-
-
Save AllanLRH/0cdaf8baae81525ec59474170058efc5 to your computer and use it in GitHub Desktop.
plot directed graph (python matplotlib)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# programmer : zhuxp | |
# usage: | |
import sys | |
from getopt import getopt | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
def show_help(): | |
print >>sys.stderr,"\n\nplotCausalGraph.py: drawing causal graph from LiNGAM output equation matrix B" | |
print >>sys.stderr,"Library Dependence: networkx , matplotlib\n\n" | |
print >>sys.stderr,"Usage: plotCausalGraph.py -m matrix -t threshold[default:0.5]" | |
print >>sys.stderr,"Options:" | |
print >>sys.stderr," --matrix,-m file.mat B matrix file generated from LiNGAM" | |
print >>sys.stderr," --threshold,-t threshold draw the line if the absolute value of line weight is bigger than threshold" | |
print >>sys.stderr," --direct,-d draw the arrow" | |
print >>sys.stderr,"Matrix File Example:" | |
print >>sys.stderr,"H3K9me3\t0" | |
print >>sys.stderr,"H3K4me3\t-1\t0" | |
print >>sys.stderr,"H3K4me1\t-0.3\t1\t0" | |
exit(0) | |
def Main(): | |
if len(sys.argv)==1: show_help() | |
opts,restlist = getopt(sys.argv[1:],"m:oht:d",\ | |
["matrix=","threshold=","help","direct"]) | |
threshold=0.5 | |
direct=False | |
for o, a in opts: | |
if o in ("-m","--matrix"): M = a | |
if o in ("-h","--help"): show_help() | |
if o in ("-t","--threshold"): threshold=float(a) | |
if o in ("-d","--direct"): direct=True | |
if not 'M' in dir(): | |
show_help() | |
try: | |
f=open(M) | |
except: | |
print >>sys.stderr,"Can't open file",M | |
show_help() | |
max=0 | |
nodes=[] | |
edges=[] | |
pos={} | |
edges_col=[] | |
col={} | |
rank={} | |
lines=f.readlines() | |
i=0 | |
maxcols=0 | |
for line in lines: | |
line=line.strip() | |
if line[0]=="#":continue | |
a=line.split("\t") | |
nodes.append(a[0]) | |
rank[a[0]]=0 | |
for k,x in enumerate(a[1:]): | |
if k==i: continue | |
x=float(x) | |
if x>threshold or x<-threshold: | |
if k < len(nodes) and rank[a[0]] < rank[nodes[k]]+1: | |
rank[a[0]]=rank[nodes[k]]+1 | |
if col.has_key(rank[a[0]]): | |
col[rank[a[0]]]+=1 | |
else: | |
col[rank[a[0]]]=1 | |
#pos[a[0]]=(rank[a[0]],col[rank[a[0]]]+rank[a[0]]%2*0.5+rank[a[0]]*0.111) | |
pos[a[0]]=(rank[a[0]],col[rank[a[0]]]) | |
i+=1 | |
for e in col.values(): | |
if e > maxcols: maxcols=e | |
for e in pos.keys(): | |
a=pos[e] | |
pos[e]=(a[0],float(a[1]+0.05*(rank[e]%3))/float(col[rank[e]]+1)*maxcols) | |
j=0 | |
G=nx.DiGraph() | |
G.add_nodes_from(nodes) | |
edges=[] | |
for line in lines: | |
line=line.strip() | |
if line[0]=="#":continue | |
a=line.split("\t") | |
for i,x in enumerate(a[1:]): | |
if i==j:continue | |
x=float(x) | |
if max<abs(x):max=abs(x) | |
if x>threshold: | |
edges.append((nodes[i],nodes[j],{'color':'green','weight':x})) | |
# edges_col.append(x) | |
elif x<-threshold: | |
edges.append((nodes[i],nodes[j],{'color':'red','weight':x})) | |
# edges_col.append(x) | |
j+=1 | |
G.add_edges_from(edges) | |
e=G.edges() | |
for i in e: | |
edges_col.append(G[i[0]][i[1]]['weight']) | |
nx.draw(G,edge_cmap=plt.get_cmap("RdYlGn"),edgelist=e,edge_color=edges_col,pos=pos,node_color="y",edge_vmin=-max,edge_vmax=max,linewidths=0,width=2,arrows=direct,node_size=100,font_size=10) | |
#nx.draw(G,edge_cmap=plt.get_cmap("RdYlGn"),edge_list=edges,edge_color=edges_col,pos=pos,node_color="y",edge_vmin=-max,edge_vmax=max,linewidths=0,width=2) | |
#nx.draw(G,pos=pos,node_color="y",linewidths=0,width=2) | |
plt.colorbar() | |
plt.show() | |
if __name__=="__main__": | |
Main() | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
####################### import np_pylab.py ################# | |
###### download from https://networkx.lanl.gov/trac/ticket/423 | |
import networkx as nx | |
import matplotlib.patches as patches | |
import matplotlib.collections as collections | |
import numpy as np | |
import math | |
import matplotlib.cbook as cb | |
import matplotlib.colors as mcolors | |
import matplotlib as mpl | |
import matplotlib.cm as cm | |
def get_color_dict(color,item_list,vmin=None,vmax=None,cmap=None): | |
""" Determine color rgb color values given a data list. | |
This function is used to take a sequence of data and convert it | |
into a dictionary which of possible rgb values. It can take a | |
number of different types of data explained below. If no colormap | |
is given it will return the grayscale for scalar values. | |
Parameters: | |
----------- | |
color: A string, scalar, or iterable of either. | |
This can be a color in a variety of formats. A matplotlib | |
a single color, which can be a matplotlib color specification | |
e.g. 'rgbcmykw', a hex color string '#00FFFF', a standard | |
html name like 'aqua', or a numeric value to be scaled with | |
vmax or vmin. It can also be a list of any of these types | |
as well as a dictionary of any of these types. | |
item_list: a list | |
A list of keys which correspond to the values given in | |
color. | |
vmin: A scalar | |
The minimum value if scalar values are given for color | |
vmax: A scalar | |
The maximum value if scalar values are given for color | |
cmap: A matplotlib colormap | |
A colormap to be used if scalar values are given. | |
Returns: | |
------- | |
color_dict: dict | |
A dictionary of rgb colors keyed by values in item_list | |
""" | |
CC = mcolors.ColorConverter() | |
if cb.is_string_like(color): | |
return {}.fromkeys(item_list,CC.to_rgb(color)) | |
elif cb.is_scalar(color): | |
CN = mcolors.Normalize(0.0,1.0) | |
if cmap is not None: | |
return {}.fromkeys(item_list,cmap(CN(color))) | |
else: | |
return {}.fromkeys(item_list,CC.to_rgb(str(CN(color)))) | |
elif cb.iterable(color) and not cb.is_string_like(color): | |
try: | |
vals = [color[i] for i in item_list] | |
except: | |
vals = color | |
keys = item_list | |
if len(item_list)>len(vals): | |
raise nx.NetworkXError("Must provide a value for each item") | |
if cb.alltrue([cb.is_string_like(c) for c in vals]): | |
return dict(zip(keys,[CC.to_rgb(v) for v in vals])) | |
elif cb.alltrue([cb.is_scalar(c) for c in vals]): | |
if vmin is None: | |
vmin = float(min(vals)) | |
if vmax is None: | |
vmax = float(max(vals)) | |
CN = mcolors.Normalize(vmin,vmax) | |
if cmap is not None: | |
return dict(zip(keys,[cmap(CN(v)) for v in vals])) | |
else: | |
return dict(zip(keys,[CC.to_rgb(str(CN(v))) for v in vals])) | |
elif cb.alltrue([cb.iterable(c) and not cb.is_string(c) for c in vals]): | |
return dict(zip(keys,vals)) | |
else: | |
raise nx.NetworkXError("Could not convert colors") | |
def is_weighted(G): | |
""" Determine if a graph G is weighted | |
Checks each edge to see if it has attribute 'weight' if it does | |
return True, otherwise false. This checks if the entire graph is | |
weighted not partial. | |
Parameters: | |
---------- | |
G: A networkx Graph | |
Returns: | |
-------- | |
weighted : A bool | |
Determines whether the graph is weighted. | |
""" | |
weighted = True | |
for (u,v) in G.edges(): | |
weighted = weighted and ('weight' in G.edge[u][v]) | |
if not weighted: | |
return weighted | |
return weighted | |
def is_weighted(self): | |
""" Determine if a graph G is weighted | |
Checks each edge to see if it has attribute 'weight' if it does | |
return True, otherwise false. This checks if the entire graph is | |
weighted not partial. | |
Parameters: | |
---------- | |
G: A networkx Graph | |
Returns: | |
-------- | |
weighted : A bool | |
Determines whether the graph is weighted. | |
""" | |
weighted = True | |
for (u,v) in self.edges(): | |
weighted = weighted and ('weight' in self.edge[u][v]) | |
if not weighted: | |
return weighted | |
return weighted | |
def edge_width_weight(G,edgelist=None): | |
"""Automatically calculate a normalized reasonable line width for | |
a weighted graph | |
Parameters: | |
----------- | |
G: A networkx Graph | |
edgelist: A list | |
Edges to calculate the weights for if None, usesall edges | |
Returns: | |
-------- | |
weight_dict: A dictionary | |
Line weights that displays nicely in matplotlib. | |
""" | |
if edgelist is None: | |
edgelist = G.edges() | |
lw = {} | |
for (u,v) in edgelist: | |
lw[(u,v)] = G.edge[u][v]['weight'] | |
maxw = max(lw.values()) | |
minw = float(min(lw.values())) #to ensure floats later | |
return dict(zip(lw.keys(), \ | |
map((lambda x: 19.5*((x-minw)/(maxw-minw)) + 0.5), \ | |
lw.values()))) | |
def edge_color_weight(G,edgelist=None): | |
"""Automatically calculate a normalized reasonable color for | |
a weighted graph | |
Parameters: | |
----------- | |
G: A networkx Graph | |
edgelist: A list | |
Edges to calculate the weights for if None, uses all edges | |
Returns: | |
-------- | |
weight_dict: A dictionary | |
Values between 0-1 that displays nicely in matplotlib. | |
""" | |
cl = {} | |
if edgelist is None: | |
edgelist=G.edges() | |
for (u,v) in edgelist: | |
cl[(u,v)] = G[u][v]['weight'] | |
maxw = max(cl.values()) | |
minw = float(min(cl.values())) | |
return dict(zip(cl.keys(), \ | |
map((lambda x: (x-minw)/(maxw - minw)),cl.values()))) | |
def draw(G, pos=None, ax=None, hold=None, **kwds): | |
"""Draw the graph G with Matplotlib (pylab). | |
Draw the graph as a simple representation with no node | |
labels or edge labels and using the full Matplotlib figure area | |
and no axis labels by default. See draw_networkx() for more | |
full-featured drawing that allows title, axis labels etc. | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary, optional | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in specified Matplotlib axes. | |
hold: bool, optional | |
Set the Matplotlib hold state. If True subsequent draw | |
commands will be added to the current axes. | |
**kwds: optional keywords | |
See networkx.draw_networkx() for a description of optional keywords. | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> nx.draw(G) | |
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout | |
See Also | |
-------- | |
draw_networkx() | |
draw_networkx_nodes() | |
draw_networkx_edges() | |
draw_networkx_labels() | |
draw_networkx_edge_labels() | |
Notes | |
----- | |
This function has the same name as pylab.draw and pyplot.draw | |
so beware when using | |
>>> from networkx import * | |
since you might overwrite the pylab.draw function. | |
Good alternatives are: | |
With pylab: | |
>>> import pylab as P # | |
>>> import networkx as nx | |
>>> G=nx.dodecahedral_graph() | |
>>> nx.draw(G) # networkx draw() | |
>>> P.draw() # pylab draw() | |
With pyplot | |
>>> import matplotlib.pyplot as plt | |
>>> import networkx as nx | |
>>> G=nx.dodecahedral_graph() | |
>>> nx.draw(G) # networkx draw() | |
>>> plt.draw() # pyplot draw() | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
""" | |
try: | |
import matplotlib.pylab as pylab | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
cf=pylab.gcf() | |
cf.set_facecolor('w') | |
if ax is None: | |
if cf._axstack() is None: | |
ax=cf.add_axes((0,0,1,1)) | |
else: | |
ax=cf.gca() | |
# allow callers to override the hold state by passing hold=True|False | |
b = pylab.ishold() | |
h = kwds.pop('hold', None) | |
if h is not None: | |
pylab.hold(h) | |
try: | |
ax.set_axis_off() | |
draw_networkx(G,pos=pos,ax=ax,**kwds) | |
pylab.draw_if_interactive() | |
except: | |
pylab.hold(b) | |
raise | |
pylab.hold(b) | |
return | |
def draw_networkx(G, pos=None, with_labels=True, **kwds): | |
"""Draw the graph G using Matplotlib. | |
Draw the graph with Matplotlib with options for node positions, | |
labeling, titles, and many other drawing features. | |
See draw() for simple drawing without labels or axes. | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary, optional | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in the specified Matplotlib axes. | |
with_labels: bool, optional | |
Set to True (default) to draw labels on the nodes. | |
nodelist: list, optional | |
Draw only specified nodes (default G.nodes()) | |
edgelist: list | |
Draw only specified edges(default=G.edges()) | |
node_size: scalar or array | |
Size of nodes (default=300). If an array is specified it must be the | |
same length as nodelist. | |
node_color: color string, or array of floats | |
Node color. Can be a single color format string (default='r'), | |
or a sequence of colors with the same length as nodelist. | |
If numeric values are specified they will be mapped to | |
colors using the cmap and vmin,vmax parameters. Can also be a | |
dictionary keyed by node, and can be in any matplotlib acceptable | |
color value. | |
node_shape: string | |
The shape of the node. Specification is as matplotlib.scatter | |
marker, one of 'so^>v<dph8' (default='o'). | |
alpha: float | |
The node transparency (default=1.0) | |
cmap: Matplotlib colormap | |
Colormap for mapping intensities of nodes (default=None) | |
vmin,vmax: floats | |
Minimum and maximum for node colormap scaling (default=None) | |
width: float | |
Line width of edges (default =1.0) | |
edge_color: color string, or array of floats | |
Edge color. Can be a single color format string (default='r'), | |
or a sequence of colors with the same length as edgelist. | |
If numeric values are specified they will be mapped to | |
colors using the edge_cmap and edge_vmin,edge_vmax parameters. | |
edge_ cmap: Matplotlib colormap | |
Colormap for mapping intensities of edges (default=None) | |
edge_vmin,edge_vmax: floats | |
Minimum and maximum for edge colormap scaling (default=None) | |
style: string | |
Edge line style (default='solid') (solid|dashed|dotted,dashdot) | |
labels: dictionary | |
Node labels in a dictionary keyed by node of text labels (default=None) | |
font_size: int | |
Font size for text labels (default=12) | |
font_color: string | |
Font color string (default='k' black) | |
font_weight: string | |
Font weight (default='normal') | |
font_family: string | |
Font family (default='sans-serif') | |
Notes | |
----- | |
Any keywords not listed above are passed through to draw_networkx_nodes(), | |
draw_networkx_edges(), and draw_networkx_labels(). For finer control | |
of drawing you can call those functions directly. | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> nx.draw(G) | |
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout | |
>>> import pylab | |
>>> limits=pylab.axis('off') # turn of axis | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
See Also | |
-------- | |
draw() | |
draw_networkx_nodes() | |
draw_networkx_edges() | |
draw_networkx_labels() | |
draw_networkx_edge_labels() | |
""" | |
try: | |
import matplotlib.pylab as pylab | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
if pos is None: | |
pos=nx.drawing.spring_layout(G) # default to spring layout | |
node_patches=draw_networkx_nodes(G, pos, **kwds) | |
edge_patches=draw_networkx_edges(G, pos, node_patches, **kwds) | |
if with_labels: | |
draw_networkx_labels(G, pos, **kwds) | |
pylab.draw_if_interactive() | |
def draw_networkx_nodes(G, pos, | |
nodelist=None, | |
node_size=300, | |
node_color='r', | |
node_shape='o', | |
alpha=1.0, | |
cmap=None, | |
vmin=None, | |
vmax=None, | |
ax=None, | |
linewidth=None, | |
**kwds): | |
"""Draw the nodes of the graph G. | |
This draws only the nodes of the graph G. | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in the specified Matplotlib axes. | |
nodelist: list, optional | |
Draw only specified nodes (default G.nodes()) | |
edgelist: list | |
Draw only specified edges(default=G.edges()) | |
node_size: scalar or array | |
Size of nodes (default=300). If an array is specified it must be the | |
same length as nodelist. | |
node_color: color string, or array of floats | |
Node color. Can be a single color format string (default='r'), | |
or a sequence of colors with the same length as nodelist. | |
If numeric values are specified they will be mapped to | |
colors using the cmap and vmin,vmax parameters. See | |
matplotlib.scatter for more details. | |
node_shape: string | |
The shape of the node. Specification is as matplotlib.scatter | |
marker, one of 'so^>v<dph8' (default='o'). | |
alpha: float | |
The node transparency (default=1.0) | |
cmap: Matplotlib colormap | |
Colormap for mapping intensities of nodes (default=None) | |
vmin,vmax: floats | |
Minimum and maximum for node colormap scaling (default=None) | |
width`: float | |
Line width of edges (default =1.0) | |
Notes | |
----- | |
Any keywords not listed above are passed through to Matplotlib's | |
scatter function. | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
See Also | |
-------- | |
draw() | |
draw_networkx() | |
draw_networkx_edges() | |
draw_networkx_labels() | |
draw_networkx_edge_labels() | |
""" | |
try: | |
import matplotlib.pylab as pylab | |
import numpy | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
if ax is None: | |
ax=pylab.gca() | |
if nodelist is None: | |
nodelist=G.nodes() | |
if not nodelist or len(nodelist)==0: # empty nodelist, no drawing | |
return None | |
try: | |
xy=numpy.asarray([pos[v] for v in nodelist]) | |
except KeyError,e: | |
raise nx.NetworkXError('Node %s has no position.'%e) | |
except ValueError: | |
raise nx.NetworkXError('Bad value in node positions.') | |
syms = { # a dict from symbol to (numsides, angle) | |
's' : (4,math.pi/4.0,0), # square | |
'o' : (0,0,3), # circle | |
'^' : (3,0,0), # triangle up | |
'>' : (3,math.pi/2.0,0), # triangle right | |
'v' : (3,math.pi,0), # triangle down | |
'<' : (3,3*math.pi/2.0,0), # triangle left | |
'd' : (4,0,0), # diamond | |
'p' : (5,0,0), # pentagram | |
'h' : (6,0,0), # hexagon | |
'8' : (8,0,0), # octagon | |
'+' : (4,0,0), # plus | |
'x' : (4,math.pi/4.0,0) # cross | |
} | |
temp_x = map(lambda p: p[0],pos.values()) | |
temp_y = map(lambda p: p[1],pos.values()) | |
minx = np.amin(temp_x) | |
maxx = np.amax(temp_x) | |
miny = np.amin(temp_y) | |
maxy = np.amax(temp_y) | |
w = max(maxx-minx,1.0) | |
h = max(maxy-miny,1.0) | |
#for scaling | |
axcorn = ax.get_position().get_points() | |
xperc = (axcorn[1][0]-axcorn[0][0])*.5 | |
yperc = (axcorn[1][1]-axcorn[0][1])*.5 | |
area2radius = lambda a: math.sqrt((a*w*h)/(ax.figure.get_figheight()*ax.figure.get_figwidth()*ax.figure.dpi*ax.figure.dpi*math.pi*xperc*yperc)) | |
if cb.iterable(node_size): | |
try: | |
vals = node_size.values() | |
except: | |
vals = node_size | |
node_size = dict(zip(nodelist,map(area2radius,vals))) | |
else: | |
node_size = {}.fromkeys(nodelist,area2radius(node_size)) | |
for n in node_size: | |
if node_size[n] == 0.0: | |
node_size[n] = .00001 | |
if cmap is None: | |
cmap = cm.get_cmap(mpl.rcParams['image.cmap']) | |
n_colors = get_color_dict(node_color,nodelist,vmin,vmax,cmap) | |
sym = syms[node_shape] | |
numsides,rotation,symstyle=syms[node_shape] | |
node_patches = {} | |
for n in nodelist: | |
if symstyle==0: | |
node_patches[n] = patches.RegularPolygon(pos[n], | |
numsides, | |
orientation=rotation, | |
radius=node_size[n], | |
facecolor=n_colors[n], | |
edgecolor='k', | |
alpha=alpha, | |
linewidth=linewidth, | |
zorder=2) | |
elif symstyle==3: | |
node_patches[n] = patches.Circle(pos[n], | |
radius=node_size[n], | |
facecolor=n_colors[n], | |
edgecolor='k', | |
alpha=alpha, | |
linewidth=linewidth, | |
zorder=2) | |
ax.add_patch(node_patches[n]) | |
#node_collection = collections.PatchCollection(node_patches.values(), | |
# match_original=True) | |
#ax.add_collection(node_collection) | |
# the pad is a little hack to deal with the fact that we don't | |
# want to transform all the symbols whose scales are in points | |
# to data coords to get the exact bounding box for efficiency | |
# reasons. It can be done right if this is deemed important | |
temp_x = xy[:,0] | |
temp_y = xy[:,1] | |
minx = np.amin(temp_x) | |
maxx = np.amax(temp_x) | |
miny = np.amin(temp_y) | |
maxy = np.amax(temp_y) | |
w = maxx-minx | |
h = maxy-miny | |
padx, pady = 0.05*w, 0.05*h | |
corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) | |
ax.update_datalim(corners) | |
# ax.autoscale() | |
ax.autoscale_view() | |
ax.set_aspect('equal') | |
# pylab.axes(ax) | |
#pylab.sci(node_collection) | |
#node_collection.set_zorder(2) | |
return node_patches | |
def draw_networkx_edges(G, pos, node_patches=None, | |
edgelist=None, | |
width=None, | |
edge_color=None, | |
style='solid', | |
alpha=None, | |
edge_cmap=None, | |
edge_vmin=None, | |
edge_vmax=None, | |
ax=None, | |
arrows=True, | |
arrow_style=None, | |
connection_style='arc3', | |
color_weights=False, | |
width_weights=False, | |
**kwds): | |
"""Draw the edges of the graph G | |
This draws only the edges of the graph G. | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in the specified Matplotlib axes. | |
alpha: float | |
The edge transparency (default=1.0) | |
width`: float | |
Line width of edges (default =1.0) | |
edge_color: color string, or array of floats | |
Edge color. Can be a single color format string (default='r'), | |
or a sequence of colors with the same length as edgelist. | |
If numeric values are specified they will be mapped to | |
colors using the edge_cmap and edge_vmin,edge_vmax parameters. | |
edge_ cmap: Matplotlib colormap | |
Colormap for mapping intensities of edges (default=None) | |
edge_vmin,edge_vmax: floats | |
Minimum and maximum for edge colormap scaling (default=None) | |
style: string | |
Edge line style (default='solid') (solid|dashed|dotted,dashdot) | |
arrow: Bool | |
Whether to draw arrows or not for directed graphs | |
arrow_style: string | |
Arrow style used by matplotlib see FancyArrowPatch | |
connection_style: string | |
Connection style used by matplotlib, see FancyArrowPatch | |
color_weights: Bool | |
Whether to color the edges of a graph by their weight if the | |
graph has any. | |
width_weights: Bool | |
Whether to vary the thicknes of an edge by their weight, if the | |
graph has any. | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
See Also | |
-------- | |
draw() | |
draw_networkx() | |
draw_networkx_nodes() | |
draw_networkx_labels() | |
draw_networkx_edge_labels() | |
""" | |
try: | |
import matplotlib | |
import matplotlib.pylab as pylab | |
import matplotlib.cbook as cb | |
from matplotlib.colors import colorConverter,Colormap | |
from matplotlib.collections import LineCollection | |
import numpy | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
if ax is None: | |
ax=pylab.gca() | |
if edgelist is None: | |
edgelist=G.edges() | |
if not edgelist or len(edgelist)==0: # no edges! | |
return None | |
# set edge positions | |
edge_pos=numpy.asarray([(pos[e[0]],pos[e[1]]) for e in edgelist]) | |
if width is None and width_weights and is_weighted(G): | |
lw = edge_width_weight(G,edgelist) | |
if alpha is None: | |
alpha = 0.75 | |
elif width is None: | |
lw = {}.fromkeys(edgelist,1.0) | |
elif cb.iterable(width): | |
try: | |
lwvals = width.values() | |
except: | |
lwvals = width | |
lw = dict(zip(edgelist,lwvals)) | |
elif cb.is_scalar(width): | |
lw = {}.fromkeys(edgelist,width) | |
else: | |
raise nx.NetworkXError("Must provide a single scalar value or a list \ | |
of values for line width or None") | |
if edge_cmap is None: | |
edge_cmap = cm.get_cmap(mpl.rcParams['image.cmap']) | |
if edge_color is None and color_weights and is_weighted(G): | |
edge_color = edge_color_weight(G,edgelist) | |
if alpha is None: | |
alpha = 0.75 | |
elif edge_color is None: | |
edge_color = 'k' | |
e_colors = get_color_dict(edge_color,edgelist,edge_vmin,edge_vmax,edge_cmap) | |
edge_patches = {} | |
if arrow_style is None: | |
if G.is_directed(): | |
arrow_style = '-|>' | |
else: | |
arrow_style = '-' | |
if node_patches is None: | |
node_patches = {}.fromkeys(G.nodes(),None) | |
for (u,v) in edgelist: | |
edge_patches[(u,v)] = patches.FancyArrowPatch(posA=pos[u], | |
posB=pos[v], | |
arrowstyle=arrow_style, | |
connectionstyle=connection_style, | |
patchA=node_patches[u], | |
patchB=node_patches[v], | |
shrinkA=0.0, | |
shrinkB=0.0, | |
mutation_scale=20.0, | |
alpha=alpha, | |
color=e_colors[(u,v)], | |
lw = lw[(u,v)], | |
linestyle=style, | |
zorder=1) | |
ax.add_patch(edge_patches[(u,v)]) | |
# update view | |
minx = numpy.amin(numpy.ravel(edge_pos[:,:,0])) | |
maxx = numpy.amax(numpy.ravel(edge_pos[:,:,0])) | |
miny = numpy.amin(numpy.ravel(edge_pos[:,:,1])) | |
maxy = numpy.amax(numpy.ravel(edge_pos[:,:,1])) | |
w = maxx-minx | |
h = maxy-miny | |
padx, pady = 0.05*w, 0.05*h | |
corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) | |
ax.update_datalim( corners) | |
ax.autoscale_view() | |
return edge_patches | |
def draw_networkx_labels(G, pos, | |
labels=None, | |
font_size=12, | |
font_color='k', | |
font_family='sans-serif', | |
font_weight='normal', | |
alpha=1.0, | |
ax=None, | |
**kwds): | |
"""Draw node labels on the graph G | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary, optional | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in the specified Matplotlib axes. | |
alpha: float | |
The text transparency (default=1.0) | |
labels: dictionary | |
Node labels in a dictionary keyed by node of text labels (default=None) | |
font_size: int | |
Font size for text labels (default=12) | |
font_color: string | |
Font color string (default='k' black) | |
font_weight: string | |
Font weight (default='normal') | |
font_family: string | |
Font family (default='sans-serif') | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
See Also | |
-------- | |
draw() | |
draw_networkx() | |
draw_networkx_nodes() | |
draw_networkx_edges() | |
draw_networkx_edge_labels() | |
""" | |
try: | |
import matplotlib.pylab as pylab | |
import matplotlib.cbook as cb | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
if ax is None: | |
ax=pylab.gca() | |
if labels is None: | |
labels=dict(zip(G.nodes(),G.nodes())) | |
text_items={} # there is no text collection so we'll fake one | |
for (n,label) in labels.items(): | |
(x,y)=pos[n] | |
if not cb.is_string_like(label): | |
label=str(label) # this will cause "1" and 1 to be labeled the same | |
t=ax.text(x, y, | |
label, | |
size=font_size, | |
color=font_color, | |
family=font_family, | |
weight=font_weight, | |
horizontalalignment='center', | |
verticalalignment='center', | |
transform = ax.transData, | |
clip_on=True, | |
) | |
text_items[n]=t | |
return text_items | |
def draw_networkx_edge_labels(G, pos, | |
edge_labels=None, | |
font_size=10, | |
font_color='k', | |
font_family='sans-serif', | |
font_weight='normal', | |
alpha=1.0, | |
bbox=None, | |
ax=None, | |
**kwds): | |
"""Draw edge labels. | |
Parameters | |
---------- | |
G : graph | |
A networkx graph | |
pos : dictionary, optional | |
A dictionary with nodes as keys and positions as values. | |
If not specified a spring layout positioning will be computed. | |
See networkx.layout for functions that compute node positions. | |
ax : Matplotlib Axes object, optional | |
Draw the graph in the specified Matplotlib axes. | |
alpha: float | |
The text transparency (default=1.0) | |
labels: dictionary | |
Node labels in a dictionary keyed by edge two-tuple of text | |
labels (default=None), Only labels for the keys in the dictionary | |
are drawn. | |
font_size: int | |
Font size for text labels (default=12) | |
font_color: string | |
Font color string (default='k' black) | |
font_weight: string | |
Font weight (default='normal') | |
font_family: string | |
Font family (default='sans-serif') | |
bbox: Matplotlib bbox | |
Specify text box shape and colors. | |
clip_on: bool | |
Turn on clipping at axis boundaries (default=True) | |
Examples | |
-------- | |
>>> G=nx.dodecahedral_graph() | |
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) | |
Also see the NetworkX drawing examples at | |
http://networkx.lanl.gov/gallery.html | |
See Also | |
-------- | |
draw() | |
draw_networkx() | |
draw_networkx_nodes() | |
draw_networkx_edges() | |
draw_networkx_labels() | |
""" | |
try: | |
import matplotlib.pylab as pylab | |
import matplotlib.cbook as cb | |
import numpy | |
except ImportError: | |
raise ImportError, "Matplotlib required for draw()" | |
except RuntimeError: | |
print "Matplotlib unable to open display" | |
raise | |
if ax is None: | |
ax=pylab.gca() | |
if edge_labels is None: | |
labels=dict(zip(G.edges(),[d for u,v,d in G.edges(data=True)])) | |
else: | |
labels = edge_labels | |
text_items={} | |
for ((n1,n2),label) in labels.items(): | |
(x1,y1)=pos[n1] | |
(x2,y2)=pos[n2] | |
(x,y) = ((x1+x2)/2, (y1+y2)/2) | |
angle=numpy.arctan2(y2-y1,x2-x1)/(2.0*numpy.pi)*360 # degrees | |
# make label orientation "right-side-up" | |
if angle > 90: | |
angle-=180 | |
if angle < - 90: | |
angle+=180 | |
# transform data coordinate angle to screen coordinate angle | |
xy=numpy.array((x,y)) | |
trans_angle=ax.transData.transform_angles(numpy.array((angle,)), | |
xy.reshape((1,2)))[0] | |
# use default box of white with white border | |
if bbox is None: | |
bbox = dict(boxstyle='round', | |
ec=(1.0, 1.0, 1.0), | |
fc=(1.0, 1.0, 1.0), | |
) | |
if not cb.is_string_like(label): | |
label=str(label) # this will cause "1" and 1 to be labeled the same | |
t=ax.text(x, y, | |
label, | |
size=font_size, | |
color=font_color, | |
family=font_family, | |
weight=font_weight, | |
horizontalalignment='center', | |
verticalalignment='center', | |
rotation=trans_angle, | |
transform = ax.transData, | |
bbox = bbox, | |
zorder = 1, | |
clip_on=True, | |
) | |
text_items[(n1,n2)]=t | |
return text_items | |
def draw_circular(G, **kwargs): | |
"""Draw the graph G with a circular layout""" | |
draw(G,circular_layout(G),**kwargs) | |
def draw_random(G, **kwargs): | |
"""Draw the graph G with a random layout.""" | |
draw(G,random_layout(G),**kwargs) | |
def draw_spectral(G, **kwargs): | |
"""Draw the graph G with a spectral layout.""" | |
draw(G,spectral_layout(G),**kwargs) | |
def draw_spring(G, **kwargs): | |
"""Draw the graph G with a spring layout""" | |
draw(G,spring_layout(G),**kwargs) | |
def draw_shell(G, **kwargs): | |
"""Draw networkx graph with shell layout""" | |
nlist = kwargs.get('nlist', None) | |
if nlist != None: | |
del(kwargs['nlist']) | |
draw(G,shell_layout(G,nlist=nlist),**kwargs) | |
def draw_graphviz(G, prog="neato", **kwargs): | |
"""Draw networkx graph with graphviz layout""" | |
pos=nx.drawing.graphviz_layout(G,prog) | |
draw(G,pos,**kwargs) | |
def draw_nx(G,pos,**kwds): | |
"""For backward compatibility; use draw or draw_networkx""" | |
draw(G,pos,**kwds) | |
# fixture for nose tests | |
def setup_module(module): | |
from nose import SkipTest | |
try: | |
import pylab | |
except: | |
raise SkipTest("matplotlib not available") | |
def test(): | |
import matplotlib.pylab as pyb | |
G=nx.path_graph(10,create_using=nx.DiGraph()) | |
draw(G) | |
pyb.draw() | |
pyb.show() | |
################# end of nx_pylab.py ################# | |
# programmer : zhuxp | |
# usage: | |
# import networkx as nx | |
# from matplotlib import mpl | |
import sys | |
from getopt import getopt | |
import matplotlib.pyplot as plt | |
import pylab | |
# import nx_pylab as nx2 | |
def show_help(): | |
print >>sys.stderr,"\n\nplotCausalGraph.py: drawing causal graph from LiNGAM output equation matrix B" | |
print >>sys.stderr,"Library Dependence: networkx , matplotlib\n\n" | |
print >>sys.stderr,"Usage: plotCausalGraph.py -m matrix -t threshold[default:0.5]" | |
print >>sys.stderr,"Options:" | |
print >>sys.stderr," --matrix,-m file.mat B matrix file generated from LiNGAM" | |
print >>sys.stderr," --threshold,-t threshold draw the line if the absolute value of line weight is bigger than threshold" | |
print >>sys.stderr,"Matrix File Example:" | |
print >>sys.stderr,"H3K9me3\t0" | |
print >>sys.stderr,"H3K4me3\t-1\t0" | |
print >>sys.stderr,"H3K4me1\t-0.3\t1\t0" | |
exit(0) | |
def Main(): | |
if len(sys.argv)==1: show_help() | |
opts,restlist = getopt(sys.argv[1:],"m:oht:",\ | |
["matrix=","threshold=","help"]) | |
threshold=0.5 | |
for o, a in opts: | |
if o in ("-m","matrix"): M = a | |
if o in ("-h","--help"): show_help() | |
if o in ("-t","--threshold"): threshold=float(a) | |
if not 'M' in dir(): | |
show_help() | |
try: | |
f=open(M) | |
except: | |
print >>sys.stderr,"Can't open file",M | |
show_help() | |
max=0 | |
nodes=[] | |
edges=[] | |
pos={} | |
edges_col=[] | |
col={} | |
rank={} | |
lines=f.readlines() | |
i=0 | |
for line in lines: | |
line=line.strip() | |
if line[0]=="#":continue | |
a=line.split("\t") | |
nodes.append(a[0]) | |
rank[a[0]]=0 | |
for k,x in enumerate(a[1:]): | |
if k==i: continue | |
x=float(x) | |
if x>threshold or x<-threshold: | |
if k < len(nodes) and rank[a[0]] < rank[nodes[k]]+1: | |
rank[a[0]]=rank[nodes[k]]+1 | |
if col.has_key(rank[a[0]]): | |
col[rank[a[0]]]+=1 | |
else: | |
col[rank[a[0]]]=1 | |
pos[a[0]]=(rank[a[0]],col[rank[a[0]]]+rank[a[0]]%2*0.5+rank[a[0]]*0.111) | |
i+=1 | |
j=0 | |
G=nx.DiGraph() | |
G.add_nodes_from(nodes) | |
for line in lines: | |
line=line.strip() | |
if line[0]=="#":continue | |
a=line.split("\t") | |
for i,x in enumerate(a[1:]): | |
if i==j:continue | |
x=float(x) | |
if max<abs(x):max=abs(x) | |
if x>threshold: | |
G.add_edge(nodes[i],nodes[j],{'weight':x}) | |
elif x<-threshold: | |
G.add_edge(nodes[i],nodes[j],{'weight':x}) | |
j+=1 | |
fig=plt.figure(figsize=(8,10)) | |
e=G.edges() | |
for i in e: | |
edges_col.append(G[i[0]][i[1]]['weight']) | |
# nx2.draw(G,edge_cmap=plt.get_cmap("RdYlGn"),edge_color=edges_col,pos=pos,node_color="y",edge_vmin=-max,edge_vmax=max,linewidth=0,width=2) | |
draw(G,edge_cmap=plt.get_cmap("RdYlGn"),edge_color=edges_col,pos=pos,node_color="y",edge_vmin=-max,edge_vmax=max,linewidth=0,width=2) | |
ax1=fig.add_axes([0.87,0.25,0.02,0.5]) | |
norm=mpl.colors.Normalize(vmin=-max,vmax=max) | |
cmap=plt.get_cmap("RdYlGn") | |
cb1=mpl.colorbar.ColorbarBase(ax1,cmap=cmap,norm=norm,orientation='vertical') | |
plt.show() | |
if __name__=="__main__": | |
Main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment