Created
January 30, 2025 18:23
-
-
Save AmosLewis/6feff5aefe1066d2402d961d91ef3431 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @_initializer_0_dispatch_0 { | |
hal.executable.variant public @rocm_hsaco_fb target(<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx942", features = "", wgp = <compute = fp64|fp32|fp16|int64|int32|int16|int8, storage = b64|b32|b16|b8, subgroup = shuffle|arithmetic, dot = dp4xi8toi32, mma = [<MFMA_F32_16x16x4_F32>, <MFMA_F32_16x16x16_F16>, <MFMA_F32_32x32x8_F16>, <MFMA_F64_16x16x4_F64>, <MFMA_F32_16x16x16_BF16>, <MFMA_F32_32x32x8_BF16>, <MFMA_F32_16x16x32_F8E5M2FNUZ>, <MFMA_F32_16x16x32_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_I32_16x16x32_I8>, <MFMA_I32_32x32x16_I8>], subgroup_size_choices = [64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 16384>>, ukernels = "none"}>) { | |
hal.executable.export public @_initializer_0_dispatch_0_elementwise_broadcast_64_i64 ordinal(0) layout(#hal.pipeline.layout<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer>], flags = None>) { | |
^bb0(%arg0: !hal.device): | |
%x, %y, %z = flow.dispatch.workgroup_count_from_slice | |
hal.return %x, %y, %z : index, index, index | |
} | |
builtin.module { | |
func.func @_initializer_0_dispatch_0_elementwise_broadcast_64_i64() { | |
%c2_i64 = arith.constant 2 : i64 | |
%0 = hal.interface.constant.load layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer>], flags = None>) ordinal(0) : i32 | |
%1 = arith.index_castui %0 : i32 to index | |
%2 = util.assume.int %1[<umin = 0, umax = 0>, <umin = 768, umax = 768, udiv = 768>] : index | |
%3 = hal.interface.binding.subspan layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer>], flags = None>) binding(0) alignment(64) offset(%2) flags("None") : !flow.dispatch.tensor<writeonly:tensor<64xi64>> | |
%4 = tensor.empty() : tensor<64xi64> | |
%5 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} outs(%4 : tensor<64xi64>) { | |
^bb0(%out: i64): | |
%6 = linalg.index 0 : index | |
%7 = arith.index_cast %6 : index to i64 | |
%8 = arith.muli %7, %c2_i64 : i64 | |
linalg.yield %8 : i64 | |
} -> tensor<64xi64> | |
flow.dispatch.tensor.store %5, %3, offsets = [0], sizes = [64], strides = [1] : tensor<64xi64> -> !flow.dispatch.tensor<writeonly:tensor<64xi64>> | |
return | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment