Created
April 23, 2020 09:35
-
-
Save Akashdesarda/6eca2e9ba3babe2469a3682b56b3ecff to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
distil_bert = 'distilbert-base-uncased' | |
config = DistilBertConfig(dropout=0.2, attention_dropout=0.2) | |
config.output_hidden_states = False | |
transformer_model = TFDistilBertModel.from_pretrained(distil_bert, config = config) | |
input_ids_in = tf.keras.layers.Input(shape=(128,), name='input_token', dtype='int32') | |
input_masks_in = tf.keras.layers.Input(shape=(128,), name='masked_token', dtype='int32') | |
embedding_layer = transformer_model(input_ids_in, attention_mask=input_masks_in)[0] | |
cls_token = embedding_layer[:,0,:] | |
X = tf.keras.layers.BatchNormalization()(cls_token) | |
X = tf.keras.layers.Dense(192, activation='relu')(X) | |
X = tf.keras.layers.Dropout(0.2)(X) | |
X = tf.keras.layers.Dense(6, activation='softmax')(X) | |
model = tf.keras.Model(inputs=[input_ids_in, input_masks_in], outputs = X) | |
for layer in model.layers[:3]: | |
layer.trainable = False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment