Created
January 30, 2025 18:24
-
-
Save AmosLewis/a0b597e85091016b4f48565e0a13b0e3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @prefill_bs1$async_dispatch_0 { | |
hal.executable.variant public @rocm_hsaco_fb target(<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx942", features = "", wgp = <compute = fp64|fp32|fp16|int64|int32|int16|int8, storage = b64|b32|b16|b8, subgroup = shuffle|arithmetic, dot = dp4xi8toi32, mma = [<MFMA_F32_16x16x4_F32>, <MFMA_F32_16x16x16_F16>, <MFMA_F32_32x32x8_F16>, <MFMA_F64_16x16x4_F64>, <MFMA_F32_16x16x16_BF16>, <MFMA_F32_32x32x8_BF16>, <MFMA_F32_16x16x32_F8E5M2FNUZ>, <MFMA_F32_16x16x32_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_I32_16x16x32_I8>, <MFMA_I32_32x32x16_I8>], subgroup_size_choices = [64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 16384>>, ukernels = "none"}>) { | |
hal.executable.export public @prefill_bs1$async_dispatch_0_elementwise_broadcast_Dx4096_i64xbf16 ordinal(0) layout(#hal.pipeline.layout<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) { | |
^bb0(%arg0: !hal.device, %arg1: index): | |
%x, %y, %z = flow.dispatch.workgroup_count_from_slice %arg1 | |
hal.return %x, %y, %z : index, index, index | |
} | |
builtin.module { | |
func.func @prefill_bs1$async_dispatch_0_elementwise_broadcast_Dx4096_i64xbf16() { | |
%c67108864 = arith.constant 67108864 : index | |
%c0 = arith.constant 0 : index | |
%0 = hal.interface.constant.load layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(0) : i32 | |
%1 = arith.index_castui %0 : i32 to index | |
%2 = util.assume.int %1<umin = 32, umax = 131040, udiv = 32> : index | |
%3 = hal.interface.binding.subspan layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<128256x4096xbf16>> | |
%4 = flow.dispatch.workload.ordinal %2, 0 : index | |
%5 = hal.interface.binding.subspan layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(1) alignment(64) offset(%c0) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<?xi64>>{%4} | |
%6 = hal.interface.binding.subspan layout(<constants = 1, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(2) alignment(64) offset(%c67108864) flags(Indirect) : !flow.dispatch.tensor<writeonly:tensor<?x4096xbf16>>{%4} | |
%7 = flow.dispatch.tensor.load %3, offsets = [0, 0], sizes = [128256, 4096], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<128256x4096xbf16>> -> tensor<128256x4096xbf16> | |
%8 = flow.dispatch.tensor.load %5, offsets = [0], sizes = [%4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<?xi64>>{%4} -> tensor<?xi64> | |
%9 = tensor.empty(%4) : tensor<?x4096xbf16> | |
%10 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%8 : tensor<?xi64>) outs(%9 : tensor<?x4096xbf16>) { | |
^bb0(%in: i64, %out: bf16): | |
%11 = arith.index_cast %in : i64 to index | |
%12 = linalg.index 1 : index | |
%extracted = tensor.extract %7[%11, %12] : tensor<128256x4096xbf16> | |
linalg.yield %extracted : bf16 | |
} -> tensor<?x4096xbf16> | |
flow.dispatch.tensor.store %10, %6, offsets = [0, 0], sizes = [%4, 4096], strides = [1, 1] : tensor<?x4096xbf16> -> !flow.dispatch.tensor<writeonly:tensor<?x4096xbf16>>{%4} | |
return | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment