Forked from christophergandrud/topicmodels_json_ldavis.R
Created
September 9, 2016 07:23
-
-
Save Amice13/a71478fc2d6deb472c3db0e407b1b859 to your computer and use it in GitHub Desktop.
Convert the output of a topicmodels Latent Dirichlet Allocation model to JSON for use with LDAvis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' Convert the output of a topicmodels Latent Dirichlet Allocation to JSON | |
#' for use with LDAvis | |
#' | |
#' @param fitted Output from a topicmodels \code{LDA} model. | |
#' @param corpus Corpus object used to create the document term | |
#' matrix for the \code{LDA} model. This should have been create with | |
#' the tm package's \code{Corpus} function. | |
#' @param doc_term The document term matrix used in the \code{LDA} | |
#' model. This should have been created with the tm package's | |
#' \code{DocumentTermMatrix} function. | |
#' | |
#' @seealso \link{LDAvis}. | |
#' @export | |
topicmodels_json_ldavis <- function(fitted, corpus, doc_term){ | |
# Required packages | |
library(topicmodels) | |
library(dplyr) | |
library(stringi) | |
library(tm) | |
library(LDAvis) | |
# Find required quantities | |
phi <- posterior(fitted)$terms %>% as.matrix | |
theta <- posterior(fitted)$topics %>% as.matrix | |
vocab <- colnames(phi) | |
doc_length <- vector() | |
for (i in 1:length(corpus)) { | |
temp <- paste(corpus[[i]]$content, collapse = ' ') | |
doc_length <- c(doc_length, stri_count(temp, regex = '\\S+')) | |
} | |
temp_frequency <- inspect(doc_term) | |
freq_matrix <- data.frame(ST = colnames(temp_frequency), | |
Freq = colSums(temp_frequency)) | |
rm(temp_frequency) | |
# Convert to json | |
json_lda <- LDAvis::createJSON(phi = phi, theta = theta, | |
vocab = vocab, | |
doc.length = doc_length, | |
term.frequency = freq_matrix$Freq) | |
return(json_lda) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment