Skip to content

Instantly share code, notes, and snippets.

View Akramz's full-sized avatar
🎯
Focusing

Akram Zaytar Akramz

🎯
Focusing
View GitHub Profile
import pandas as pd
import numpy as np
from sys import exit
data = pd.read_csv('../../data/train.csv', sep=',')
train = data[['Address']]
train = train.loc[train['Address'].str.contains(' Block of ')]
train['count'] = 1
train = train.groupby('Address').sum().reset_index()
import pandas as pd
import numpy as np
data = pd.read_csv('../../data/train.csv', sep=',')
train = data[['PdDistrict']]
train['count'] = 1
train = train.groupby('PdDistrict').sum().reset_index()
print train
import pandas as pd
import numpy as np
import zipfile
import matplotlib.pyplot as pl
import seaborn as sns
from sys import exit
mapdata = np.loadtxt("../data/sf_map_copyright_openstreetmap_contributors.txt")
asp = mapdata.shape[0] * 1.0 / mapdata.shape[1]
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sys import exit
data = pd.read_csv('../data/locations/0.csv', sep = ',')
xyData = data[['X', 'Y', 'Category']]
allList = [
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sys import exit
def cut(num):
if num < 10:
return 5
elif num < 20:
import pandas as pd
import numpy as np
from sys import exit
from sklearn import cross_validation
from sklearn import datasets
from sklearn import svm
from sklearn.naive_bayes import GaussianNB
data = pd.read_csv('../../data/improv/train1.csv')
import pandas as pd
from sys import exit
import numpy as np
data = pd.read_csv('../../train.csv')
data = data[['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']].dropna()
# male = 0
# female = 1
# S = 0
import pandas as pd
data = pd.read_csv('../data/train.csv', sep=',')
print data[(~data['Address'].str.contains(" Block of ")) & (~data['Address'].str.contains(" / "))].Address
#CONDOR_HOST = reynolds-master.reynol.dz
#
#COLLECTOR_NAME = TEFPL at $(FULL_HOSTNAME))
#START = $(CS_START)
#SUSPEND = $(CS_SUSPEND)
#CONTINUE = $(CS_CONTINUE)
#PREEMPT = $(CS_PREEMPT)
#KILL = $(CS_KILL)
#
#DAEMON_LIST = MASTER, SCHEDD, STARTD
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import sys
# try whatever you want
element = 'hour'
df = pd.read_csv('../improved_data_set/turnstile_weather_v2.csv', index_col=0)