Last active
September 7, 2023 00:40
-
-
Save AmosLewis/979d1aca948b3cd821d6edadc160f610 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch_mlir | |
class Net(torch.nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
def forward(self, input, index1, index2, src): | |
return torch.index_put(input, indices=(index1, index2), values=src, accumulate=False) | |
m = Net() | |
src = torch.arange(1, 6) | |
index1 = torch.tensor([0, 0, 0, 0, 0]) | |
index2 = torch.tensor([1, 2, 3, 4, 0]) | |
input = torch.arange(10, 25, step=1, dtype=src.dtype).view(3, 5) | |
m = torch_mlir.compile(m, [input, index1, index2, src], output_type="stablehlo") | |
print(m.operation.get_asm()) | |
''' | |
module attributes {torch.debug_module_name = "Net"} { | |
func.func @forward(%arg0: !torch.vtensor<[3,5],si64>, %arg1: !torch.vtensor<[5],si64>, %arg2: !torch.vtensor<[5],si64>, %arg3: !torch.vtensor<[5],si64>) -> !torch.vtensor<[3,5],si64> { | |
%false = torch.constant.bool false | |
%0 = torch.prim.ListConstruct %arg1, %arg2 : (!torch.vtensor<[5],si64>, !torch.vtensor<[5],si64>) -> !torch.list<vtensor> | |
%1 = torch.aten.index_put.hacked_twin %arg0, %0, %arg3, %false : !torch.vtensor<[3,5],si64>, !torch.list<vtensor>, !torch.vtensor<[5],si64>, !torch.bool -> !torch.vtensor<[3,5],si64> | |
return %1 : !torch.vtensor<[3,5],si64> | |
} | |
} | |
''' | |
''' | |
module attributes {torch.debug_module_name = "Net"} { | |
func.func @forward(%arg0: tensor<3x5xi64>, %arg1: tensor<5xi64>, %arg2: tensor<5xi64>, %arg3: tensor<5xi64>) -> tensor<3x5xi64> { | |
%0 = stablehlo.reshape %arg1 : (tensor<5xi64>) -> tensor<5x1xi64> | |
%1 = stablehlo.reshape %arg2 : (tensor<5xi64>) -> tensor<5x1xi64> | |
%2 = stablehlo.concatenate %0, %1, dim = 1 : (tensor<5x1xi64>, tensor<5x1xi64>) -> tensor<5x2xi64> | |
%3 = stablehlo.reshape %arg3 : (tensor<5xi64>) -> tensor<5x1xi64> | |
%4 = stablehlo.reshape %2 : (tensor<5x2xi64>) -> tensor<5x2xi64> | |
%5 = "stablehlo.scatter"(%arg0, %4, %3) ({ | |
^bb0(%arg4: tensor<i64>, %arg5: tensor<i64>): | |
stablehlo.return %arg5 : tensor<i64> | |
}) {indices_are_sorted = false, scatter_dimension_numbers = #stablehlo.scatter<update_window_dims = [1], inserted_window_dims = [0], scatter_dims_to_operand_dims = [0, 1], index_vector_dim = 1>, unique_indices = false} : (tensor<3x5xi64>, tensor<5x2xi64>, tensor<5x1xi64>) -> tensor<3x5xi64> | |
return %5 : tensor<3x5xi64> | |
} | |
} | |
''' | |
import torch | |
import torch_mlir | |
class Net(torch.nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
def forward(self, input, index1, index2, src): | |
return torch.index_put(input, indices=(index1, index2), values=src, accumulate=False) | |
m = Net() | |
src = torch.arange(1, 6) | |
index1 = torch.tensor([0, 0, 0, 0, 0]) | |
index2 = torch.tensor([1, 2, 3, 4, 0]) | |
input = torch.arange(10, 25, step=1, dtype=src.dtype).view(3, 5) | |
m = torch_mlir.compile(m, [input, index1, index2, src], output_type="tosa") | |
print(m.operation.get_asm()) | |
''' | |
module attributes {torch.debug_module_name = "Net"} { | |
func.func @forward(%arg0: tensor<3x5xi64>, %arg1: tensor<5xi64>, %arg2: tensor<5xi64>, %arg3: tensor<5xi64>) -> tensor<3x5xi64> { | |
%0 = "tosa.const"() <{value = dense<[[5, 1]]> : tensor<1x2xi32>}> : () -> tensor<1x2xi32> | |
%1 = "tosa.cast"(%arg1) : (tensor<5xi64>) -> tensor<5xi32> | |
%2 = "tosa.reshape"(%1) <{new_shape = array<i64: 5, 1>}> : (tensor<5xi32>) -> tensor<5x1xi32> | |
%3 = "tosa.cast"(%arg2) : (tensor<5xi64>) -> tensor<5xi32> | |
%4 = "tosa.reshape"(%3) <{new_shape = array<i64: 5, 1>}> : (tensor<5xi32>) -> tensor<5x1xi32> | |
%5 = "tosa.concat"(%2, %4) <{axis = 1 : i64}> : (tensor<5x1xi32>, tensor<5x1xi32>) -> tensor<5x2xi32> | |
%6 = "tosa.reshape"(%arg3) <{new_shape = array<i64: 1, 5, 1>}> : (tensor<5xi64>) -> tensor<1x5x1xi64> | |
%7 = "tosa.reshape"(%arg0) <{new_shape = array<i64: 1, 15, 1>}> : (tensor<3x5xi64>) -> tensor<1x15x1xi64> | |
%8 = "tosa.mul"(%5, %0) <{shift = 0 : i32}> : (tensor<5x2xi32>, tensor<1x2xi32>) -> tensor<5x2xi32> | |
%9 = "tosa.reduce_sum"(%8) <{axis = 1 : i64}> : (tensor<5x2xi32>) -> tensor<5x1xi32> | |
%10 = "tosa.reshape"(%9) <{new_shape = array<i64: 1, 5>}> : (tensor<5x1xi32>) -> tensor<1x5xi32> | |
%11 = "tosa.scatter"(%7, %10, %6) : (tensor<1x15x1xi64>, tensor<1x5xi32>, tensor<1x5x1xi64>) -> tensor<1x15x1xi64> | |
%12 = "tosa.reshape"(%11) <{new_shape = array<i64: 3, 5>}> : (tensor<1x15x1xi64>) -> tensor<3x5xi64> | |
return %12 : tensor<3x5xi64> | |
} | |
} | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment