Skip to content

Instantly share code, notes, and snippets.

@AdamSpannbauer
Created November 24, 2017 18:39
Show Gist options
  • Save AdamSpannbauer/020d694182602073de27de01408e0509 to your computer and use it in GitHub Desktop.
Save AdamSpannbauer/020d694182602073de27de01408e0509 to your computer and use it in GitHub Desktop.
##################################################################
# ADDRESSING https://github.com/AdamSpannbauer/lexRankr/issues/8
##################################################################
# GET EXAMPLE DATA
#----------------------------------------------------------
library(xml2)
library(rvest)
options(stringsAsFactors = FALSE)
#two urls with stories from cnn.com
urls = c("http://money.cnn.com/2017/11/20/technology/google-pixel-buds-review/index.html",
"http://money.cnn.com/2017/11/23/technology/battlesgrounds-game-tencent-china/index.html")
#css selector to get story text
selector = c("#storytext p , .speakable")
#iterate over url list indices
my_df_list = lapply(seq_along(urls), function(i) {
#get url i
u = urls[i]
#read page
raw_html = xml2::read_html(u)
#extract text with selector
story_text = rvest::html_nodes(raw_html, selector)
#drop html tags
text_lines = rvest::html_text(story_text)
#put in df with id info
df_out = data.frame(doc_id = i, url = u, text = text_lines)
return(df_out)
})
#combine into single df
my_df = do.call('rbind', my_df_list)
#----------------------------------------------------------
# POSSIBLE TIDYVERSE SOLUTION TO ISSUE USING `purrr::map()`
#----------------------------------------------------------
library(dplyr)
library(purrr)
#convet to tibble
my_tbl = as_data_frame(my_df)
#function to get top lexranked sentence in a df
get_top_sentences = function(df_in, text_col = "text", n=1) {
#perform piped lexrank process and extract top ranked sentence
lex_df = lexRankr::unnest_sentences_(df_in, "sentences", text_col) %>% #parse sentences
lexRankr::bind_lexrank(sentences, sent_id, level = "sentences") %>% #perform lexrank
arrange(desc(lexrank)) %>% #get top ranked sentence(s)
slice(1:n)
return(lex_df)
}
#get top sentence(s) per document
#split into a list with document dfs as elements
top_sent_df = split(my_tbl, my_tbl$doc_id) %>%
#apply lexrank function to extract top n ranked sentences
map(get_top_sentences, n=1) %>%
#recombine into single df
bind_rows()
#----------------------------------------------------------
# OUTPUT
#----------------------------------------------------------
top_sent_df$sentences
# [1] " But when Google (GOOG) announced its new Pixel Buds in October,
# touting the ability to translate a conversation between different
# languages in near real time, it promised something unique."
# [2] " Chinese tech giant Tencent (TCEHY) has announced plans to
# distribute PlayerUnknown's \"Battlegrounds\" in its home market
# after modifying the violent game to comply with \"socialist core
# values.\" "
top_sent_df$lexrank
# [1] 0.06505914 0.07053404
#----------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment