Last active
November 15, 2015 03:48
-
-
Save AcidLeroy/ccd1a7954a97529ed32b to your computer and use it in GitHub Desktop.
Finding Max of RDD Triplet for Each User
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext, SparkConf | |
def reduce_by_max(rdd): | |
""" | |
Helper function to find the max value in a list of values i.e. triplets. | |
""" | |
max_val = rdd[0][2] | |
the_index = 0 | |
for idx, val in enumerate(rdd): | |
if val[2] > max_val: | |
max_val = val[2] | |
the_index = idx | |
return rdd[the_index] | |
conf = SparkConf() \ | |
.setAppName("Collaborative Filter") \ | |
.set("spark.executor.memory", "5g") | |
sc = SparkContext(conf=conf) | |
# some file contains tuples ('user', 'item', 'occurrences') | |
data_file = sc.textData('file:///some_file.txt') | |
# Create the triplet so I can index stuff | |
data_file = data_file.map(lambda l: l.split()).map(lambda l: (l[0], l[1], float(l[2]))) | |
# Group by the user i.e. r[0] | |
grouped = data_file.groupBy(lambda r: r[0]) | |
# Get the values as a list | |
group_list = grouped.map(lambda x: (list(x[1]))) | |
# Get the max value for each user. | |
max_list = group_list.map(reduce_by_max).collect() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment