Last active
July 18, 2023 12:54
-
-
Save AlexanderFabisch/7229207 to your computer and use it in GitHub Desktop.
Simple Gaussian Process Regression implementation without hyperparameter optimization.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
def sq_exp(x1, x2, w, sigma_f): | |
#return sigma_f**2 * numpy.exp(-(numpy.abs(x1-x2)/w).sum()) # Ornstein-Uhlenbeck | |
return sigma_f**2 * numpy.exp(-0.5*((x1-x2)**2/w**2).sum()) | |
class GPR(object): | |
def __init__(self, w, sigma_f, sigma_n): | |
self.w = w | |
self.sigma_f = sigma_f | |
self.sigma_n = sigma_n | |
def fit(self, X, y): | |
self.N = X.shape[0] | |
self.X = X | |
self.y = y | |
self.K = self.sigma_n**2 * numpy.eye(self.N) | |
for i in range(self.N): | |
for j in range(i+1): | |
self.K[i, j] += sq_exp(X[i], X[j], self.w, self.sigma_f) | |
if i != j: | |
self.K[j, i] += self.K[i, j] | |
def predict(self, X): | |
y = numpy.ndarray(X.shape[0]) | |
V = numpy.ndarray(X.shape[0]) | |
K_inv = numpy.linalg.pinv(self.K) | |
for j in range(X.shape[0]): | |
k_star = numpy.ndarray(self.N) | |
for i in range(self.N): | |
k_star[i] = sq_exp(X[j], self.X[i], self.w, self.sigma_f) | |
K_inv = numpy.linalg.pinv(self.K) | |
y[j] = k_star.T.dot(K_inv).dot(self.y) | |
V[j] = sq_exp(X[j], X[j], self.w, self.sigma_f) - k_star.T.dot(K_inv).dot(k_star) | |
return y, V | |
if __name__ == "__main__": | |
N = 10 | |
X = numpy.linspace(0, 2*numpy.pi, N)[:, numpy.newaxis] | |
y = numpy.sin(X.ravel()) + numpy.random.randn(N)*0.1 | |
gpr = GPR(numpy.array([0.5]), 1.0, 0.1) | |
gpr.fit(X, y) | |
X_test = numpy.linspace(-0.5, 2*numpy.pi+0.5, 1000) | |
y_test, V = gpr.predict(X_test) | |
import pylab | |
pylab.plot(X.ravel(), y, "o") | |
pylab.plot(X_test.ravel(), y_test, "b") | |
pylab.fill_between(X_test.ravel(), y_test-2*V, y_test+2*V, color="g", alpha=0.3) | |
pylab.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment