Created
March 18, 2019 17:44
-
-
Save AdvaithD/23f5c6059e6184fe5abd051dba785111 to your computer and use it in GitHub Desktop.
pearson correlation coefficient
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** * calculates pearson correlation | |
* @param{number[]}d1 | |
* @param{number[]}d2 | |
*/ | |
export function corr(d1, d2) { | |
let { min, pow, sqrt } =Math | |
let add = (a, b) => a + b | |
let n = min(d1.length, d2.length) | |
if (n ===0) { | |
return0 | |
} | |
[d1, d2] = [d1.slice(0, n), d2.slice(0, n)] | |
let [sum1, sum2] = [d1, d2].map(l=>l.reduce(add)) | |
let [pow1, pow2] = [d1, d2].map(l=>l.reduce((a, b) => a +pow(b, 2), 0)) | |
let mulSum =d1.map((n, i) => n * d2[i]).reduce(add) | |
let dense =sqrt((pow1 -pow(sum1, 2) / n) * (pow2 -pow(sum2, 2) / n)) | |
if (dense ===0) { | |
return0 | |
} | |
return (mulSum - (sum1 * sum2 / n)) / dense | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment