-
-
Save Adhira-Deogade/aacad2540dd95aaa5216962a9e8be634 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
In [1]: | |
import numpy as np | |
import pandas as pd | |
from pandas import Series, DataFrame | |
Selecting and retrieving data | |
In [2]: | |
series_obj = Series(np.arange(8),index=['row 1','row 2','row 3','row 4','row 5','row 6','row 7','row 8']) | |
series_obj | |
Out[2]: | |
row 1 0 | |
row 2 1 | |
row 3 2 | |
row 4 3 | |
row 5 4 | |
row 6 5 | |
row 7 6 | |
row 8 7 | |
dtype: int64 | |
In [3]: | |
series_obj['row 7'] | |
Out[3]: | |
6 | |
In [4]: | |
series_obj[[0,7]] | |
Out[4]: | |
row 1 0 | |
row 8 7 | |
dtype: int64 | |
In [5]: | |
np.random.seed(25) | |
Df_obj = DataFrame(np.random.rand(36).reshape((6,6)), index=['row 1','row 2','row 3','row 4','row 5','row 6'], | |
columns = ['column 1','column 2','column 3','column 4','column 5','column 6']) | |
Df_obj | |
Out[5]: | |
column 1 column 2 column 3 column 4 column 5 column 6 | |
row 1 0.870124 0.582277 0.278839 0.185911 0.411100 0.117376 | |
row 2 0.684969 0.437611 0.556229 0.367080 0.402366 0.113041 | |
row 3 0.447031 0.585445 0.161985 0.520719 0.326051 0.699186 | |
row 4 0.366395 0.836375 0.481343 0.516502 0.383048 0.997541 | |
row 5 0.514244 0.559053 0.034450 0.719930 0.421004 0.436935 | |
row 6 0.281701 0.900274 0.669612 0.456069 0.289804 0.525819 | |
In [6]: | |
Df_obj.loc[['row 2', 'row 5'], ['column 5', 'column 2']] | |
Out[6]: | |
column 5 column 2 | |
row 2 0.402366 0.437611 | |
row 5 0.421004 0.559053 | |
Data Slicing | |
In [7]: | |
series_obj['row 2' : 'row 7'] | |
Out[7]: | |
row 2 1 | |
row 3 2 | |
row 4 3 | |
row 5 4 | |
row 6 5 | |
row 7 6 | |
dtype: int64 | |
Data comparison | |
In [10]: | |
Df_obj< 0.2 | |
Out[10]: | |
column 1 column 2 column 3 column 4 column 5 column 6 | |
row 1 False False False True False True | |
row 2 False False False False False True | |
row 3 False False True False False False | |
row 4 False False False False False False | |
row 5 False False True False False False | |
row 6 False False False False False False | |
Filtering with scalars | |
In [38]: | |
series_obj[series_obj<6] | |
Out[38]: | |
row 1 0 | |
row 2 1 | |
row 3 2 | |
row 4 3 | |
row 5 4 | |
row 6 5 | |
dtype: int64 | |
Setting values with scalars | |
In [39]: | |
series_obj['row 1', 'row 2', 'row 3'] = 8 | |
In [40]: | |
series_obj | |
Out[40]: | |
row 1 8 | |
row 2 8 | |
row 3 8 | |
row 4 3 | |
row 5 4 | |
row 6 5 | |
row 7 6 | |
row 8 7 | |
dtype: int64 | |
In [ ]: |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment