 09:00:23 INFO train : 2680 loss 0.6871 elapsed 0.51 load 0.01\n",
"22207 14 09:00:24 INFO train : 2681 loss 0.6899 elapsed 0.60 load 0.06\n",
"22207 14 09:00:24 INFO train : 2682 loss 0.6420 elapsed 0.62 load 0.00\n",
"22207 14 09:00:26 INFO train : 2683 loss 0.6651 elapsed 0.56 load 1.51\n",
"22207 14 09:00:27 INFO train : 2684 loss 0.7174 elapsed 0.60 load 0.04\n",
"22207 14 09:00:28 INFO train : 2685 loss 0.6430 elapsed 0.66 load 0.00\n",
"22207 14 09:00:28 INFO train : 2686 loss 0.6947 elapsed 0.62 load 0.00\n",
"22207 14 09:00:30 INFO train : 2687 loss 0.7031 elapsed 0.57 load 1.32\n",
"22207 14 09:00:31 INFO train : 2688 loss 0.7389 elapsed 0.67 load 0.00\n",
"22207 14 09:00:31 INFO train : 2689 loss 0.6730 elapsed 0.61 load 0.04\n",
"22207 14 09:00:32 INFO train : 2690 loss 0.6927 elapsed 0.56 load 0.00\n",
"22207 14 09:00:35 INFO train : 2691 loss 0.6467 elapsed 0.69 load 1.76\n",
"22207 14 09:00:35 INFO train : 2692 loss 0.7043 elapsed 0.63 load 0.00\n",
"22207 14 09:00:36 INFO train : 2693 loss 0.7145 elapsed 0.56 load 0.01\n",
"22207 14 09:00:36 INFO train : 2694 loss 0.6383 elapsed 0.61 load 0.05\n",
"22207 14 09:00:38 INFO train : 2695 loss 0.6900 elapsed 0.59 load 1.15\n",
"22207 14 09:00:39 INFO train : 2696 loss 0.7200 elapsed 0.58 load 0.00\n",
"22207 14 09:00:40 INFO train : 2697 loss 0.6865 elapsed 0.64 load 0.00\n",
"22207 14 09:00:40 INFO train : 2698 loss 0.6835 elapsed 0.56 load 0.00\n",
"22207 14 09:00:42 INFO train : 2699 loss 0.6585 elapsed 0.57 load 1.71\n",
"22207 14 09:00:43 INFO train : 2700 loss 0.7214 elapsed 0.55 load 0.00\n",
"22207 14 09:00:44 INFO train : 2701 loss 0.6687 elapsed 0.60 load 0.00\n",
"22207 14 09:00:44 INFO train : 2702 loss 0.6962 elapsed 0.57 load 0.00\n",
"22207 14 09:00:46 INFO train : 2703 loss 0.6933 elapsed 0.60 load 1.03\n",
"22207 14 09:00:46 INFO train : 2704 loss 0.6744 elapsed 0.64 load 0.00\n",
"22207 14 09:00:47 INFO train : 2705 loss 0.6985 elapsed 0.57 load 0.00\n",
"22207 14 09:00:48 INFO train : 2706 loss 0.6872 elapsed 0.57 load 0.00\n",
"22207 14 09:00:49 INFO train : 2707 loss 0.6566 elapsed 0.60 load 1.21\n",
"22207 14 09:00:50 INFO train : 2708 loss 0.6620 elapsed 0.61 load 0.00\n",
"22207 14 09:00:51 INFO train : 2709 loss 0.6739 elapsed 0.55 load 0.00\n",
"22207 14 09:00:51 INFO train : 2710 loss 0.6605 elapsed 0.65 load 0.00\n",
"22207 14 09:00:53 INFO train : 2711 loss 0.6864 elapsed 0.58 load 1.26\n",
"22207 14 09:00:54 INFO train : 2712 loss 0.6990 elapsed 0.61 load 0.00\n",
"22207 14 09:00:54 INFO train : 2713 loss 0.7192 elapsed 0.60 load 0.00\n",
"22207 14 09:00:55 INFO train : 2714 loss 0.6855 elapsed 0.69 load 0.00\n",
"22207 14 09:00:57 INFO train : 2715 loss 0.6888 elapsed 0.59 load 1.13\n",
"22207 14 09:00:58 INFO train : 2716 loss 0.6995 elapsed 0.66 load 0.00\n",
"22207 14 09:00:58 INFO train : 2717 loss 0.7117 elapsed 0.58 load 0.01\n",
"22207 14 09:00:59 INFO train : 2718 loss 0.7000 elapsed 0.64 load 0.04\n",
"22207 14 09:01:00 INFO train : 2719 loss 0.6384 elapsed 0.56 load 1.00\n",
"22207 14 09:01:01 INFO train : 2720 loss 0.6606 elapsed 0.66 load 0.00\n",
"22207 14 09:01:02 INFO train : 2721 loss 0.7082 elapsed 0.65 load 0.02\n",
"22207 14 09:01:03 INFO train : 2722 loss 0.6829 elapsed 0.69 load 0.00\n",
"22207 14 09:01:04 INFO train : 2723 loss 0.6997 elapsed 0.58 load 0.93\n",
"22207 14 09:01:05 INFO train : 2724 loss 0.7014 elapsed 0.67 load 0.00\n",
"22207 14 09:01:05 INFO train : 2725 loss 0.7167 elapsed 0.61 load 0.00\n",
"22207 14 09:01:06 INFO train : 2726 loss 0.7223 elapsed 0.55 load 0.02\n",
"22207 14 09:01:07 INFO train : 2727 loss 0.6872 elapsed 0.54 load 0.77\n",
"22207 14 09:01:08 INFO train : 2728 loss 0.6835 elapsed 0.63 load 0.00\n",
"22207 14 09:01:09 INFO train : 2729 loss 0.6601 elapsed 0.54 load 0.00\n",
"22207 14 09:01:09 INFO train : 2730 loss 0.6882 elapsed 0.62 load 0.01\n",
"22207 14 09:01:11 INFO train : 2731 loss 0.6745 elapsed 0.63 load 1.46\n",
"22207 14 09:01:12 INFO train : 2732 loss 0.6596 elapsed 0.59 load 0.00\n",
"22207 14 09:01:12 INFO train : 2733 loss 0.7222 elapsed 0.54 load 0.00\n",
"22207 14 09:01:13 INFO train : 2734 loss 0.6800 elapsed 0.67 load 0.00\n",
"22207 14 09:01:15 INFO train : 2735 loss 0.7058 elapsed 0.57 load 0.97\n",
"22207 14 09:01:15 INFO train : 2736 loss 0.7052 elapsed 0.67 load 0.00\n",
"22207 14 09:01:16 INFO train : 2737 loss 0.6930 elapsed 0.66 load 0.01\n",
"22207 14 09:01:17 INFO train : 2738 loss 0.6536 elapsed 0.54 load 0.00\n",
"22207 14 09:01:18 INFO train : 2739 loss 0.6754 elapsed 0.60 load 0.91\n",
"22207 14 09:01:19 INFO train : 2740 loss 0.7207 elapsed 0.64 load 0.00\n",
"22207 14 09:01:20 INFO train : 2741 loss 0.7096 elapsed 0.63 load 0.00\n",
"22207 14 09:01:20 INFO train : 2742 loss 0.6940 elapsed 0.69 load 0.00\n",
"22207 14 09:01:21 INFO train : 2743 loss 0.7488 elapsed 0.55 load 0.41\n",
"22207 14 09:01:22 INFO train : 2744 loss 0.6792 elapsed 0.56 load 0.00\n",
"22207 14 09:01:22 INFO train : 2745 loss 0.6847 elapsed 0.67 load 0.00\n",
"22207 14 09:01:23 INFO train : 2746 loss 0.6964 elapsed 0.66 load 0.00\n",
"22207 14 09:01:25 INFO train : 2747 loss 0.6671 elapsed 0.64 load 1.53\n",
"22207 14 09:01:26 INFO train : 2748 loss 0.6871 elapsed 0.60 load 0.00\n",
"22207 14 09:01:27 INFO train : 2749 loss 0.7195 elapsed 0.58 load 0.00\n",
"22207 14 09:01:27 INFO train : 2750 loss 0.6931 elapsed 0.69 load 0.00\n",
"22207 14 09:01:29 INFO train : 2751 loss 0.6644 elapsed 0.59 load 1.26\n",
"22207 14 09:01:30 INFO train : 2752 loss 0.7188 elapsed 0.63 load 0.00\n",
"22207 14 09:01:30 INFO train : 2753 loss 0.6960 elapsed 0.65 load 0.00\n",
"22207 14 09:01:31 INFO train : 2754 loss 0.6660 elapsed 0.52 load 0.00\n",
"22207 14 09:01:33 INFO train : 2755 loss 0.7090 elapsed 0.58 load 0.97\n",
"22207 14 09:01:33 INFO train : 2756 loss 0.6544 elapsed 0.60 load 0.00\n",
"22207 14 09:01:34 INFO train : 2757 loss 0.6828 elapsed 0.65 load 0.01\n",
"22207 14 09:01:35 INFO train : 2758 loss 0.7103 elapsed 0.70 load 0.00\n",
"22207 14 09:01:37 INFO train : 2759 loss 0.6814 elapsed 0.60 load 1.29\n",
"22207 14 09:01:37 INFO train : 2760 loss 0.6695 elapsed 0.56 load 0.00\n",
"22207 14 09:01:38 INFO train : 2761 loss 0.6620 elapsed 0.62 load 0.00\n",
"22207 14 09:01:39 INFO train : 2762 loss 0.6597 elapsed 0.62 load 0.00\n",
"22207 14 09:01:40 INFO train : 2763 loss 0.6994 elapsed 0.63 load 1.13\n",
"22207 14 09:01:41 INFO train : 2764 loss 0.6696 elapsed 0.63 load 0.00\n",
"22207 14 09:01:42 INFO train : 2765 loss 0.6643 elapsed 0.55 load 0.00\n",
"22207 14 09:01:42 INFO train : 2766 loss 0.6594 elapsed 0.58 load 0.00\n",
"22207 14 09:01:44 INFO train : 2767 loss 0.7133 elapsed 0.61 load 0.88\n",
"22207 14 09:01:44 INFO train : 2768 loss 0.6590 elapsed 0.65 load 0.00\n",
"22207 14 09:01:45 INFO train : 2769 loss 0.6423 elapsed 0.67 load 0.00\n",
"22207 14 09:01:46 INFO train : 2770 loss 0.7269 elapsed 0.55 load 0.01\n",
"22207 14 09:01:47 INFO train : 2771 loss 0.7308 elapsed 0.58 load 1.07\n",
"22207 14 09:01:48 INFO train : 2772 loss 0.7046 elapsed 0.55 load 0.00\n",
"22207 14 09:01:48 INFO train : 2773 loss 0.7419 elapsed 0.56 load 0.00\n",
"22207 14 09:01:49 INFO train : 2774 loss 0.7122 elapsed 0.58 load 0.00\n",
"22207 14 09:01:51 INFO train : 2775 loss 0.7233 elapsed 0.63 load 1.14\n",
"22207 14 09:01:52 INFO train : 2776 loss 0.7280 elapsed 0.64 load 0.00\n",
"22207 14 09:01:52 INFO train : 2777 loss 0.6642 elapsed 0.55 load 0.00\n",
"22207 14 09:01:53 INFO train : 2778 loss 0.6590 elapsed 0.67 load 0.00\n",
"22207 14 09:01:55 INFO train : 2779 loss 0.6641 elapsed 0.58 load 1.43\n",
"22207 14 09:01:56 INFO train : 2780 loss 0.6803 elapsed 0.63 load 0.00\n",
"22207 14 09:01:56 INFO train : 2781 loss 0.6857 elapsed 0.58 load 0.00\n",
"22207 14 09:01:57 INFO train : 2782 loss 0.6576 elapsed 0.71 load 0.00\n",
"22207 14 09:01:59 INFO train : 2783 loss 0.6810 elapsed 0.56 load 1.41\n",
"22207 14 09:01:59 INFO train : 2784 loss 0.6644 elapsed 0.53 load 0.00\n",
"22207 14 09:02:00 INFO train : 2785 loss 0.6875 elapsed 0.66 load 0.00\n",
"22207 14 09:02:01 INFO train : 2786 loss 0.6804 elapsed 0.57 load 0.00\n",
"22207 14 09:02:03 INFO train : 2787 loss 0.6812 elapsed 0.73 load 1.15\n",
"22207 14 09:02:03 INFO train : 2788 loss 0.6516 elapsed 0.70 load 0.00\n",
"22207 14 09:02:04 INFO train : 2789 loss 0.6839 elapsed 0.69 load 0.00\n",
"22207 14 09:02:05 INFO train : 2790 loss 0.6697 elapsed 0.63 load 0.00\n",
"22207 14 09:02:06 INFO train : 2791 loss 0.7531 elapsed 0.61 load 1.21\n",
"22207 14 09:02:07 INFO train : 2792 loss 0.6937 elapsed 0.68 load 0.00\n",
"22207 14 09:02:08 INFO train : 2793 loss 0.7410 elapsed 0.63 load 0.00\n",
"22207 14 09:02:08 INFO train : 2794 loss 0.7338 elapsed 0.63 load 0.00\n",
"22207 14 09:02:11 INFO train : 2795 loss 0.6964 elapsed 0.68 load 1.34\n",
"22207 14 09:02:11 INFO train : 2796 loss 0.6729 elapsed 0.58 load 0.00\n",
"22207 14 09:02:12 INFO train : 2797 loss 0.7057 elapsed 0.60 load 0.00\n",
"22207 14 09:02:12 INFO train : 2798 loss 0.6912 elapsed 0.62 load 0.00\n",
"22207 14 09:02:14 INFO train : 2799 loss 0.6708 elapsed 0.61 load 1.33\n",
"22207 14 09:02:15 INFO train : 2800 loss 0.7194 elapsed 0.65 load 0.00\n",
"22207 14 09:02:16 INFO train : 2801 loss 0.6570 elapsed 0.57 load 0.00\n",
"22207 14 09:02:16 INFO train : 2802 loss 0.6629 elapsed 0.62 load 0.00\n",
"22207 14 09:02:17 INFO train : 2803 loss 0.7138 elapsed 0.50 load 0.51\n",
"22207 14 09:02:18 INFO train : 2804 loss 0.6580 elapsed 0.49 load 0.00\n",
"22207 14 09:02:18 INFO train : 2805 loss 0.7086 elapsed 0.49 load 0.00\n",
"22207 14 09:02:19 INFO train : 2806 loss 0.7100 elapsed 0.50 load 0.00\n",
"22207 14 09:02:19 INFO train : 2807 loss 0.7058 elapsed 0.11 load 0.00\n",
"22207 14 09:02:19 INFO Epoch num: 7\n",
"22207 14 09:02:24 INFO train : 2808 loss 0.6566 elapsed 0.73 load 4.00\n",
"22207 14 09:02:24 INFO train : 2809 loss 0.6540 elapsed 0.62 load 0.10\n",
"22207 14 09:02:25 INFO train : 2810 loss 0.6613 elapsed 0.59 load 0.00\n",
"22207 14 09:02:26 INFO train : 2811 loss 0.6648 elapsed 0.64 load 0.01\n",
"22207 14 09:02:27 INFO train : 2812 loss 0.6667 elapsed 0.62 load 0.63\n",
"22207 14 09:02:28 INFO train : 2813 loss 0.6594 elapsed 0.55 load 0.04\n",
"22207 14 09:02:28 INFO train : 2814 loss 0.6471 elapsed 0.64 load 0.00\n",
"22207 14 09:02:29 INFO train : 2815 loss 0.6504 elapsed 0.59 load 0.01\n",
"22207 14 09:02:31 INFO train : 2816 loss 0.6787 elapsed 0.68 load 1.25\n",
"22207 14 09:02:31 INFO train : 2817 loss 0.6374 elapsed 0.63 load 0.00\n",
"22207 14 09:02:32 INFO train : 2818 loss 0.6589 elapsed 0.61 load 0.00\n",
"22207 14 09:02:33 INFO train : 2819 loss 0.6607 elapsed 0.63 load 0.01\n",
"22207 14 09:02:34 INFO train : 2820 loss 0.6333 elapsed 0.59 load 1.02\n",
"22207 14 09:02:35 INFO train : 2821 loss 0.6231 elapsed 0.63 load 0.01\n",
"22207 14 09:02:36 INFO train : 2822 loss 0.7397 elapsed 0.60 load 0.00\n",
"22207 14 09:02:36 INFO train : 2823 loss 0.6674 elapsed 0.62 load 0.04\n",
"22207 14 09:02:38 INFO train : 2824 loss 0.6565 elapsed 0.61 load 0.77\n",
"22207 14 09:02:38 INFO train : 2825 loss 0.6733 elapsed 0.72 load 0.00\n",
"22207 14 09:02:39 INFO train : 2826 loss 0.6651 elapsed 0.52 load 0.00\n",
"22207 14 09:02:40 INFO train : 2827 loss 0.7010 elapsed 0.59 load 0.01\n",
"22207 14 09:02:41 INFO train : 2828 loss 0.6373 elapsed 0.65 load 1.11\n",
"22207 14 09:02:42 INFO train : 2829 loss 0.6575 elapsed 0.62 load 0.00\n",
"22207 14 09:02:43 INFO train : 2830 loss 0.6492 elapsed 0.63 load 0.00\n",
"22207 14 09:02:43 INFO train : 2831 loss 0.6682 elapsed 0.64 load 0.01\n",
"22207 14 09:02:45 INFO train : 2832 loss 0.6601 elapsed 0.66 load 0.75\n",
"22207 14 09:02:46 INFO train : 2833 loss 0.6313 elapsed 0.71 load 0.00\n",
"22207 14 09:02:46 INFO train : 2834 loss 0.6436 elapsed 0.63 load 0.01\n",
"22207 14 09:02:47 INFO train : 2835 loss 0.6639 elapsed 0.54 load 0.03\n",
"22207 14 09:02:49 INFO train : 2836 loss 0.6907 elapsed 0.62 load 1.05\n",
"22207 14 09:02:49 INFO train : 2837 loss 0.6567 elapsed 0.60 load 0.00\n",
"22207 14 09:02:50 INFO train : 2838 loss 0.6815 elapsed 0.66 load 0.02\n",
"22207 14 09:02:51 INFO train : 2839 loss 0.6440 elapsed 0.57 load 0.04\n",
"22207 14 09:02:52 INFO train : 2840 loss 0.6845 elapsed 0.52 load 0.88\n",
"22207 14 09:02:53 INFO train : 2841 loss 0.6627 elapsed 0.69 load 0.00\n",
"22207 14 09:02:53 INFO train : 2842 loss 0.6506 elapsed 0.61 load 0.05\n",
"22207 14 09:02:54 INFO train : 2843 loss 0.6734 elapsed 0.67 load 0.00\n",
"22207 14 09:02:55 INFO train : 2844 loss 0.6622 elapsed 0.61 load 0.67\n",
"22207 14 09:02:56 INFO train : 2845 loss 0.6718 elapsed 0.60 load 0.00\n",
"22207 14 09:02:57 INFO train : 2846 loss 0.6504 elapsed 0.62 load 0.00\n",
"22207 14 09:02:57 INFO train : 2847 loss 0.6500 elapsed 0.52 load 0.02\n",
"22207 14 09:02:59 INFO train : 2848 loss 0.6664 elapsed 0.70 load 0.97\n",
"22207 14 09:03:00 INFO train : 2849 loss 0.6736 elapsed 0.66 load 0.00\n",
"22207 14 09:03:00 INFO train : 2850 loss 0.6400 elapsed 0.63 load 0.01\n",
"22207 14 09:03:01 INFO train : 2851 loss 0.6385 elapsed 0.65 load 0.01\n",
"22207 14 09:03:03 INFO train : 2852 loss 0.6492 elapsed 0.60 load 1.07\n",
"22207 14 09:03:03 INFO train : 2853 loss 0.6393 elapsed 0.50 load 0.00\n",
"22207 14 09:03:04 INFO train : 2854 loss 0.6710 elapsed 0.65 load 0.00\n",
"22207 14 09:03:04 INFO train : 2855 loss 0.6424 elapsed 0.64 load 0.02\n",
"22207 14 09:03:06 INFO train : 2856 loss 0.6667 elapsed 0.66 load 1.11\n",
"22207 14 09:03:07 INFO train : 2857 loss 0.6371 elapsed 0.64 load 0.00\n",
"22207 14 09:03:08 INFO train : 2858 loss 0.6504 elapsed 0.64 load 0.00\n",
"22207 14 09:03:08 INFO train : 2859 loss 0.6200 elapsed 0.58 load 0.04\n",
"22207 14 09:03:10 INFO train : 2860 loss 0.6548 elapsed 0.65 load 0.82\n",
"22207 14 09:03:10 INFO train : 2861 loss 0.6712 elapsed 0.56 load 0.00\n",
"22207 14 09:03:11 INFO train : 2862 loss 0.6113 elapsed 0.57 load 0.00\n",
"22207 14 09:03:12 INFO train : 2863 loss 0.6371 elapsed 0.56 load 0.01\n",
"22207 14 09:03:13 INFO train : 2864 loss 0.6626 elapsed 0.64 load 1.29\n",
"22207 14 09:03:14 INFO train : 2865 loss 0.7234 elapsed 0.61 load 0.00\n",
"22207 14 09:03:15 INFO train : 2866 loss 0.6108 elapsed 0.56 load 0.00\n",
"22207 14 09:03:15 INFO train : 2867 loss 0.6633 elapsed 0.66 load 0.03\n",
"22207 14 09:03:17 INFO train : 2868 loss 0.6569 elapsed 0.60 load 0.62\n",
"22207 14 09:03:17 INFO train : 2869 loss 0.6507 elapsed 0.62 load 0.00\n",
"22207 14 09:03:18 INFO train : 2870 loss 0.6670 elapsed 0.62 load 0.01\n",
"22207 14 09:03:19 INFO train : 2871 loss 0.6514 elapsed 0.63 load 0.00\n",
"22207 14 09:03:20 INFO train : 2872 loss 0.6578 elapsed 0.58 load 1.36\n",
"22207 14 09:03:21 INFO train : 2873 loss 0.6511 elapsed 0.60 load 0.00\n",
"22207 14 09:03:22 INFO train : 2874 loss 0.6338 elapsed 0.60 load 0.04\n",
"22207 14 09:03:23 INFO train : 2875 loss 0.6522 elapsed 0.76 load 0.01\n",
"22207 14 09:03:24 INFO train : 2876 loss 0.6752 elapsed 0.62 load 0.85\n",
"22207 14 09:03:25 INFO train : 2877 loss 0.6251 elapsed 0.55 load 0.00\n",
"22207 14 09:03:25 INFO train : 2878 loss 0.6935 elapsed 0.55 load 0.00\n",
"22207 14 09:03:26 INFO train : 2879 loss 0.6471 elapsed 0.64 load 0.02\n",
"22207 14 09:03:28 INFO train : 2880 loss 0.6794 elapsed 0.55 load 1.19\n",
"22207 14 09:03:28 INFO train : 2881 loss 0.6519 elapsed 0.62 load 0.00\n",
"22207 14 09:03:29 INFO train : 2882 loss 0.6454 elapsed 0.63 load 0.04\n",
"22207 14 09:03:30 INFO train : 2883 loss 0.6266 elapsed 0.66 load 0.01\n",
"22207 14 09:03:31 INFO train : 2884 loss 0.6568 elapsed 0.59 load 0.95\n",
"22207 14 09:03:32 INFO train : 2885 loss 0.6636 elapsed 0.62 load 0.00\n",
"22207 14 09:03:32 INFO train : 2886 loss 0.7119 elapsed 0.57 load 0.00\n",
"22207 14 09:03:33 INFO train : 2887 loss 0.6546 elapsed 0.63 load 0.01\n",
"22207 14 09:03:35 INFO train : 2888 loss 0.6135 elapsed 0.59 load 0.81\n",
"22207 14 09:03:35 INFO train : 2889 loss 0.6299 elapsed 0.67 load 0.00\n",
"22207 14 09:03:36 INFO train : 2890 loss 0.6315 elapsed 0.71 load 0.09\n",
"22207 14 09:03:37 INFO train : 2891 loss 0.6477 elapsed 0.66 load 0.00\n",
"22207 14 09:03:38 INFO train : 2892 loss 0.6409 elapsed 0.59 load 1.05\n",
"22207 14 09:03:39 INFO train : 2893 loss 0.6466 elapsed 0.55 load 0.00\n",
"22207 14 09:03:40 INFO train : 2894 loss 0.6683 elapsed 0.64 load 0.54\n",
"22207 14 09:03:41 INFO train : 2895 loss 0.6421 elapsed 0.78 load 0.00\n",
"22207 14 09:03:42 INFO train : 2896 loss 0.6561 elapsed 0.62 load 0.79\n",
"22207 14 09:03:43 INFO train : 2897 loss 0.6131 elapsed 0.67 load 0.00\n",
"22207 14 09:03:44 INFO train : 2898 loss 0.6638 elapsed 0.71 load 0.01\n",
"22207 14 09:03:45 INFO train : 2899 loss 0.6721 elapsed 0.63 load 0.00\n",
"22207 14 09:03:46 INFO train : 2900 loss 0.6192 elapsed 0.60 load 0.91\n",
"22207 14 09:03:47 INFO train : 2901 loss 0.6646 elapsed 0.63 load 0.00\n",
"22207 14 09:03:47 INFO train : 2902 loss 0.6782 elapsed 0.57 load 0.02\n",
"22207 14 09:03:48 INFO train : 2903 loss 0.6596 elapsed 0.60 load 0.00\n",
"22207 14 09:03:50 INFO train : 2904 loss 0.6331 elapsed 0.61 load 1.23\n",
"22207 14 09:03:50 INFO train : 2905 loss 0.6438 elapsed 0.69 load 0.00\n",
"22207 14 09:03:51 INFO train : 2906 loss 0.6404 elapsed 0.61 load 0.06\n",
"22207 14 09:03:52 INFO train : 2907 loss 0.6480 elapsed 0.56 load 0.00\n",
"22207 14 09:03:53 INFO train : 2908 loss 0.7097 elapsed 0.56 load 1.06\n",
"22207 14 09:03:54 INFO train : 2909 loss 0.6582 elapsed 0.58 load 0.00\n",
"22207 14 09:03:55 INFO train : 2910 loss 0.6608 elapsed 0.65 load 0.02\n",
"22207 14 09:03:55 INFO train : 2911 loss 0.6497 elapsed 0.59 load 0.00\n",
"22207 14 09:03:57 INFO train : 2912 loss 0.7057 elapsed 0.64 load 1.23\n",
"22207 14 09:03:58 INFO train : 2913 loss 0.6352 elapsed 0.66 load 0.00\n",
"22207 14 09:03:58 INFO train : 2914 loss 0.6434 elapsed 0.58 load 0.00\n",
"22207 14 09:03:59 INFO train : 2915 loss 0.6955 elapsed 0.60 load 0.00\n",
"22207 14 09:04:01 INFO train : 2916 loss 0.6415 elapsed 0.55 load 1.15\n",
"22207 14 09:04:01 INFO train : 2917 loss 0.6442 elapsed 0.55 load 0.00\n",
"22207 14 09:04:02 INFO train : 2918 loss 0.6642 elapsed 0.61 load 0.05\n",
"22207 14 09:04:03 INFO train : 2919 loss 0.6584 elapsed 0.56 load 0.00\n",
"22207 14 09:04:04 INFO train : 2920 loss 0.6217 elapsed 0.60 load 1.00\n",
"22207 14 09:04:05 INFO train : 2921 loss 0.7176 elapsed 0.60 load 0.00\n",
"22207 14 09:04:06 INFO train : 2922 loss 0.6765 elapsed 0.60 load 0.06\n",
"22207 14 09:04:06 INFO train : 2923 loss 0.6504 elapsed 0.62 load 0.00\n",
"22207 14 09:04:08 INFO train : 2924 loss 0.6440 elapsed 0.65 load 1.21\n",
"22207 14 09:04:09 INFO train : 2925 loss 0.6849 elapsed 0.73 load 0.01\n",
"22207 14 09:04:10 INFO train : 2926 loss 0.6569 elapsed 0.61 load 0.01\n",
"22207 14 09:04:10 INFO train : 2927 loss 0.6637 elapsed 0.61 load 0.00\n",
"22207 14 09:04:12 INFO train : 2928 loss 0.6549 elapsed 0.60 load 0.94\n",
"22207 14 09:04:12 INFO train : 2929 loss 0.6652 elapsed 0.68 load 0.00\n",
"22207 14 09:04:13 INFO train : 2930 loss 0.6952 elapsed 0.66 load 0.00\n",
"22207 14 09:04:14 INFO train : 2931 loss 0.6434 elapsed 0.63 load 0.00\n",
"22207 14 09:04:16 INFO train : 2932 loss 0.6571 elapsed 0.55 load 1.17\n",
"22207 14 09:04:16 INFO train : 2933 loss 0.6849 elapsed 0.57 load 0.00\n",
"22207 14 09:04:17 INFO train : 2934 loss 0.6404 elapsed 0.54 load 0.00\n",
"22207 14 09:04:17 INFO train : 2935 loss 0.6828 elapsed 0.55 load 0.00\n",
"22207 14 09:04:19 INFO train : 2936 loss 0.6383 elapsed 0.56 load 1.24\n",
"22207 14 09:04:20 INFO train : 2937 loss 0.6411 elapsed 0.61 load 0.00\n",
"22207 14 09:04:20 INFO train : 2938 loss 0.6471 elapsed 0.57 load 0.01\n",
"22207 14 09:04:21 INFO train : 2939 loss 0.6643 elapsed 0.61 load 0.01\n",
"22207 14 09:04:23 INFO train : 2940 loss 0.6508 elapsed 0.68 load 0.95\n",
"22207 14 09:04:23 INFO train : 2941 loss 0.6478 elapsed 0.65 load 0.00\n",
"22207 14 09:04:24 INFO train : 2942 loss 0.6430 elapsed 0.56 load 0.00\n",
"22207 14 09:04:24 INFO train : 2943 loss 0.6525 elapsed 0.62 load 0.02\n",
"22207 14 09:04:26 INFO train : 2944 loss 0.6731 elapsed 0.60 load 1.22\n",
"22207 14 09:04:27 INFO train : 2945 loss 0.5990 elapsed 0.69 load 0.00\n",
"22207 14 09:04:28 INFO train : 2946 loss 0.6062 elapsed 0.70 load 0.00\n",
"22207 14 09:04:28 INFO train : 2947 loss 0.6382 elapsed 0.67 load 0.01\n",
"22207 14 09:04:29 INFO train : 2948 loss 0.6601 elapsed 0.59 load 0.29\n",
"22207 14 09:04:30 INFO train : 2949 loss 0.6355 elapsed 0.64 load 0.01\n",
"22207 14 09:04:31 INFO train : 2950 loss 0.6394 elapsed 0.65 load 0.00\n",
"22207 14 09:04:31 INFO train : 2951 loss 0.6749 elapsed 0.66 load 0.03\n",
"22207 14 09:04:33 INFO train : 2952 loss 0.6540 elapsed 0.57 load 1.14\n",
"22207 14 09:04:34 INFO train : 2953 loss 0.6730 elapsed 0.76 load 0.00\n",
"22207 14 09:04:35 INFO train : 2954 loss 0.6547 elapsed 0.66 load 0.00\n",
"22207 14 09:04:35 INFO train : 2955 loss 0.6717 elapsed 0.63 load 0.07\n",
"22207 14 09:04:37 INFO train : 2956 loss 0.6633 elapsed 0.53 load 0.99\n",
"22207 14 09:04:37 INFO train : 2957 loss 0.6657 elapsed 0.64 load 0.00\n",
"22207 14 09:04:38 INFO train : 2958 loss 0.6831 elapsed 0.57 load 0.00\n",
"22207 14 09:04:39 INFO train : 2959 loss 0.6549 elapsed 0.56 load 0.00\n",
"22207 14 09:04:40 INFO train : 2960 loss 0.6362 elapsed 0.53 load 1.22\n",
"22207 14 09:04:41 INFO train : 2961 loss 0.6760 elapsed 0.63 load 0.00\n",
"22207 14 09:04:42 INFO train : 2962 loss 0.6874 elapsed 0.66 load 0.00\n",
"22207 14 09:04:42 INFO train : 2963 loss 0.6584 elapsed 0.62 load 0.05\n",
"22207 14 09:04:44 INFO train : 2964 loss 0.6582 elapsed 0.55 load 1.15\n",
"22207 14 09:04:45 INFO train : 2965 loss 0.6981 elapsed 0.62 load 0.00\n",
"22207 14 09:04:45 INFO train : 2966 loss 0.6543 elapsed 0.58 load 0.02\n",
"22207 14 09:04:46 INFO train : 2967 loss 0.6536 elapsed 0.62 load 0.00\n",
"22207 14 09:04:48 INFO train : 2968 loss 0.6480 elapsed 0.62 load 1.22\n",
"22207 14 09:04:49 INFO train : 2969 loss 0.6690 elapsed 0.57 load 0.00\n",
"22207 14 09:04:49 INFO train : 2970 loss 0.6696 elapsed 0.58 load 0.00\n",
"22207 14 09:04:50 INFO train : 2971 loss 0.6550 elapsed 0.52 load 0.07\n",
"22207 14 09:04:51 INFO train : 2972 loss 0.7097 elapsed 0.57 load 1.07\n",
"22207 14 09:04:52 INFO train : 2973 loss 0.6316 elapsed 0.64 load 0.00\n",
"22207 14 09:04:53 INFO train : 2974 loss 0.6934 elapsed 0.59 load 0.00\n",
"22207 14 09:04:53 INFO train : 2975 loss 0.6433 elapsed 0.71 load 0.12\n",
"22207 14 09:04:55 INFO train : 2976 loss 0.6918 elapsed 0.66 load 0.96\n",
"22207 14 09:04:56 INFO train : 2977 loss 0.6770 elapsed 0.67 load 0.00\n",
"22207 14 09:04:56 INFO train : 2978 loss 0.6232 elapsed 0.62 load 0.00\n",
"22207 14 09:04:57 INFO train : 2979 loss 0.6469 elapsed 0.61 load 0.05\n",
"22207 14 09:04:59 INFO train : 2980 loss 0.6849 elapsed 0.65 load 1.16\n",
"22207 14 09:05:00 INFO train : 2981 loss 0.6271 elapsed 0.66 load 0.07\n",
"22207 14 09:05:00 INFO train : 2982 loss 0.6433 elapsed 0.59 load 0.00\n",
"22207 14 09:05:01 INFO train : 2983 loss 0.6663 elapsed 0.60 load 0.05\n",
"22207 14 09:05:02 INFO train : 2984 loss 0.6909 elapsed 0.59 load 0.77\n",
"22207 14 09:05:03 INFO train : 2985 loss 0.6423 elapsed 0.57 load 0.00\n",
"22207 14 09:05:04 INFO train : 2986 loss 0.7401 elapsed 0.66 load 0.00\n",
"22207 14 09:05:04 INFO train : 2987 loss 0.6511 elapsed 0.75 load 0.01\n",
"22207 14 09:05:06 INFO train : 2988 loss 0.6258 elapsed 0.68 load 1.03\n",
"22207 14 09:05:07 INFO train : 2989 loss 0.7005 elapsed 0.64 load 0.00\n",
"22207 14 09:05:07 INFO train : 2990 loss 0.6529 elapsed 0.62 load 0.00\n",
"22207 14 09:05:08 INFO train : 2991 loss 0.6471 elapsed 0.57 load 0.00\n",
"22207 14 09:05:10 INFO train : 2992 loss 0.6639 elapsed 0.70 load 1.19\n",
"22207 14 09:05:11 INFO train : 2993 loss 0.6737 elapsed 0.55 load 0.00\n",
"22207 14 09:05:11 INFO train : 2994 loss 0.6713 elapsed 0.51 load 0.00\n",
"22207 14 09:05:12 INFO train : 2995 loss 0.6674 elapsed 0.62 load 0.00\n",
"22207 14 09:05:13 INFO train : 2996 loss 0.6241 elapsed 0.58 load 1.12\n",
"22207 14 09:05:14 INFO train : 2997 loss 0.6481 elapsed 0.63 load 0.00\n",
"22207 14 09:05:15 INFO train : 2998 loss 0.6456 elapsed 0.67 load 0.00\n",
"22207 14 09:05:15 INFO train : 2999 loss 0.6596 elapsed 0.58 load 0.00\n",
"22207 14 09:05:17 INFO train : 3000 loss 0.6450 elapsed 0.63 load 0.90\n",
"22207 14 09:05:17 INFO Running validation\n",
"22207 14 09:05:38 INFO Logging 20 images\n",
"22207 14 09:05:39 INFO Logging 20 audios\n",
"22207 14 09:05:42 INFO Logging 20 texts\n",
"22207 14 09:05:54 INFO val : 3000 loss 0.6555802226066589\n",
"22207 14 09:05:54 INFO Saving model state at step 3000 to checkpoints/fp_step_00003000.pt\n"
]
},
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sp.check_call(\n",
" ' '.join([\n",
" f'PYTHONPATH={path_to_sources} CUDA_VISIBLE_DEVICES={gpu_avaiable}',\n",
" f'python3 -m sources.fastpitch.train_fastpitch',\n",
" f'--logs {logs_dir}',\n",
" f'--ckptdir {ckpt_dir}',\n",
" f'--dataset {path_to_dataset}',\n",
" f'--hfg {path_to_hfg_ckpt}'\n",
" ]), shell=True\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a6e02abc-0240-4eae-9bb1-4419a5b244c3",
"metadata": {},
"source": [
"### Infer model on an example\n",
"\n",
"Execute the code provided below. Then, append the generated audio to the homework results.\n",
"- if attaching an archive, use name: `prediction.wav`"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "9ad28736-5626-4a50-a6ba-4dcdad9bc304",
"metadata": {
"id": "9ad28736-5626-4a50-a6ba-4dcdad9bc304"
},
"outputs": [],
"source": [
"from sources.fastpitch.common.checkpointer import Checkpointer\n",
"from sources.fastpitch.model import FastPitch\n",
"from sources.fastpitch.data import FastPitchBatch, SymbolsSet\n",
"from sources.hifigan.model import load_model as load_hfg_model"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "5e2a451e-06de-4e9c-b45c-2461acd561cc",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def get_symbol_ids(text):\n",
" g2p = G2p()\n",
" phonemes = g2p(text)\n",
"\n",
" symbols_set = SymbolsSet()\n",
" \n",
" symbols = []\n",
" for ph in phonemes:\n",
" if ph in symbols_set.symbols_to_id:\n",
" symbols.append(ph)\n",
" elif ph == ' ':\n",
" continue\n",
" else:\n",
" symbols.append(\"sil\")\n",
" \n",
" symbols_ids = torch.LongTensor(symbols_set.encode(symbols))\n",
" text_length = torch.LongTensor([symbols_ids.shape[0]])\n",
"\n",
" return symbols_ids, text_length"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "f1541feb-f8e4-4e08-bc8a-cb66979480d1",
"metadata": {},
"outputs": [],
"source": [
"checkpointer = Checkpointer(ckpt_dir)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "b0cb51ef-c337-4796-88df-50fdf928a7f6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/fvelikon/miniconda3/envs/ysda_speech_torch_26/lib/python3.11/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
" WeightNorm.apply(module, name, dim)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"HiFi-GAN: Removing weight norm.\n"
]
}
],
"source": [
"hfg = load_hfg_model(path_to_hfg_ckpt)\n",
"hfg = hfg.to(device).eval()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "2ced55d2-5b54-4957-bed1-ea8a5834ceaf",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"ckpt_dict = checkpointer.load_last_checkpoint()\n",
"hparams = HParamsFastpitch.create(ckpt_dict['hparams'])\n",
"fp = FastPitch(hparams)\n",
"fp.load_state_dict(ckpt_dict['state_dict'])\n",
"fp = fp.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "c9418e2e-8693-4497-b827-adcdcdec0970",
"metadata": {},
"outputs": [],
"source": [
"text = \"Freestyler, rock the microphone, straight from the top of my dome. Freestyler, rock the microphone, carry on with the freestyler.\""
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "91a7612a-d3e7-4347-8e5c-e4c80fc277dc",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"symbols_ids, lengths = get_symbol_ids(text)\n",
"\n",
"batch = FastPitchBatch(\n",
" texts=symbols_ids.unsqueeze(0),\n",
" text_lengths=lengths\n",
").to(device)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "c844557b-ee3b-488f-acc5-dd43d7d17dfa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRiTaBgBXQVZFZm10IBAAAAABAAEAIlYAAESsAAACABAAZGF0YQDaBgCq/47/4v9v/5P/SwCF/xgAy//V/woAx//b/8f/4P/J/93/MgAHAAwAEAAYANf/2f8BAAAAKwDy//X/LgC8/8z/BAC2/yQAlf/U/zcAtP/7/wUAu//R/73/0/8QAMD/RwAVACcARwD//z8AHADr/zIA3f/e/zgA0P/j/wMA9P9OAMz/7/9TAPf/NgACALH/WwDy/9n/QwC8/wYANgDJ/wkA4//0/+X/0v8xAMX/4v8eAM//7f/W//n/RgDR/wsAVwDk/wgAFQCy/+z/VwAKAD4ABwCR/1wA/v/s/4QALADjAPP/1v+GAIb/FwBDAK3/agDb/6P/PwCI/zoAKQDU/0oA9P9aAMH/q/8XAM7/3v/H/0gABgDW/2kAqP/a/ycAiv+JANH/i/9rALj/eAACAJb/GADx/wcAsP/s/10AzP/3/xoAFQBGACcAIwDX/x4AzP/J/wIACQAfAE//PABrAPf/TwCr/9X/7/+D//D/n/8PAPT/RP9FAL3/0P+xAJH/sP/w/2r/IAALAFoApAAaAGUA4//5/xEAgv9DAM3/BQC2AFf/QgBEAIj/dQC2/83/DADc/3EAwf/2/0IApv9HAI7/jP9JAHv/kAA4AJv/LAAUADIARQAPAPn/cgAQANz/IQBPADsAAgA3AMX/HgDG/4//CgCp//X/LACz/9X/DQCJ/9b/1f+T/+f/7f9OABwAEQAwAMT/sv+o/8b/5P/j/zoAWAAWABYAAADN/0wAz/+EAHIAz/9OAOf/CgA3AGgA0AB+AC4ADAAxADYA8/+4/8n/AAByAEsABQDF/1L/ef/p/w8AXQBO/wYAXf/7/+j/YwCbAXoAav8j/rIBqv4gAA7/HwDRAGP9dAFnAIkAEAAHAZL/QQBM/o7/YQLF/ZUB9ACa/rsCZv4GAKMAQ/+4/0sAAv89AM3/ev5KAHH/fAFt/tYAEv6G/80BUv94/3L/tv4ZAHQA6P2/APr+TP99ACgBUf9iALgBf/8t/zsBmv7j/fkAGwALAIv/yv6dAV8AyQAy/5j/PABoALD/G/8z/iT/oQH3/goBU/6HABsAOgCzAOL/c/3WAFsAaQGsA9v8OQHQ/8L+f/94AVj+bQC2ABQBQwOM/osClf5EAQoBjQKsAZQADAOu/hD//gDNAbP9iwIl/2b/F//g/XIDZ/53/dECq/vs/ov/Wv08AgEBJf/D/kb/4v6wAPr9pwH7/isBjgJ//uwB/f3w/uQCnwBO/kcAQwK1/8cAIACXABwBqAA5AJX+zP8X/z8B8/+4/tsBFP++/60D5/6x/bACYPt6/14Dq/2nAh4ASP93AMn+OwCI/9v+aACi/c0D0P/w/4T+5v5wAQsAfAAx/w0B2PzAAe7+y/83//4AcP9GAFsBdf0RAAT+JAKGAUH+RwB5/7cAVQHo/oYChf7yANL+l/99AJf+iAAM/6MAG/s+AzUAWv91ABn+CAHx/9UB9f6oAX78Cf5iA+H8swCMA4T9QgKM//T/if4sAb4AaP4iAAf+GQIr/QgGF/5HAWICh/wFAGwA+f7B/+sEu/wiAxv+kAHa/dwBJ/8U/BkE9PtIAHsAl/+2AVYBWP89AOj+dwC9/dwA1v9o/RAC+fuiBRoCof0kATn+wgERAw/9YAG6/fz74QTX/DIBowMG/XwDyQHU/GEDe/1G/xIAT/2q/kID3f91/+UAz/7a/2v/4v8c/14CXfrWAw3/PP9ZAHkAHgDC+24DEv+6AOcBhf6qAXv+BgDK/48AVAF//rkBN/95/wj/i/+X/jf/XwD3/yEB/gD9ALf/k/4zAK3+xQFCAXf/VQQc/oH+wf6I/OoDDP9q/xwDqPuRAPwCu/5i/tsAAP+EAfoAsAAE/X7/kQB2/r8DrPxc/tMAgAEK/tQBNQAV/GoEMf60AYoBugD2/mD9Wf1qAMYBLv5YBTT/bAAh/3H+SwGU/2kCtf+iAEAARwCIBOIAAP8uArD+wv8AAcP8XADHAZ3+JQNuAJj/GP8i/83+WP6G/1cAmv3aAc7+SALo/db9agOE/X4C/P63/VT/DQMm/VwCQgAIABkB/frfAG8A8P5j/6MCaQDm/QICAwGD/9YDb/6jAc/+w/12A67+sf6eAdD/Xv7mAEr/BQBVAh37CP1vA4j9hADiAeL8Sf7Y//4AQgN9/pP/GAAS/bEFD/0i/+wCd/qQAY0AmAAyAxcCgf9cA9X+4vv5/l7+1v/R/bwGfv2qBKX/i/tl/zv+vADi/S7+fv0HBor6sAPhAuL8CgOA/6n+yv/HAEP+LgGU/2H/eAGYAJYBhAC7AMoCNvx0ALcAAf1LAdECw/2RAGL+ef+EA6j/Xf/YAWgA3/7N/x4Dpv1T/SQCL/4qAXP++wGs/0f9LAMXA2n9kv57AJYB4AFO+wn+KgCSAS39o/0/A137jwLuBlb2KgY9AL76qQSU/uL88gAtAZgAtv98/W8BV/z3AL3+vATl+3gCAAPO+8cEa/71AmP8ugAhBKb95P0lAPMBG/trAW4CU/8GA3L64QMK/Lr7xgZm/Q0BJwJU/nr9+gIYAcL7sAhI/SL+UAHm+5YAaQKH/cwD4wD1+vICtv6yAQQB7/oxATgE5voLAgAAdwLM/mkBqgRC+iwExgI0+j8CMf8MAM78kwEFBOP6ywPnAXv8AwA0/4P9LQDy/Q0FpAQmAoH7wP+h/XX86wGvABb8yASU/kcDsABJ/NkBV/1aA0T7vf6qAF7/yv/QA839CgEA/zkATgBr/TIDCvy9ABoCv/oOBLYBI//+ApD8DAFgBCH+1v09BX38AADWATD/igFz/7b+lgHRAsv/wf6WA6X/hP15AIT91P0d/foB4P0iAzUAOAEPA+76uv/HAE0Drv4d/gX8LwFyAy0AAgAeAZL+i/0fBGX/O/2DAjr7f/4hAsj8qQV+A/n+M/zj/4EBR/s9Aa8BYQN8/oIANf6GAHj71QSD/3X4+QRf+SsHiABs/dcCof0RA9EA+v6f/ET9tANt/rkDUf3m/goBt/2mAvD++gBD/wUEGv/IAer+KQAE/vEAMQAJ/NEFwPjrAMwCW/ywBUj7kQD9/wMBkv5qAEoDgwEf/SIAzvza+8cEv/ikAwj/wQIsAZj/jAT4+v/77wLU/TgDmwC/+xYChwF3A3r9OAKE/Pf8sQYnA1L+WAgO/YX9OQS2+NkEigBO/PH/tgO7+tj8FQi29l4GHP27/JsAY/6tAKP9VQK1/B4EMf/bAv//XQFL/7AAT/2R/8MEzf3dAOP+gACS/t0F+wAc/+X/X/6CA938pP+/At8ABv5QAjkAq/3UAVL9dgCZAAgBVv5IBDoB7fcIAwv/GQFx/wgBPgEb+74Dwfj+AugBU/0kAesC7PqrA0/++vn3A0L7cAGqANsD3vyrAlr/iP7AAwAB5v7q+RP/u/39ACX/RgCxBDv9+QR//tD/egYs93YD2QFl+xoDifs1AoEFCwRhAL/75wAN/Vv/sf7OA+D+x/xLAkv+DwFmAkf/qAAv/3P+JQJsBMb7XP9tAyr9AQBf/qABov4y/2sFpPrrAD8EV/piAk4B7vp8A8ECrP9VBBH+1//yBHD4lwJd+1f+Bf/0/TwFYfzJBPj7eQPB/W0CKvq7APT/+v6rACL+8QUk+T4JIf0xADz/vgD3/hP/gwCMAIEAUv11BOP+nf96+u0Ddf4//dIDh/8t/tcCHQGI/z4DcPY/BGz/Cf83ANL6IwWk+kL9BwW4/fUCDAGA/YkA/wC/ALAD7fwLAesBe/vgAu77LQJF/rkAiv6ZAiX6awMMCcD2+gWn/rb8GP80/FIB0gHA/nEB1f+pAKb+4QRn/S39IgQKAoz+9wFe//z8FgJK++4DaP+ZAfoBnPze/yf8xf1UAacF/gL7+vYEHQBp/JMFnfwBAbkBcgDE/iEGX/0X/ooA8Pt/AeH8RgHX/XH+/AAGAUoEvgEr/vf/KwPC/5D+1P+O/icA+/tDAycDhgR+AI//ZQPx+k8C6v4JArf+Yvy1Azr9WP5IBXz5lwQS+oH+rgbO+SMAkv8WA339Ewb/+zn9g/41/3YA9f2tALL/FwPP/cYDwwDx+kcBaAF4+qwBhAEjAN4Chv78AhYAo/quAXcCgf7xAlb9D/4dAPMCwP+R/vQDNPpiAcMCGfxaAL4Fw/umAAL9nvs/A/r6XwHzArv54gO1/x78/QOb/ML+kf7UAX783gKWA8UD/QFm+rgBUwEaAzIAZfzYAuP9mf8tBYf+Lv/U/DoEuf+FAYYBYwA3A3/+y/nn/zkAtwCqBHv9SwAJ/fQE5/2m/H4EEgCoANv3LAUvBQj2MwaM/kACn/6w/0QFJfnwAosDJAKe/TwCL/kBA9H9tf6pA0j/9P/5/mUAMvkpAbMDbv1TBAP9WP4Q/x3/ygO5/zoAaQT7//4AhPxm+n4BQPfWA3oA8wD+AfwGuP9rBKT9Rf7SAQwASf1k/DoANvqICd0A3/gFAlMFOfonENzz5/zg/3X7vgXV/QYEfvsgA3kANQDt/N3/0P9oBnH69gFkBVj5cASo/boB9/sG/BwDHfhAAhID8PoSBXr9zP3tAd/+jwT0/k/8KAAu/1oAQf2s/n0A6f7sBHL7tgaeBjn7/gWRAKX7g/2k/hn9JAIVANoDl/7FBWH/Pf/XAdru1QFVA/j9EQRyA+L4qApYAND0lgNE/eMBYf54BR/8NAJIBD79FwFO/9D9Zvw0/soDFv8b/zUIi/58AW0DUAUV/mf+eP3WAVMAOAB4ATz1XAPd/+gAvgEtALMCRf7/+of+hwPLAKgCKwOg/bz+yQAk/8H9iAI2AZIBHv1h/gj/1f1nArT7SgLX+joC7AEGAt0GifvnA+D9Pf1RAfEC4/xS/dIAXv+V/9b/cwB5Bh37PwJY/bsBf/6y+E0DJv44BVv+sAN++ZsDef7jAXYENvo+BFcBV/tcBj///f3UBBj9swFYBLIApf+O+V//sQA19wsK0/mXAkcBsPmGDWD8vP7vBj35jAOQ9rUAYwLaAez+xP+a/R/7hAPJ+RoKeffxAqX/O/0GB7H7IAPI/w0A1AEI/Y4BBf6c/qX+XgK0/lsA/f7uALICN/2pAvH6FwOz/z0AnQBv/U4Akv86/BMDQf0t/3oBcgBcA/sA6gCCAcD/jv1N+97+RwPY/DECw/0MALv+fABnAsoBIASx/4v/cf6P/zkALPneA5j92/4mBjP3igNiACECzgLqBfP/0wHJAQ/7cP7h/U4AB/wJBdn9Qv+DAtn8ZQLh+5IAw/4r+28CJgTZ+MABBAMd+moB1wC0AZwEJQJ2/mMIb/sQAnEE/vx9Afb+QfylBPP++/+tBYz97QXa/ML/EgJt+KkCWP8j/v8EgfoqA7T80v7FBQoB3PsVAvj76/vfAq/+sARR/BsBowAu+ggFL/2oAA0DwvzgAP3/BfzpAa4Ek/uaBQv5FgJJ/nUATQJw+vYF4/xtBp0Czvh8AAT8fP+0AgH/y/9d/375BgJJ/k3+DAzs9JkGX/25Ai4EW/aHBSD+IQPw+qcD1P5wAaIBG/9EASv8GwUb/Fr/kPxiAA7/2P72Af/9MAYi/g3+ZQIJ+JUFnf/n/dUE8fhQAMYDOgMnA9D/XQHx/mn6wgDe+iUCHQjU/eEBtQO7ADAFrvvQ/wf94vjSBFj/nQOj/O8C0QCX/cIDTfnrATIA5f6v/XcBXfkkAW4EJ/cMCgcA/ADMAO0B7fpW/U7/1wGr/XcAUgTO+QgExf6UAjQACP1mAPb/5/4/AZACa/+z/oL+wATL+1T+BAPQ/Vf9+fxRARsDWAJU+TEDEAK1/oUB3QCBAXAD7APTALL8PPnAAZEAOfgv/kn86QPHA9YA/wO9AXQFNvxbCsD3ivmKA+L7e/7mBJ7+7/hEAm36xQJ+/c8DwAIuBigHsvxhAjn80ftX/ZMDNgHhAYH+oPzKACb52QBEA+kClf1w/vQEm/wCAE0CegDE/aL/sQLh/GkCmQXd/skDbgOM+w0DEv2Q/HgBfvtD/Zf/LAAB/6MIVPzP/kgEt/xOATgAjP01AbcGAP2jAHcGB/0Z/ykAi/1w/on/vf2L/mgAlgGi/TsCmP9D/TABMPnt/Yr71gCSBpUGwv6B/ygEw/oIAuT+OvuM/Zb/AgTtAiv+WgIVAc38IAHE/CgDSwHi/CcEXv0FAbAAmv4LAwAA7fxiBOL7I/xeAYz4cgW+/yj8ZgEc/kEBNQGO/Xn+JAWI+zgARAKM/pUAs/uuAZ4EvgH/A6EBFwJpADb+6wB3/ur6MQA/AWH7+wTNAR4EHgBJ/k8E2wIaApT7Zv+H+lsC1AEN/rMAX/7dAIf9vAQQ/joAHwFV+av8vQCDAe8EgwZN/lUC7PxrAEH74Px0AdwBR/wx/T7/yAGZAzkF6QFR/HQDNvtRAiX+lfmoAyL+bwPuAun74v/G/DD/LwEJ/2kA7gBW/7cA8P3J/7b98P2pAsX+CgKy/ar6Ev0mADoC7/79Amr+O/9oBZ8CmgFWAHgCegB1A8L/dAIcBS39TP4bANj/1PtG/3L8kQNeAvD9mgXM/sUDT/iIAIz/Q/vFAy39OvtH/2YCLwBsA8j/DwABAUsGKgB/AYUDG/gR/r7/9fiJACH+IQF1BoT+zf94/Mv82QJ3Bm796ADoALH8wwLP/jH/Zf6FAhX/xgGZAvT+lf8A/m3/1wLL/4X/7AO8/Bb9y/4CBeL/Nv+tApYCEwOM/H//nQD9/KsBmf1Z/r8Al/+P/un+f/7Z/rMAfP/XAJr/GgAuAEn+HgJH/pH9SQEA/h8C4AENAFMAwQLaACcChgGC/iL/yf6t/QUCsgKMAoYFfABbAPL+aP5g/y3+IPtV/Gz+VP21AEUCjwPYANz9BAKd/C8AJf+M/AABOgFlAQP9nwGnAtL/3wUV/Y38HwJM/nf/OgI3A3YAZQGh/gsAbgDB/4YBtAAlATb/Xf+4/57/Mv1t/8IAQv9k/oP/eP4n/mr+PP+Y/jkAGwKf/z4B+wDj/q8CWQC//RgAQP5tAJj+1ACoAZQAQv7NAPcAdABY/1v+swL3/RkBnARqADD+PwCM//r+8/wBAJD9mvzQ/Qn/b/7N/nYChQBUAB7/z/8aAHv/BAHbABAAiADN/q8AywDN+pQCHf5P/4wAHvno/9r8MwNoAeMCyAS4BKIA3QEYAij8oQLKADYB9wEBAub/Mf+H/doAPf7jADYDcP4cAiUAov/QApP8T/76/z77qP7g/w7/0QJtAqAAaQJz/9D/PAPkAQ8BHQF3ADL+Af3O+/H/+fu9/G3/Iv66Ao/+5QHUAnn/5v8UAYv9QgBoA1YAaALuAPb8oAEzAcz/+QIT/8MArP5hAG8AAgDF/0QANf1w/jwDqf0v/vQAV/9t/m0CqADBAGIAVgAQAXgBBAB8Aq4B3P0YAFf+D/93/538ov3G/7MAKQBg/s8BiP1Y/fz/lwGZ/q3+2v7q+6sAgQFQ/2sDKwW8AEwA7P3G/goCMAFAALYA1gMNBDcCxAe/AHsAFf9j/JEAsvwy+xj/cgG6+hIAtf66+X79fv0o/Vz8uvq8/br9rPxF/xIBuP48AEwCJwOjAXoCqwIjAgUEhQMqAtwBVgTk/g8A+wHPAHIFewLe/hQEIAHM///+QAC8/+X/OgGR/YT+b/5o/1v9YP2Q/B7+h/2g/Kj98f7O//z///3i/EMAIADkAQ0B6wFDATEBYAMKAkICewEbAOMA1gHc/xACsQIRARoCogJ7AJgA/v4K/g7/q/01/iT/mgAhARj+xP+Y/vP/lf5EApsCIf5c/hn+XAQ5/0wBV/8N/Tn9Fv4q/gD/zP7d/6IAOP/OAuH/UwGN/sIAxf/I/5//Tv91/fv9mP+U/UsAg/9P/mL/FP/a/ocCtgBlAJ4C4QGiAQ4DnACQ/07+ev4wAEACeQF7AbsAGf+MAaH9/P5S/4f/nwGJ/1H+ZAAIAFH/CQIKAf7/ewEgAan/FP/S/woAYgBsArkBjgPQA9wDBwS0AucDkQJcAg4CuAJ2AX4A+gBqALb+tfww+xT7bfxS+4b8u/0O/br95vyU+zn9Cv/O/MP9Sf+v/Bn/JAFdAZv+NgBu/DX5Q/n29PP3g/d/9/X3EfpS/Gv+vgA1ArABCQIgBKADkQMkAx0C5AFvAXb/Wf+A/qj8Cf2f/BP8Svxm/LD8/f2r/o/+MwAy/8D/cv9hANkA3gA3ApgE2AZfCMML7w1fER8SPRVlFh0XOBfwFeYU8BJNEBMNQwsWCHwF7gNmAfX9Bv3Z+8n5m/kJ+V35mvhj+J74mfjg+Mn3WPi394D29fbU9ir1sPVe9vD1KfUZ9lb3S/eq+YX6+vzi/bf+NAClAHECmwFEA+UEXgTnAvICBQMXAhsCJAAxAa3+vfwq/Bf6ifni+VL4bvgS+4n4XPkM+qH4Pvm++C75Ifn4+Mn5GfrH+Uf61voL+l35jvms+jD7qPwU/ggAEgJsAioExQW0BlsKpAzGDpcRIBPvFeUVjBbEFZ4VpBUtFK4S1hDpDhMM9QoLCPcEGAMHAfn+Xf3R+2L76frQ+en5e/mM+Y/4mPeY9uv1u/Sh85nzIvJW86bzBvOa9Nf09PUi+Kv53vo5/e3+OgHbA7cFLQlfC2QN0Q7bDk8P/Q7JDVQMOwqrBxIFTwPcAdz+1PxV+535Wfi79iP2L/Ys9K3yWvIE87/yVfNt9NbzS/NO9Bn1IfSH9DL0tPN49aj19PUR90P3iPmC+p37wvqp+mL6uvgZ+Z34ePng+iP8tf3TACQCvgZTDE0Q8hSkGcMdgSDtIlUkiCTII0Ai3x+RHMcYKhWlEXkNuwn5BbcCJQAC/QT7Ovlo+NL2EvWp9NzzvfLJ8UHxyu+b7mPtpevj6srqlOoK66zrEu2G7yzydfUq+cj8tf90A0UHlAnPCyINwg96EZoS+xO5FFYV7RSjFKYSuxCDDgkMmwlcB+8EVQG4/mf8c/qg+Gr1vfLy8LPuUu2M7Njsiezy7O3sx+yL7kvvePAy8eLxTvNM9LD1vfU496b4YPnD+SP7G/xc/GP93v2Q/eD8X/3N/PD7ePv1/Kj+zQH2BhIL0hCxFaAaWB9LIk0ktSWDJholIyThIQsfQBxDGPMTqA/GC7IHaQRCART+IPyZ+hD5TPjQ9mj2t/VX9Fvyx++m7JXpducV5RTk4+I24pfjgeV66J3rdu8/9P33mvsBAAwDwAa1CeoLNA8AEeYSThQxFf0VIxfYFvwV1RQSEgwQPA24CksIuAW4AsX+k/u/92z01PFj7jvsMeub6QjpeeiE503nzObJ5rHn+uiy6eHr2O3B71nyXPTZ9VX3nfgo+Rn5n/mS+kT6//pa++L6Jvu//I7+yQGwBcsIlg+6FTwcACR9KQ4ujDD6MIwwoC7UKiYmByJeHXgZbhXVEb0P7wzmCp8IMAYDBNEBWP+v/On53/bw87rwB+286DflbOFN3j7csNoP2sLaCt1Q357ivuZu6rTuBPNk9/f7bgARBe4I9wvoDn4RMhNyFPUV9hb0F8kYnRnAGsEavxq8GgQZDxdaFA0QrAvdBrwB2Pxk9/zxD+326GjljeLl4MTfxd/z3y7gruEB4yXkh+X35r7n0Ogb6vfr7+7/8DDz4/X29hz5Ufvv+3P8B/2Z/EH8vPzP/B3+NgBABIYJRhBOF78dVyUQKq8tpi8NMBMwjy4eLNIpiieRJB0i+B6EG5AYxxTQEBoNhwnABtkDyABO/tH6y/av8ortR+gF4+rd+NmU1tbUGNTL1MbWmtg/24LeeuFM5fLpsO1D8hz3rfuLAGoEcghYDB0PeRK0FTkYoxrwHGEf0SGqIwQlqiVeJDMirx4GGhoVHA9wCfcDOv55+dz0SfFh7kHrD+iO5JHhHd//3HPbBNof2r7a3dog3BTezt+I4nvlzuf06uPtHfDx8fbz4vX49kz40fmV+kf7kPxV/Tj/5AG4BbMLTRLmGeIhSSk4L/4zojawNus1UzM1MOos0CkFJ0AkgSIAIDMdwRrkF40U/hDADBcIwgOn/kT5YPTG7snoo+NC3irZL9Xq0iLS99K91FjX7toO3mLhguR65r/o3+rk7MnvffPq9w39dwJACEUOuxMLGYsdfCFJJAImJickJzkmmiT3IYoeCBuHFzcUthBhDUIKWQYxAn/9f/e/8bvrbuYU4mPea9zT2wTbNNvY26Lb7dsf3M7bFtyp3BbeoOA340rmxuk67YXwF/Tj9qD56Pst/ZD+bP8vAOQAewNXCJcOUxZ7HhUmhywpMWc0JjWENN8ypy/0LKEq6ygWKDooiCfFJawj2x7dGf8UNg8HChcFXP9O+gz20/C/657m7eBK3F3YZ9VX1CzU79RV1mDXrNic2rzcO94P4NLiB+a+6mnwkPbd/N0CTwhPDfIRnRVyGascDB9VIf0ihSRlJWglrCSCImUgah3KGZwWthIpDkwJKASA/jX58vOx7jrqgeWX4cneYNwA217aCNo52pXaTdo22k/bPtxO3ubhF+QS51nro+4B8h/1dPeP+fj7Xv0f/5UACAHHAeUCNwUeCe8OcRb/HsImxizKMFwycDE4L2krlCeXJFAiqCLPI+MlTijTKEMnPyQdHyQZfBP4DBAHxQF1/C/4TvSl8DDthumh5c7hfN5x2/zYAtcd1U7U0tM21DvW0did3BnhzOWL63HxBPfj/MkB1AXdCbcMeQ8pE/oWnhqYHgMiiCQ6JiYnmSZYJA8hOhy4F8QS6g1hCVoEIgAI/Az4ZPRD8NTrqec143be5NrB10PV0tTX1M/V4Ndq2lXdU+Aj41jlf+eR6Vzri+3M7xvy5/RZ+ED7Zv6zAOEBawMrBFYG/wnVD4sX1B8bJ/UqsCxQKzApsybQI/kieCMBJcUotCysLhwvNSxZJhUfGhf/D7YKSgd8BUMEowN5AngAJP30937xhOo35MzeRNt+2JTXXdiF2XPbkd2V31/hUeNy5K3lZ+en6WjsRPBz9N74Ev45A+QIIw/EFCEZnRwNHoUetR7aHS0d4BxbHKcchRxCG1kZqBU6EfkL6AXK//z5VPSu71Hs9OjR5qzlv+RT44Hha99P3PTZGNjn1qLXgtn93CHimubf6ovugPBn8TzyR/LQ8pr0IPZC+Gv7z/7yA+oLcBSyHXQlBSmXKYQmTCJ+H+Idch8VJAEqfjClNrE4GjgANDorqyGbGBIRWg2eDWcOWhB5Ee8OIwoXAp/3fu1a5MfdGNqI2QXbk93T32jgmN8K3p7bgtj71X3UkNXk2Rrgp+fY7y/36fyVAZME4AYnCV4LtA2WEPQTXxdjG0Ef9iH4InQiRiDiHDwZZxVwES4OGAueCGYGpQPBACz9a/j48lztfucr4z3g3d6+3u/fx+AV4dvggt9b3ebbctss3OHeseJ95gzrpu4N8Y/zUPWs9XD1MfUh9cT5jwJPD0MdRChALV0t9CcjIYgcDRsvH6In5jGOOq4/3D+XOzkzrSgbHgoWgRL9E5EXhxuGHL8ZtBInCRH9XfLq6eTkcuOn47fkDOVJ5ErhuNye17zTstGL0ffT4dff3CXjMuhi7PXulPAN8uLzY/bE+tEAqwfmDrYU3BhgGzIcyBvZGuEZExl4GUYaPhtoGxwauhdSE/8NMwhLAjz9Afoc94L0lPGC7VrpHuVW4dzdmtyl2wHbadtd27/auttH3cve5OGL5Bnmp+cX6HDoquqX7JLvq/FE9HH2J/0qBt0SzR7BJA0kox63GOMWZBtTJMQwFTzOQzlEp0ARN+Mu1yfJI4IipyVHKU0sqixeJsEcLxGDBTD8pvbb80Xz4vIk8ATr0+TQ3T3YG9Nn0M/PSdG505HWXNj62avbu9054ArjKeb/6cftffLr95L95wSRC+kQlhSpFmQX/BgRGvAbHh5rIL8h8yLQIbYeZhpGFVcQ+AtcCAcFxQKQ/zX7UPUF73np8+Xl443i5uC43/7cQNrr1j/UiNNL1UPZ5N3p4ULkSuXz5IXkJuTh5n/qGPBp8vL2vfmABAsQdxx2IBIdiBYdELcUHBuXKcoz4D34Pus7ljOkKxsnMid7KZEsOzB2MvExjS2BI2UXDg62Bh8GSgWNBlAEBAC39sDtuuSH3sXcj9tP21nbUdoj2JDWwNMC08TU+9eZ3MrhoOUU6UXsWu5+8QX1yvpRAH4GvQqNDmARRRQsFzMZcRsaHPwc3xxZHAcbKxoLGA8WbhMiEE8MswixBHcA6/sc97ny4O7Y6y7p0+ZW5GjimN+I3U3bS9rR2QXbvNts3BfeZN5d4KDhOOTj5BHpoumz66XsFPEE/GELuBmUGqkUeAiqBoMP0iFIMzRAEUTtQSY5HjBTKfYpYy/tNVA6qDprOe0zkCwuIOsWrBCHEOwRohDfCqcCWPjS7u7nW+OF4oLjA+OJ4B7cK9bl0ErOKs5z0fTWVNuE3hnfBt/t3gXh+uTr6jvyGvqBAcIGuAkqCsYKEAxED/cTZhiLG+scLB5QHcgckhofGPUU3BKLEGEOeAuVCBYF6AC4/B/4ovQ18Wvvt+uA6M7jVuCw3NDcINzn3ZjfweCI31zeNtx43P7eCOH85fHmGevU6HXqjOo5+RoHJBV2FE8I+v8bAk8ULyYkN583czj9MMwsOihiKl4xTzs4QV0+8jhgMOMqkSSuIDYesiBkIZgfUhYYC/b/mPhP89vvCO4H7JrqPeb14FbaXNVb0e/QutEE1HTWgdfQ18fXoNlJ3MjgyeUr6w7wdPW7+VX9+gBTBJQHpgvWDwsTiRZNGHIZkRleGQEYdhdRF2AWIRX6EWoOCgrqBgAEIgGy/QL6Eff789Pxke/F7OvpbeeI5LHhqd9O3n3fu+Dh4dfhmeEg4lPhRuJz4pjl0eUJ6WjnWe+D/ekOmhhyEXcBlPUAAYYUQS+nOOA4eS8jKkQkLCT8KboyXT6GQfs+uDOdK5MjLyJeIUskDiYNJRwf2xRbCm8BVf0x+mD4mPVd8iztCudY4RrcNdmR16HX9ddu2GXX8NQI1KHTmtac2v/fB+TO6FHsu+8V81D1Q/hW++cANAZlC94OxhCREZoSSxPtE6MVLxf1F8cX0BVMEqsOmQrwBsoE5gJJASX/xPt+96DzIe876+/prOjH57bm6eSy4lziJeIt4ibiCOPU5B3mFeic6GHoK+ci5ljny/M6BUYS7BFYAUXwXfNqCrIlAjd2MjQnkR+wHrQf0iTAKhU2FUG6QOE1vCZQHawdIiUcK1kv5SzlJa0aiA45BVYBoQAlALv91fha8kfrKeVq4LXdGd0N3QfcBts22IDVS9TZ1U7YTt1t4Xrkuubo6B/qCOyh797zavp1AJsGQAoGDaYNTA6uDk0Q4xKBFdwX4RjAGcUYmhYJEsANVAoyCVsIPQbrAoj+Cvvn92b1EPFO7uTr6elx6C/mOeSH4kLjrOL3457ikuPj4TvibuNI5UHnL+dB6OTrhv27COgNOAEP8gfvwgQDHzsv6jB2I6AdgR18IpQjkSxpNOc+XT8zNXkmex6EIaIpRzCqLmIpJx8OF3EO2gjLBaEFEgQIAsL7ifKm6anjaeFm4evhduD03jfd+tzR2mLYXta31zzbeeCM45jl0ufQ6pPuNPG28xX2fvqP/3MFjwhICtoJOgqDDAoQjhIXExYTvxFwEWIQuA5bC48J2gdiBwMFkgGL/af6Hvk6+GX2MPOl8NTt3uy+6pbpO+fs5zPnmeek5bfm4OU+5rvof+hj6drnzOZL6IX5swaJDsMFfPPa6uL8cBelKNMsGR/nFzsZjiC+IiwoMC7xN6I7JjRnJ1we0SFOKlUxWi9XKb0g6RtpF5oSCA6FCosIzwY6AzD7p/Kj61DpOOiM59TkwOAZ3urd9Nwk2tLY49cc25XeJuHP4LbhJuSo6RTva/JR9Vz3NvtB/3oD+AS/BhoHPAkvDLkPCBLMEmUTkxOTE10RrQ6iC88KEQrsCPUF4QIxAFD+h/z3+E31ZPKS8R3xBfBO7DLpBOjh52rnGOXF473j3+X46FTq0ecQ5VvirOI58QIB8gioBE/0/+hn9i8PHCH+JusbexOIFdEcQx+oI+coSTLDOLUyfSZSHZ8eiicNL2otAihmIG4cwBkLFYAPnwurCNgHjwTJ/tP3d/J48ObvZe4y6sXmW+Oe4p3g3d0n24zcot/x4kLjreGt4eHiOOZf6aPsqe6Y8oj1B/kw/FL//QHGBGYHcwnmCr0Kgwt/DEYPdRDdEE0O+As0ClAK+wlGCH0FugJ0ATz/H/2N+OL1sPMs9OTy7PHw7gnuIu2n6zbp7+Xf5avkteju6azryujG5jTjiuxi+x4C3wD18QjpIPJ4DAccfCJpGTgQFRFkGOYevCN1K6EwdzV5L3EnnyBEJBEsezIHMrMsIiUjHuUaNhfZFCsTIhHDDJUHVv9N+DzzQPH+77HthOr35evi0+C23qrbc9vy3FLfnuHb4QvgB+Aw4mjlJ+r77CLvA/GF88n23/o8/q8A9wGlAhkERQZTCcEMwA5CD+0OoQzkCXQIHglSCiQLtQhgBqoD/QFdAL7+fftK+e33Fvbx9O7xRvEU8Obwa+877mrq6+kb6bTpnuvC6q/quei45u/prvp+BOUHrv0L7bnsTAF/FuAhzx8REyMQEhWUGnEeviQ+Ktsw1C8WKJMfCR4pJcAshy5SKmgiRxvHGAYVLxNyEdUPrQ3OCa4Bm/kF9LrxlvNt87TwFuwh5/PiuuFx397dTN/n4HbireMx4hrhAePK5LXoK+z67DLuV/B28gv3//pv/Xv/DAB+AecDfgZBCRAMFw4ND7cNSQvXCWMJYQrKCo8JcgeABaUCpgAW/877vvmg94X1hvMh8mPvtO4s7W/szOos6broMegF6s7qy+zp6cjp2+Tv5iv04AAuBG7+3PKO7EAAVRLOHvgdJRRwDe8TQBtBIBspqiwXMcIuSyhxIAEiGim1MXkz/CyDJMYcCxoVGUQXbRXiE5IQPgzvBPf8ovbW9CD1RvVr8Wnr++Uf4/biy+G+4FPfrOAf4R/hXt5F3brfoeSw6eLrq+yp6yzux/Df9Hf4rPts/Qv/pgHyA0QGbwdWCTIKcwzGDAQMiwqTCssLbwyDCtEG1gROBA0EawJK/zz7d/hW9tHzUvEL8M3vqPAB73/sMuhC5w/nAOiv6ArqD+rK54jlKOPw7uH9+AbqAWn0G+ld9UEOeR3eIbcX1RCdE0IdyyGqJjQrey9nMdIrOCVHIowouDBTNFYuwiXLHRwa+Rm3GOMWVBRYEbcMagYG/in4kfXC9Z709vAX6yPlC+Le4Wbi/eE64lfhfOFo4R3futwP3lDiKOls7lTvhO7j7a/vivOT+ND7DP4j/+EAvwL6BBgHSAi1CVYKmwr3CUEJEwm6CqUKWwnCBd0Bif+N//UAWwFD/3T7RviI9FjybvDI72bv8PAw8Kbugutq6lvqDup062jrK+xM68noYOf88/j/sQPP/SPw+es1/WMU/B2ZHV8TmA7GFO0dJyOgKKQtwS9ALvkmhSGWIjcrdTMUNPksHyNqGxIZWRnUF90VVhPrDjgJrQEv+ffzk/N+9Yb0x++36NLiSODA4O7gbeDz4FXgt+DQ3zrdl9xP4K3koukB7TPstetp7PPuAfPs91r78P46AZkC5wOfBQAHrAijCmkLzQvPCkQKegkKCkEKwgnEBn8EOQJ+AID/3Px3+gz5nPhI97P2IPLy7oHtj+3z7cPtMO1M7U7tm+vM673pKOky6Kzpm/SZA/wHawIM9v7sF/ptELkdnh9IGHYQAhQ4G30hgicVLYowRzBCKhwj4CGGJ7Yw6jIQLskluB1yGhMbIRmnFr8S8A0fCj4EVf1T9330TfMr8mPuH+lv4xLgO99U3g7eaN4x3n/eat7B3Orc8N+Q5OHofuqI6mzrTu1g8b/23vtw/5UAeADnAC0CjAX8CCgLPgyADF8Lxwl5CcEJ5gmXCSwIWwWZAroAgv+Z/r38G/mA9cvzC/Sg9AP0MPGj7ujr5unX6Kzp7uw077nv0+4B7YnpD+mM6EbxCwGBB0cFUP3A80z53gs1FpAbIxkoFHsWnRz7HwEl7ilMKzgr5ifVJI8lTyo3Lp4u5ymUJGEffByBG+UZTBe3EwwOXAgyA8L+T/xT+e31MfHF7L3oJOXm4Y3gnN+k36Hfv9483r/cets03OjeU+L050nrpeyS7Ffspe6s80f5l/3y/vf+XQGQA7IGswhICZ8J1QnHCWsKawp4CoEKmQglBu0DRwOTA/ADzwJe/4H50fWa9Dr1yPVl9fvzfPHl7rHsq+xb7BXt2Oz67MftO+/p7sPudexr7V76iAUQCIADXvp59wgH5RR+G9UcwhZ6FlIdACKoJE0oyikDLPMqayfKJHMmjCu3LogrpSTOHuwbcBw9GmoWdhFHDDEIsAM3/6r75vc59D3x8us059HjW+Fp4Frgud4E3snd99sN2+LZL9ou3VLheuQe6MTpuer360TtmPFw97/8wP9eACQArAKuBWUIjQp3C+cLAwziCjYJdgjWCL4J/givBooCgv94/ur+xP3Y+lL4rveh9uPzOPEw75XvIfCi79HtEe1H7S3vEvDd78HwYvDi8MrwkvCM+dgE0wbtBID9AviLBcAWxx7pHn4VIRH2F78f8iSbKPcpwixRLjkqMCb1IxkmBCwWLU8nnyAaHMYaDxrsFeMQUgonBTMDUQDD/I34v/NW7yzrHeZT4q7g6uB14i3hW93d2aPY6dnW22bdgd9j4kjkyuZh6L3pMuyp7ify4PX0+FH8Yv9eAtoENQU/Bn0I5QniC5UNowzECioJxQgQCGAIvAgYBx4F/wGg/mT8W/vj+dX4Nfii9snzZfEN8J7vEfAx8Hnv5O4F79nufu5470/zj/R29B318vHu+XgIign8BmcBKfuoCZgZFxx5H4gbkRYRHScg6CCKJhUrXi1rK9Ml5yHFIY4lRCmCJ5Ai5BsQF6UXfxfAE+IP9gknBJoBh/8o/d74afTS8THu6Ogu5cjisOJv5LvjmuC33sTco9zi3qffnuFj5LjmBei65zLodutK7kbyFffA+FL6nPvQ+139cgCfAqwEJwe7CGoHqgXrBDkFDAbQBm8GMAUwBAQBi/9uAGf+zPvP+5T6CPpU+bv1M/M29c72efSR8m/wEfDf9Mj3PvRO8wb0ePQH9tT3F/eI9Y3/WApsCDMFSv27+coKrRdJG2Ec/hXhElAVERedHGUjTynMLMon9yE4HkUctyB8JQIlriPJIO8a7BU6EjwQnA+sDQ0L0QYjApr+ePmz9JfyaPCF7ofsuOfe5Pzj1uEk4YDhvODG3wPf7N5E4J7hweJg5NjmzulX6y/t1fBF86f1f/jj+mX8sv1Q/wgC9wVUCMwIdwhcCL4HNgfmBwMKlArOCM8GpwQKA8cBcQEJAbn/gP5O/Ir5Zfjx+D/5Y/dp9PPzDPVW9vb3Gvdo9vL1J/T49Cf3Efmo/P38b/tX/lQCOgN5ApoByQToC6MQSRHYD1AQthNKF0IYgRkuHIEgniGdH0MeZByUHLQeeB61HmsgRx5BGg4VJw+MDCAMiAy4DAgK4QTE/hL5UPTd8FTwrfBa71jsHOnN5RnjCuFY4DzhGOPn41bjsuPb4prhl+Mn5mrpA+7v7kvu7e1w7vfxh/fc+wD9jv2X/yYAsgCRAj0D8QU8CSgIZwfVCbUJJAhuBoUErwR8BqwGzgQrA0wCTgBr/07+/Puv/d/9RPp8+wH8Q/m8+jj79vj6+AX61fre+7z7V/oo/CwAJ/9F/Bj++AACB70LaQiPBvIFYQWIC1cSgxQ2FjgV4hDaEHAWLxkuGd0ZGhhvGYcbkBj6FncWKRXOFZgUcRGwD5AP7g8JDXUGtwBE/in/z//O/dn49/JL8OXunu0D7WTryOkt53/kN+Mc47Tkjuby5lHlF+Rp5lzpnOqK6xrsAe+O8GXvpvTg+Sb7Fv4//ef7NQBtAyAFegh5CTwIdAjuCNIHEgkoC5ELFAzEBwcEpAW4BQYHeAcIAiIATgEN/zT+V/6o+yn7+/sw+fT3Tfn/99r4PPu3+YL45fhq+An6fvw6/Tj/egFaAa0BowNbAjcC+AcuDP0LkgueCyAM1Q5GELAOwA5iEdgUghZjE08QSBBfEQkTrBEkEFUQfQ5RD0AOFwlkCSAJfgZUBREB8P4s/179yPxQ+gb2vPSa8kPxtPG48KrwYu8B7UzsD+yb7Mft6+3S7VHvy/G88Y/wgfHS8o/0C/MG9MH5D/yaADr9SvXH+2sAlwEwAooATAQtBUgCmwLLA/kFIAbZA08FtAKSB04KPP4e/HMAAwS+BhP8N/2fAdz46v9JAEj62f8c+Bf2UAIF/rz4f/1L/gn9wP+c/m0ASgMm/1j8Bv/PBbMG6AgnDAEGvQJSBREGUwcTCucMpg7uCr4HzguuCv8Jgg1aC1MJBQuuDzMNIgjCCt4KTAlrCKUH8Ai5CakHZgVbBNEB7gHdAND+6v/R/pX7T/oH+HX29Pb6+PT4rvST8avx3PHu80f3p/KX8SvyHPJn9OHzjvXw+Ov3LvZN+Wb1Yfos/rv53v5p/LH63QTU+4P8pAgA/sr+xgB4/94HWARnAar/NfwHBY/+DP9DCQ0C4PfC/ysADvzYAef8evoI+XX8pgLcAK74NPqYACn/F/jF+eAA8QHQBJgDRvuq+ecB3gAGBAAGZAF+BXcCbASSBO392gSbCI4FFQa7BjkE9APtA0gFOwqtCaAEDf6oA5kGQgcxDS4GY/5jA50IagO4AyAGVQc7BZMCZQAj/dUEQgWQAA4F+wPC+6f6gvzL/bL/jv3O/4cAwgAZ/TLyLfZiAKz/Sf1x/A36Ufx8AQH7wf2P/I70WQYLB//0mvgOB937Rv3K/3j1rQYvDXj9iPY3+Yf7Jf2yAgIF///E/Tn3nvotAgL8yPkX+J7/3QaV/sjz1PTDA5/7U/laBYUAi/jE/rL+R/zb/dn5nQOgAj0CyQIZ/gD9xPlMBhkF6QeLC2r23AO3Daj49gKZBQYBYxMpBKgA1AZKAa8EpgD8BbIDHwWnB30D9AhRAhT5LAboAoX6FQtf/v365wriAQ/8iPkJ+vYBjP6rAML8Wv6ACVX3HPhN/D39vwFnBc0C+fpA/nQAXwXrAM32DwaUDUz1jvojA/gEogpG/+L3BPwa/3cDTwfr/kz76QKh+XP1fgUJ9jX/ngZY7eAAowG988/6S/e7/dj8cfVz+UL9KvrL9U3+AwH3+TH2rfqUAYoJ9/gt9MYIUPn0BhkLGvseB2UCMgQOBrQEOQFiBJsL7QMdAUMPcAxt+JIHnwAxAZEMmf5aB5kIbwcPBo30Y/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment