Created
February 26, 2020 13:45
-
-
Save AdamSpannbauer/aea3163f6005952de5f27b6fd87d85b1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Modified from https://www.science-emergence.com/Articles/How-to-plot-a-normal-distribution-with-matplotlib-in-python-/ | |
import numpy as np | |
import scipy.stats | |
import matplotlib.pyplot as plt | |
def plot_area(mean, std, pt1, pt2, fill): | |
plt.plot([pt1, pt1], [0.0, scipy.stats.norm.pdf(pt1, mean, std)], color='black') | |
plt.plot([pt2, pt2], [0.0, scipy.stats.norm.pdf(pt2, mean, std)], color='black') | |
ptx = np.linspace(pt1, pt2, 10) | |
pty = scipy.stats.norm.pdf(ptx, mean, std) | |
plt.fill_between(ptx, pty, color=fill, alpha='1.0') | |
def plot_normal(mean=0, std=1, xmin=-5, xmax=5, breaks=np.array([1, 2, 3, 10]), | |
fills=['#0b559f', '#2b7bba', '#539ecd', '#89bedc']): | |
x = np.linspace(xmin, xmax, 100) | |
y = scipy.stats.norm.pdf(x, mean, std) | |
plt.plot(x, y, color='black') | |
pt1 = mean + breaks[0] * std | |
pt2 = mean - breaks[0] * std | |
plot_area(mean, std, pt1, pt2, fill=fills[0]) | |
for i in range(breaks.size - 1): | |
pt1 = mean + breaks[i] * std | |
pt2 = mean + breaks[i + 1] * std | |
plot_area(mean, std, pt1, pt2, fill=fills[i + 1]) | |
pt1 = mean - breaks[i] * std | |
pt2 = mean - breaks[i + 1] * std | |
plot_area(mean, std, pt1, pt2, fill=fills[i + 1]) | |
plt.grid() | |
plt.xlim(xmin, xmax) | |
plt.title('Normal Distribution', fontsize=10) | |
plt.xlabel('x') | |
plt.ylabel('p(x)') | |
plt.show() | |
plot_normal(8, 3, -3, 19) | |
plot_normal() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment