I hereby claim:
- I am alecsferra on github.
- I am alecsferra (https://keybase.io/alecsferra) on keybase.
- I have a public key ASAJE6eEkoGFeGf_LAF1ZhaduDhazfmJRUIMvemvGYDItQo
To claim this, I am signing this object:
#define _POSIX_C_SOURCE 199309L | |
//#define DEBUG | |
#include <Imlib2.h> | |
#include <X11/Xatom.h> | |
#include <X11/Xlib.h> | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <time.h> |
:- module parser. | |
:- interface. | |
:- import_module char, list, value. | |
:- pred top_level_expression(lisp_value::out, list(char)::in, list(char)::out) is semidet. | |
:- implementation. |
public class EnterpriseCoreApplication { | |
public static void main(String... args) { | |
for (java.lang.Integer i = new java.lang.Integer(0); i.compareTo(new java.lang.Integer(69)) < 0; i = EnterpriseCoreApplication.IntegerIncrement(i)) { | |
System.out.println(i.toString()); | |
} | |
} | |
public static java.lang.Integer IntegerIncrement(final java.lang.Integer inputInteger) { | |
if (inputInteger.compareTo(Integer.MAX_VALUE) == 0) { | |
throw new RuntimeException("Business supercazzola enterprise i32 overflow"); |
import Data.Char | |
import Control.Applicative | |
import Data.Either | |
import Data.Tuple.Extra | |
type Position = (Int, Int) | |
type ParserInput = (Position, String) | |
type ParseError = (Position, [String]) | |
type Parsed a = (Position, String, a) | |
type ParseResult a = Either ParseError (Parsed a) |
print(""" | |
main = do | |
print "Welcome to my addition calculator :)" | |
a <- getLine | |
b <- getLine | |
print $ add (read a) (read b) | |
""") | |
for i in range(1000): | |
for j in range(1000): |
I hereby claim:
To claim this, I am signing this object:
; last | |
(claim last | |
(Π ((Of U) | |
(many-1 Nat) | |
(vec (Vec Of (add1 many-1)))) | |
Of)) | |
(define last | |
(λ (Of many-1 vec) | |
((ind-Nat many-1 | |
(λ (many-1) |
;; Some proofs about pairs | |
;; ∀ a b c. a = b → (a, c) = (b, c) | |
(claim a=b→ac=bc | |
(Π ([T U] | |
[K U] | |
[a T] | |
[b T] | |
[c K] | |
[_ (= T a b)]) | |
(= (Pair T K) (cons a c) (cons b c)))) |
module RewriteAbuse where | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; cong; sym) | |
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) | |
+-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) | |
+-swap m n p rewrite (sym (+-assoc m n p)) | |
| (+-comm m n) | |
| (+-assoc n m p) |
module AxiomK where | |
open import Relation.Binary.PropositionalEquality using (_≡_) | |
open _≡_ | |
-- All the equality proofs are the same ⁾ | |
-- Unless we use the `--without-K` option ⁾ | |
same-≡ : ∀ {l} {A : Set l} {a b : A} → (p₁ p₂ : a ≡ b) → p₁ ≡ p₂ | |
same-≡ refl refl = refl |