Created
December 1, 2021 19:29
-
-
Save AlexandraKapp/c8fac1fefff933c8dc1452c245606b2f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from haversine import haversine, Unit | |
# construct the cost matrix | |
def get_cost_matrix(gdf1, gdf2): | |
gdf1_centroids = gdf1.to_crs(3395).centroid.to_crs(4326) | |
gdf2_centroids = gdf2.to_crs(3395).centroid.to_crs(4326) | |
coords_sig1 = list(zip(gdf1_centroids.y, gdf1_centroids.x)) | |
coords_sig2 = list(zip(gdf2_centroids.y, gdf2_centroids.x)) | |
#get all potential combinations between all points from sig1 and sig2 | |
grid = np.meshgrid(range(0, len(coords_sig1)), | |
range(0, len(coords_sig2))) | |
tile_combinations = np.array([grid[0].flatten(), grid[1].flatten()]) | |
# create an empty cost matrix with the length of all possible combinations | |
cost_matrix = np.empty(tile_combinations.shape[1], dtype = np.float32) # float32 needed as input for cv2.emd! | |
# compute haversine distance for all possible combinations | |
for column in range(0, tile_combinations.shape[1]): | |
tile_1 = tile_combinations[0, column] | |
tile_2 = tile_combinations[1, column] | |
cost_matrix[column] = haversine(coords_sig1[tile_1], coords_sig2[tile_2], unit = Unit.METERS) | |
# reshape array to matrix | |
return np.reshape(cost_matrix, (len(coords_sig1),len(coords_sig2))) | |
# as the coordinates are the same in both scenarios | |
# you could use the same cost matrix for both scenarios | |
cost_matrix1 = get_cost_matrix(example, scenario1) | |
cost_matrix2 = get_cost_matrix(example, scenario2) | |
# The signature for the custom cost matrix does not need coordinates. It can only consist of an array of values | |
sig_original = np.array(example.example_data, dtype = np.float32) | |
sig_scen1 = np.array(scenario1.example_data, dtype = np.float32) | |
# Compute the EMD | |
emd_scen1, _ , _ = cv2.EMD(sig_original, sig_scen1, distType = cv2.DIST_USER, cost = cost_matrix1) | |
emd_scen2, _ , _ = cv2.EMD(sig_original, sig_scen2, distType = cv2.DIST_USER, cost = cost_matrix2) | |
print("Earth movers distance scenario 1: " + str(round(emd_scen1)) + " meters") | |
print("Earth movers distance scenario 2: " + str(round(emd_scen2)) + " meters") | |
sig_scen2 = np.array(scenario2.example_data, dtype = np.float32) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment