Created
July 22, 2022 12:20
-
-
Save AlessandroMondin/8619c1803d9fc72d07557d06bf2d199b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def main(): | |
loss_fn = torch.nn.BCEWithLogitsLoss() | |
scaler = torch.cuda.amp.GradScaler() | |
model = UNET(3, 64, 1, padding=0, downhill=4).to(DEVICE) | |
optim = Adam(model.parameters(), lr=LEARNING_RATE) | |
if CHECKPOINT: | |
load_model_checkpoint(CHECKPOINT, model) | |
load_optim_checkpoint(CHECKPOINT, optim) | |
train_loader, val_loader = get_loaders(db_root_dir=ROOT_DIR, batch_size=8, train_transform=train_transform, | |
val_transform=val_transforms, num_workers=4) | |
for epoch in range(10, EPOCHS): | |
print(f"Training epoch {epoch+1}/{EPOCHS}") | |
train_loop(model=model, loader=train_loader, loss_fn=loss_fn, optim=optim, scaler=scaler, pos_weight=False) | |
print("Computing dice_loss on val_loader...") | |
evalution_metrics(model, val_loader, loss_fn, device=DEVICE) | |
checkpoint = { | |
"state_dict": model.state_dict(), | |
"optimizer": optim.state_dict(), | |
} | |
save_checkpoint(checkpoint, folder_path=SAVE_MODEL_PATH, | |
filename=f"checkpoint_epoch_{epoch+1}.pth.tar") | |
save_images(model=model, loader=val_loader, folder=SAVE_IMAGES_PATH, | |
epoch=epoch, device=DEVICE, num_images=10, pad_mirroring=PAD_MIRRORING) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment