Created
March 27, 2017 13:09
-
-
Save AdolfVonKleist/d9277575e007710d3ceb8f9ad0f81dd7 to your computer and use it in GitHub Desktop.
Simple Voice Activity Detection based on Long-term Spectral Divergence
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import wave | |
import numpy as np | |
import scipy as sp | |
WINSIZE=8192 | |
sound='sound.wav' | |
def read_signal(filename, winsize): | |
wf=wave.open(filename,'rb') | |
n=wf.getnframes() | |
str=wf.readframes(n) | |
params = ((wf.getnchannels(), wf.getsampwidth(), | |
wf.getframerate(), wf.getnframes(), | |
wf.getcomptype(), wf.getcompname())) | |
siglen=((int )(len(str)/2/winsize) + 1) * winsize | |
signal=sp.zeros(siglen, sp.int16) | |
signal[0:len(str)/2] = sp.fromstring(str,sp.int16) | |
return [signal, params] | |
def get_frame(signal, winsize, no): | |
shift=winsize/2 | |
start=no*shift | |
end = start+winsize | |
return signal[start:end] | |
class LTSD(): | |
def __init__(self,winsize,window,order): | |
self.winsize = winsize | |
self.window = window | |
self.order = order | |
self.amplitude = {} | |
def get_amplitude(self,signal,l): | |
if self.amplitude.has_key(l): | |
return self.amplitude[l] | |
else: | |
amp = sp.absolute(sp.fft(get_frame(signal, self.winsize,l) * self.window)) | |
self.amplitude[l] = amp | |
return amp | |
def compute_noise_avg_spectrum(self,nsignal): | |
windownum = len(nsignal)/(self.winsize/2) - 1 | |
avgamp = np.zeros(self.winsize) | |
for l in xrange(windownum): | |
avgamp += sp.absolute(sp.fft(get_frame(nsignal, self.winsize,l) * self.window)) | |
return avgamp/float(windownum) | |
def compute(self,signal): | |
self.windownum = len(ssignal)/(self.winsize/2) - 1 | |
ltsds = np.zeros(self.windownum) | |
#Calculate the average noise spectrum amplitude based on 20 frames in the head parts of input signal. | |
self.avgnoise = self.compute_noise_avg_spectrum(signal[0:self.winsize*20])**2 | |
for l in xrange(self.windownum): | |
ltsds[l] = self.ltsd(signal,l,5) | |
return ltsds | |
def ltse(self,signal,l,order): | |
maxmag = np.zeros(self.winsize) | |
for idx in range(l-order,l+order+1): | |
amp = self.get_amplitude(signal,idx) | |
maxamp = np.maximum(maxamp,amp) | |
return maxamp | |
def ltsd(self,signal,l,order): | |
if l < order or l+order >= self.windownum: | |
return 0 | |
return 10.0*np.log10(np.sum(self.ltse(signal,l,order)**2/self.avgnoise)/float(len(self.avgnoise))) | |
if __name__=="__main__": | |
signal, params = read_signal(sound,WINSIZE) | |
window = sp.hanning(WINSIZE) | |
ltsd = LTSD(WINSIZE,window,5) | |
res = ltsd.compute(signal) | |
import matplotlib.pyplot as plt | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
ax.plot(res) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment