Last active
August 5, 2017 20:31
-
-
Save AdamStelmaszczyk/783c93be639d2e23ebddd8db4c9d52f7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2017 reinforce.io. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
from osim.env import * | |
from tensorforce import Configuration | |
from tensorforce.agents import TRPOAgent | |
from tensorforce.core.networks import layered_network_builder | |
from tensorforce.execution import Runner | |
from tensor_force_env import TensorForceEnv | |
env = RunEnv(visualize=False) | |
env = TensorForceEnv(env) | |
print "env.states: %s" % env.states | |
print "env.actions: %s" % env.actions | |
agent = TRPOAgent(config=Configuration( | |
loglevel='info', | |
batch_size=100, | |
baseline=dict( | |
type='mlp', | |
size=64, | |
hidden_layers=2, | |
epochs=20, | |
update_batch_size=64, | |
), | |
generalized_advantage_estimation=True, | |
normalize_advantage=False, | |
gae_lambda=0.97, | |
max_kl_divergence=0.005, | |
cg_iterations=20, | |
cg_damping=0.01, | |
ls_max_backtracks=20, | |
ls_override=False, | |
states=env.states, | |
actions=env.actions, | |
network=layered_network_builder([ | |
dict(type='dense', size=64, activation='relu'), | |
dict(type='dense', size=64, activation='relu'), | |
]) | |
)) | |
runner = Runner(agent=agent, environment=env) | |
def episode_finished(r): | |
print("Finished episode {ep} after {ts} timesteps (reward: {reward})".format( | |
ep=r.episode, | |
ts=r.timestep, | |
reward=r.episode_rewards[-1] | |
)) | |
return True | |
runner.run(episodes=1000, max_timesteps=200, episode_finished=episode_finished) | |
print("Learning finished. Total episodes: {ep}. Average reward of last 100 episodes: {ar}.".format( | |
ep=runner.episode, | |
ar=np.mean(runner.episode_rewards[-100:]) | |
)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
from tensorforce.environments import Environment | |
class TensorForceEnv(Environment): | |
def __init__(self, run_env): | |
self.run_env = run_env | |
def __str__(self): | |
return str(self.run_env) | |
def close(self): | |
self.run_env.close() | |
def reset(self, difficulty=0): | |
self.run_env.reset(difficulty) | |
def execute(self, action): | |
observation, reward, done, info = self.run_env.step(action) | |
return observation, reward, done | |
@property | |
def states(self): | |
return TensorForceEnv.state_from_space(self.run_env.observation_space) | |
@property | |
def actions(self): | |
return TensorForceEnv.action_from_space(self.run_env.action_space) | |
@staticmethod | |
def state_from_space(space): | |
if isinstance(space, gym.spaces.Discrete): | |
return dict(shape=(), type='int') | |
elif isinstance(space, gym.spaces.MultiBinary): | |
return dict(shape=space.n, type='int') | |
elif isinstance(space, gym.spaces.MultiDiscrete): | |
return dict(shape=space.num_discrete_space, type='int') | |
elif isinstance(space, gym.spaces.Box): | |
return dict(shape=tuple(space.shape), type='float') | |
elif isinstance(space, gym.spaces.Tuple): | |
states = dict() | |
n = 0 | |
for space in space.spaces: | |
state = TensorForceEnv.state_from_space(space) | |
if 'type' in state: | |
states['state{}'.format(n)] = state | |
n += 1 | |
else: | |
for state in state.values(): | |
states['state{}'.format(n)] = state | |
n += 1 | |
return states | |
else: | |
raise RuntimeError('Unknown Gym space.') | |
@staticmethod | |
def action_from_space(space): | |
if isinstance(space, gym.spaces.Discrete): | |
return dict(continuous=False, num_actions=space.n) | |
elif isinstance(space, gym.spaces.MultiBinary): | |
return dict(continuous=False, num_actions=2, shape=space.n) | |
elif isinstance(space, gym.spaces.MultiDiscrete): | |
if (space.low == space.low[0]).all() and (space.high == space.high[0]).all(): | |
return dict(continuous=False, num_actions=(space.high[0] - space.low[0]), shape=space.num_discrete_space) | |
else: | |
actions = dict() | |
for n in range(space.num_discrete_space): | |
actions['action{}'.format(n)] = dict(continuous=False, num_actions=(space.high[n] - space.low[n])) | |
return actions | |
elif isinstance(space, gym.spaces.Box): | |
if (space.low == space.low[0]).all() and (space.high == space.high[0]).all(): | |
return dict(continuous=True, shape=space.low.shape, min_value=space.low[0], max_value=space.high[0]) | |
else: | |
actions = dict() | |
low = space.low.flatten() | |
high = space.high.flatten() | |
for n in range(low.shape[0]): | |
actions['action{}'.format(n)] = dict(continuous=True, min_value=low[n], max_value=high[n]) | |
return actions | |
elif isinstance(space, gym.spaces.Tuple): | |
actions = dict() | |
n = 0 | |
for space in space.spaces: | |
action = TensorForceEnv.action_from_space(space) | |
if 'continuous' in action: | |
actions['action{}'.format(n)] = action | |
n += 1 | |
else: | |
for action in action.values(): | |
actions['action{}'.format(n)] = action | |
n += 1 | |
return actions | |
else: | |
raise RuntimeError('Unknown Gym space.') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment