Created
December 7, 2020 02:02
-
-
Save AllanChain/3de9ba2cc4e8247ae2a817a02185453c to your computer and use it in GitHub Desktop.
My ipython profile for experiment reports
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy import sqrt | |
import pandas as pd | |
from matplotlib import pyplot as plt | |
plt.rcParams["figure.figsize"] = (10, 8) | |
plt.rcParams["font.size"] = 14 | |
def read_excel(sheet): | |
return pd.read_excel("data.xlsx", sheet_name=sheet, engine="openpyxl") | |
def float_formatters(digits): | |
return [ | |
("{:.%df}" % digit).format if digit != -1 else lambda x: x for digit in digits | |
] | |
def least_square(X, Y, stdY) -> None: | |
X_ = np.vstack([X, np.ones(len(X))]).T | |
(k, b), resid = np.linalg.lstsq(X_, Y, rcond=None)[:2] | |
r = 1 - resid[0] / (Y.size * Y.var()) | |
print("Y = k * X + b") | |
print(f"{k=}") | |
print(f"{b=}") | |
print(f"{r=}") | |
sigma_kA = k * np.sqrt((1 / r ** 2 - 1) / (len(X) - 2)) | |
print(f"{sigma_kA=}") | |
Xbar = X.mean() | |
fm = np.sum((X - Xbar) ** 2) | |
sigma_kB = np.sqrt(np.sum((np.multiply(X - Xbar, stdY) / fm) ** 2)) | |
print(f"{sigma_kB=}") | |
sigma_k = np.sqrt(sigma_kA ** 2 + sigma_kB ** 2) | |
print(f"{sigma_k=}") | |
sigma_b = np.sqrt(np.sum(((1 / len(X) - Xbar * (X - Xbar) / fm) * stdY) ** 2)) | |
print(f"{sigma_b=}") | |
return (k, b, r, sigma_k, sigma_b) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment