Skip to content

Instantly share code, notes, and snippets.

@AllenFang
Forked from wuchong/HBaseNewAPI.scala
Created March 30, 2016 07:03
Show Gist options
  • Save AllenFang/0d57aa6edcbb9b76cad5a9037f557f0d to your computer and use it in GitHub Desktop.
Save AllenFang/0d57aa6edcbb9b76cad5a9037f557f0d to your computer and use it in GitHub Desktop.
Spark 下 操作 HBase 1.0.0 新版API
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HColumnDescriptor, HTableDescriptor, TableName, HBaseConfiguration}
import org.apache.hadoop.hbase.client._
import org.apache.spark.SparkContext
import scala.collection.JavaConversions._
/**
* HBase 1.0.0 新版API, CRUD 的基本操作代码示例
**/
object HBaseNewAPI {
def main(args: Array[String]) {
val sc = new SparkContext("local", "SparkHBase")
val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.zookeeper.quorum", "master")
//Connection 的创建是个重量级的工作,线程安全,是操作hbase的入口
val conn = ConnectionFactory.createConnection(conf)
//从Connection获得 Admin 对象(相当于以前的 HAdmin)
val admin = conn.getAdmin
//本例将操作的表名
val userTable = TableName.valueOf("user")
//创建 user 表
val tableDescr = new HTableDescriptor(userTable)
tableDescr.addFamily(new HColumnDescriptor("basic".getBytes))
println("Creating table `user`. ")
if (admin.tableExists(userTable)) {
admin.disableTable(userTable)
admin.deleteTable(userTable)
}
admin.createTable(tableDescr)
println("Done!")
try{
//获取 user 表
val table = conn.getTable(userTable)
try{
//准备插入一条 key 为 id001 的数据
val p = new Put("id001".getBytes)
//为put操作指定 column 和 value (以前的 put.add 方法被弃用了)
p.addColumn("basic".getBytes,"name".getBytes, "wuchong".getBytes)
//提交
table.put(p)
//查询某条数据
val g = new Get("id001".getBytes)
val result = table.get(g)
val value = Bytes.toString(result.getValue("basic".getBytes,"name".getBytes))
println("GET id001 :"+value)
//扫描数据
val s = new Scan()
s.addColumn("basic".getBytes,"name".getBytes)
val scanner = table.getScanner(s)
try{
for(r <- scanner){
println("Found row: "+r)
println("Found value: "+Bytes.toString(r.getValue("basic".getBytes,"name".getBytes)))
}
}finally {
//确保scanner关闭
scanner.close()
}
//删除某条数据,操作方式与 Put 类似
val d = new Delete("id001".getBytes)
d.addColumn("basic".getBytes,"name".getBytes)
table.delete(d)
}finally {
if(table != null) table.close()
}
}finally {
conn.close()
}
}
}
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.protobuf.ProtobufUtil
import org.apache.hadoop.hbase.util.{Base64, Bytes}
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.SparkContext
import org.apache.hadoop.hbase.client._
/**
* Spark 读取和写入 HBase
**/
object SparkOnHBase {
def convertScanToString(scan: Scan) = {
val proto = ProtobufUtil.toScan(scan)
Base64.encodeBytes(proto.toByteArray)
}
def main(args: Array[String]) {
val sc = new SparkContext("local","SparkOnHBase")
val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.zookeeper.quorum", "master")
// ======Save RDD to HBase========
// step 1: JobConf setup
val jobConf = new JobConf(conf,this.getClass)
jobConf.setOutputFormat(classOf[TableOutputFormat])
jobConf.set(TableOutputFormat.OUTPUT_TABLE,"user")
// step 2: rdd mapping to table
// 在 HBase 中表的 schema 一般是这样的
// *row cf:col_1 cf:col_2
// 而在Spark中,我们操作的是RDD元组,比如(1,"lilei",14) , (2,"hanmei",18)
// 我们需要将 *RDD[(uid:Int, name:String, age:Int)]* 转换成 *RDD[(ImmutableBytesWritable, Put)]*
// 我们定义了 convert 函数做这个转换工作
def convert(triple: (Int, String, Int)) = {
val p = new Put(Bytes.toBytes(triple._1))
p.addColumn(Bytes.toBytes("basic"),Bytes.toBytes("name"),Bytes.toBytes(triple._2))
p.addColumn(Bytes.toBytes("basic"),Bytes.toBytes("age"),Bytes.toBytes(triple._3))
(new ImmutableBytesWritable, p)
}
// step 3: read RDD data from somewhere and convert
val rawData = List((1,"lilei",14), (2,"hanmei",18), (3,"someone",38))
val localData = sc.parallelize(rawData).map(convert)
//step 4: use `saveAsHadoopDataset` to save RDD to HBase
localData.saveAsHadoopDataset(jobConf)
// =================================
// ======Load RDD from HBase========
// use `newAPIHadoopRDD` to load RDD from HBase
//直接从 HBase 中读取数据并转成 Spark 能直接操作的 RDD[K,V]
//设置查询的表名
conf.set(TableInputFormat.INPUT_TABLE, "user")
//添加过滤条件,年龄大于 18 岁
val scan = new Scan()
scan.setFilter(new SingleColumnValueFilter("basic".getBytes,"age".getBytes,
CompareOp.GREATER_OR_EQUAL,Bytes.toBytes(18)))
conf.set(TableInputFormat.SCAN,convertScanToString(scan))
val usersRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])
val count = usersRDD.count()
println("Users RDD Count:" + count)
usersRDD.cache()
//遍历输出
usersRDD.foreach{ case (_,result) =>
val key = Bytes.toInt(result.getRow)
val name = Bytes.toString(result.getValue("basic".getBytes,"name".getBytes))
val age = Bytes.toInt(result.getValue("basic".getBytes,"age".getBytes))
println("Row key:"+key+" Name:"+name+" Age:"+age)
}
// =================================
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment