Created
August 17, 2022 14:11
-
-
Save AlecsFerra/8a11e2856b1da44f6be2900b433d3091 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module RewriteAbuse where | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; cong; sym) | |
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) | |
+-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) | |
+-swap m n p rewrite (sym (+-assoc m n p)) | |
| (+-comm m n) | |
| (+-assoc n m p) | |
= refl | |
*-annʳ : ∀ (n : ℕ) → (n * 0) ≡ 0 | |
*-annʳ zero = refl | |
*-annʳ (suc n) rewrite (*-annʳ n) = refl | |
*-suc : ∀ (n m : ℕ) → (n * suc m) ≡ n + (n * m) | |
*-suc zero m = refl | |
*-suc (suc n) m rewrite (*-suc n m) | |
| (sym (+-assoc m n (n * m))) | |
| (+-comm m n) | |
| (+-assoc n m (n * m)) | |
= refl | |
*-add : ∀ (m n : ℕ) → (m + (m * n)) ≡ (m * suc n) | |
*-add zero n = refl | |
*-add (suc m) n rewrite (*-add m n) | |
| (sym (*-add m n)) | |
| (sym (+-assoc m n (m * n))) | |
| (+-comm m n) | |
| (+-assoc n m (m * n)) | |
= refl | |
*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p | |
*-distrib-+ m n zero rewrite (*-annʳ (m + n)) | |
| (*-annʳ m) | |
| (*-annʳ n) | |
= refl | |
*-distrib-+ m n (suc p) rewrite (*-suc (m + n) p) | |
| (*-distrib-+ m n p) | |
| (+-comm m n) | |
| (sym (+-assoc m (m * p) (n * p))) | |
| (+-rearrange n m (m * p) (n * p)) | |
| (*-add m p) | |
| (+-comm n (m * suc p)) | |
| (+-assoc (m * suc p) n (n * p)) | |
| (*-add n p) | |
= refl | |
*-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) | |
*-assoc zero n p = refl | |
*-assoc (suc m) n p rewrite (*-assoc m n p) | |
| (*-distrib-+ n (m * n) p) | |
| (*-assoc m n p) | |
= refl | |
*-comm : ∀ (m n : ℕ) → m * n ≡ n * m | |
*-comm m zero rewrite (*-annʳ m) = refl | |
*-comm m (suc n) rewrite (*-comm n m) | |
| (sym (*-add m n)) | |
= refl | |
0∸n=0 : ∀ (n : ℕ) → 0 ∸ n ≡ 0 | |
0∸n=0 zero = refl | |
0∸n=0 (suc n) rewrite (0∸n=0 n) = refl | |
∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) | |
∸-+-assoc zero n p rewrite (0∸n=0 n) | |
| (0∸n=0 p) | |
| (0∸n=0 (n + p)) | |
= refl | |
∸-+-assoc (suc m) zero p rewrite (0∸n=0 p) | |
= refl | |
∸-+-assoc (suc m) (suc n) p rewrite (∸-+-assoc m n p) | |
= refl | |
open import Data.Nat using (_^_) | |
*-identityʳ : ∀ (n : ℕ) → (n * 1) ≡ n | |
*-identityʳ zero = refl | |
*-identityʳ (suc n) rewrite (*-identityʳ n) = refl | |
*-identityˡ : ∀ (n : ℕ) → (1 * n) ≡ n | |
*-identityˡ zero = refl | |
*-identityˡ (suc n) rewrite (*-identityˡ n) = refl | |
^-distribˡ-+-* : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p) | |
^-distribˡ-+-* m zero p rewrite (*-identityˡ (m ^ p)) | |
= refl | |
^-distribˡ-+-* m (suc n) p rewrite (^-distribˡ-+-* m n p) | |
| (sym (*-assoc m (m ^ n) (m ^ p))) | |
= refl | |
^-distribʳ-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) | |
^-distribʳ-* m n zero = refl | |
^-distribʳ-* m n (suc p) rewrite (^-distribʳ-* m n p) | |
-- (m * (n * (---))) | |
| (sym (*-assoc (m * n) (m ^ p) (n ^ p))) | |
| (*-assoc m n (m ^ p)) | |
| (*-comm n (m ^ p)) | |
| (sym (*-assoc m (m ^ p) n)) | |
| (*-assoc (m * (m ^ p)) n (n ^ p)) | |
= refl | |
^-*-assoc : ∀ (m n p : ℕ) → (m ^ n) ^ p ≡ m ^ (n * p) | |
^-*-assoc m n zero rewrite (*-annʳ n) | |
= refl | |
^-*-assoc m n (suc p) rewrite (^-*-assoc m n p) | |
| (sym (^-distribˡ-+-* m n (n * p))) | |
| (*-comm n p) | |
| (*-comm (suc p) n) | |
= refl | |
-- open import plfa.part1.Naturals using (Bin; from; to) | |
-- import caga cazzi | |
data Bin : Set where | |
⟨⟩ : Bin | |
_O : Bin → Bin | |
_I : Bin → Bin | |
inc : Bin → Bin | |
inc ⟨⟩ = ⟨⟩ I | |
inc (n O) = n I | |
inc (n I) = (inc n) O | |
to : ℕ → Bin | |
to zero = ⟨⟩ O | |
to (suc n) = inc (to n) | |
from : Bin → ℕ | |
from ⟨⟩ = 0 | |
from (n O) = (from n) * 2 | |
from (n I) = ((from n) * 2) + 1 | |
from∙inc=suc∙from : ∀ (b : Bin) → from (inc b) ≡ suc (from b) | |
from∙inc=suc∙from ⟨⟩ = refl | |
from∙inc=suc∙from (b O) rewrite (from∙inc=suc∙from b) | |
| (+-comm 1 (from b * 2)) | |
= refl | |
from∙inc=suc∙from (b I) rewrite (from∙inc=suc∙from b) | |
| (+-comm 1 (from b * 2)) | |
= refl | |
-- to∙from=id : ∀ (b : Bin) → to (from b) ≡ b | |
-- Falso dalla definizione data per to ⟨⟩ ≠ ⟨⟩ O | |
from∙to=id : ∀ (n : ℕ) → from (to n) ≡ n | |
from∙to=id zero = refl | |
from∙to=id (suc n) rewrite (from∙inc=suc∙from (to n)) | |
| (from∙to=id n) | |
= refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment