Skip to content

Instantly share code, notes, and snippets.

@Adhira-Deogade
Created May 14, 2018 04:09
Show Gist options
  • Save Adhira-Deogade/aacad2540dd95aaa5216962a9e8be634 to your computer and use it in GitHub Desktop.
Save Adhira-Deogade/aacad2540dd95aaa5216962a9e8be634 to your computer and use it in GitHub Desktop.
In [1]:
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
Selecting and retrieving data
In [2]:
series_obj = Series(np.arange(8),index=['row 1','row 2','row 3','row 4','row 5','row 6','row 7','row 8'])
series_obj
Out[2]:
row 1 0
row 2 1
row 3 2
row 4 3
row 5 4
row 6 5
row 7 6
row 8 7
dtype: int64
In [3]:
series_obj['row 7']
Out[3]:
6
In [4]:
series_obj[[0,7]]
Out[4]:
row 1 0
row 8 7
dtype: int64
In [5]:
np.random.seed(25)
Df_obj = DataFrame(np.random.rand(36).reshape((6,6)), index=['row 1','row 2','row 3','row 4','row 5','row 6'],
columns = ['column 1','column 2','column 3','column 4','column 5','column 6'])
Df_obj
Out[5]:
column 1 column 2 column 3 column 4 column 5 column 6
row 1 0.870124 0.582277 0.278839 0.185911 0.411100 0.117376
row 2 0.684969 0.437611 0.556229 0.367080 0.402366 0.113041
row 3 0.447031 0.585445 0.161985 0.520719 0.326051 0.699186
row 4 0.366395 0.836375 0.481343 0.516502 0.383048 0.997541
row 5 0.514244 0.559053 0.034450 0.719930 0.421004 0.436935
row 6 0.281701 0.900274 0.669612 0.456069 0.289804 0.525819
In [6]:
Df_obj.loc[['row 2', 'row 5'], ['column 5', 'column 2']]
Out[6]:
column 5 column 2
row 2 0.402366 0.437611
row 5 0.421004 0.559053
Data Slicing
In [7]:
series_obj['row 2' : 'row 7']
Out[7]:
row 2 1
row 3 2
row 4 3
row 5 4
row 6 5
row 7 6
dtype: int64
Data comparison
In [10]:
Df_obj< 0.2
Out[10]:
column 1 column 2 column 3 column 4 column 5 column 6
row 1 False False False True False True
row 2 False False False False False True
row 3 False False True False False False
row 4 False False False False False False
row 5 False False True False False False
row 6 False False False False False False
Filtering with scalars
In [38]:
series_obj[series_obj<6]
Out[38]:
row 1 0
row 2 1
row 3 2
row 4 3
row 5 4
row 6 5
dtype: int64
Setting values with scalars
In [39]:
series_obj['row 1', 'row 2', 'row 3'] = 8
In [40]:
series_obj
Out[40]:
row 1 8
row 2 8
row 3 8
row 4 3
row 5 4
row 6 5
row 7 6
row 8 7
dtype: int64
In [ ]:
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment