Skip to content

Instantly share code, notes, and snippets.

View Akramz's full-sized avatar
🎯
Focusing

Akram Zaytar Akramz

🎯
Focusing
View GitHub Profile
DateUTC Humidity Wind SpeedKm/h TemperatureC City
(2016, 6, 22, 20) 29.0 18.50741 29.0 Fes-Sais
(2016, 6, 22, 21) 28.0 12.07005 26.3333333333 Fes-Sais
(2016, 6, 22, 22) 34.0 14.805928 25.0 Fes-Sais
(2016, 6, 22, 23) 38.0 11.104446 23.0 Fes-Sais
(2016, 6, 23, 0) 33.0 14.805928 22.8888888889 Fes-Sais
(2016, 6, 23, 1) 38.0 18.50741 23.0 Fes-Sais
(2016, 6, 23, 2) 41.0 20.438618 22.0 Fes-Sais
(2016, 6, 23, 3) 31.5 11.104446 21.3333333333 Fes-Sais
(2016, 6, 23, 4) 37.0 9.334172 20.0 Fes-Sais
from __future__ import division
import numpy as np
import pandas as pd
from keras.optimizers import rmsprop
from keras.models import model_from_json
from params import *
from datetime import datetime
from datetime import date, timedelta
import csv
import sqlite3
# INIT
temp_mean = {}
humidity_mean = {}
wind_mean = {}
temp_max = {}
temp_min = {}
humidity_max = {}
humidity_min = {}
wind_max = {}
wind_min = {}
import sys
sys.path.insert(0, '/var/www/html/nuweth')
from nuapp import app as application
from __future__ import division
import pandas as pd
import numpy as np
import requests
import time
import os.path
from datetime import date, timedelta
from subprocess import call
import csv
import sqlite3
import os
import csv
import sqlite3
import numpy as np
import pandas as pd
from flask import Flask,render_template
from flask import request, g
from flask import jsonify
from collections import Counter
#include <mpi.h>
#include <math.h>
#include <stdio.h>
float fct(float x)
{
return (x/sin(x))*(x/sin(x));
}
float integral(float a, int n, float h);
@Akramz
Akramz / pi.c
Created January 12, 2016 04:03
#include "mpi.h"
#include <stdio.h>
#include <math.h>
double f( double );
double f( double a )
{
return (4.0 / (1.0 + a*a));
}
@Akramz
Akramz / integral.c
Last active January 13, 2016 22:24
#include <mpi.h>
#include <math.h>
#include <stdio.h>
float integral(float a, int n, float h);
void main(argc,argv)
int argc;
char *argv[];
{
import pandas as pd
import numpy as np
from sys import exit
data = pd.read_csv('../../data/train.csv', sep=',')
train = data[['Address']]
train = train.loc[train['Address'].str.contains(' / ')]
train['count'] = 1
train = train.groupby('Address').sum().reset_index()