This script reads PascalVOC xml files, and converts them to YOLO txt files.
Note: This script was written and tested on Ubuntu. YMMV on other OS's.
Disclaimer: This code is a modified version of Joseph Redmon's voc_label.py
- Place the convert_voc_to_yolo.py file into your data folder.
- Edit the
dirs
array (line 8) to contain the folders where your images and xmls are located. Note: this script assumes all of your images are .jpg's (line 13). - Edit the
classes
array (line 9) to contain all of your classes. - Run the script. Upon running the script, each of the given directories will contain a 'yolo' folder that contains all of the YOLO txt files. A text file containing all of the image paths will be created in the cwd, for each given directory.
Make sure to put images and xml files in the root of train.Like this(image is in comment),here my folder name is VOCData and yolo folder is generated by script.
import glob
import os
import pickle
import xml.etree.ElementTree as ET
from os import listdir, getcwd
from os.path import join
dirs = ['train', 'val']
classes = ['person', 'car']
def getImagesInDir(dir_path):
image_list = []
for filename in glob.glob(dir_path + '/*.jpg'):
image_list.append(filename)
return image_list
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(dir_path, output_path, image_path):
basename = os.path.basename(image_path)
basename_no_ext = os.path.splitext(basename)[0]
in_file = open(dir_path + '/' + basename_no_ext + '.xml')
out_file = open(output_path + basename_no_ext + '.txt', 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
cwd = getcwd()
for dir_path in dirs:
full_dir_path = cwd + '/' + dir_path
output_path = full_dir_path +'/yolo/'
if not os.path.exists(output_path):
os.makedirs(output_path)
image_paths = getImagesInDir(full_dir_path)
list_file = open(full_dir_path + '.txt', 'w')
for image_path in image_paths:
list_file.write(image_path + '\n')
convert_annotation(full_dir_path, output_path, image_path)
list_file.close()
print("Finished processing: " + dir_path)
Please help. I have uploaded my entire dataset to google drive and mounted it to Google Colab. I am trying to run this script on Colab. My dataset directory is as follows: There are two separate folders for Images and Annotations. Both of these folders reside in a folder named MyDataset. I am compiling this script in MyDataset folder but I am getting an empty yolo folder and .txt file. Also, I don't have train and validation folders of my dataset yet. Any help would be highly appreciated!