Last active
March 19, 2023 04:42
-
-
Save AmosLewis/b53dfecbe4918618031cac01c8a88fb9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
class Test(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input_ids, decoder_input_ids): | |
shifted_input_ids = decoder_input_ids.new_zeros(decoder_input_ids.shape) # torch.tensor([[6536, 504, 24, 1]]) -> tensor([[0, 0, 0, 0]]) | |
shifted_input_ids[..., 1:] = decoder_input_ids[..., :-1].clone() # tensor([[0, 0, 0]]) = tensor([[6536, 504, 24]]) | |
shifted_input_ids[..., 0] = 0 # tensor([[ 0, 6536, 504, 24]]) | |
return shifted_input_ids | |
model = Test() | |
input_ids = torch.tensor([[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]]) | |
decoder_input_ids = torch.tensor([[6536, 504, 24, 1]]) | |
test_inputs = (input_ids, decoder_input_ids) | |
outputs = model(*test_inputs) | |
print("model(test_input): ") | |
print(outputs) | |
fx_g = make_fx( | |
model, | |
decomposition_table=get_decompositions( | |
[ | |
] | |
), | |
)(*test_inputs) | |
print("fx_g.graph: ") | |
print(fx_g.graph) | |
# graph(): | |
# %arg0_1 : [#users=0] = placeholder[target=arg0_1] | |
# %arg1_1 : [#users=4] = placeholder[target=arg1_1] | |
# %new_zeros : [#users=5] = call_function[target=torch.ops.aten.new_zeros.default](args = (%arg1_1, [1, 4]), kwargs = {dtype: torch.int64, layout: torch.strided, device: cpu, pin_memory: False}) | |
# | |
# %slice_1 : [#users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%arg1_1, 1, 0, -1), kwargs = {}) | |
# %clone : [#users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_1,), kwargs = {}) | |
# %slice_2 : [#users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%new_zeros, 1, 1, 9223372036854775807), kwargs = {}) | |
# %copy_ : [#users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%slice_2, %clone), kwargs = {}) | |
# %_tensor_constant0 : [#users=1] = get_attr[target=_tensor_constant0] | |
# %lift_fresh_copy : [#users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant0,), kwargs = {}) | |
# %select : [#users=1] = call_function[target=torch.ops.aten.select.int](args = (%new_zeros, 1, 0), kwargs = {}) | |
# %fill_ : [#users=0] = call_function[target=torch.ops.aten.fill_.Tensor](args = (%select, %lift_fresh_copy), kwargs = {}) | |
# %slice_3 : [#users=0] = call_function[target=torch.ops.aten.slice.Tensor](args = (%arg1_1, 1, 0, -1), kwargs = {}) | |
# %slice_4 : [#users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%arg1_1, 1, 0, -1), kwargs = {}) | |
# %clone_1 : [#users=0] = call_function[target=torch.ops.aten.clone.default](args = (%slice_4,), kwargs = {}) | |
# %slice_5 : [#users=0] = call_function[target=torch.ops.aten.slice.Tensor](args = (%new_zeros, 1, 1, 9223372036854775807), kwargs = {}) | |
# %select_1 : [#users=0] = call_function[target=torch.ops.aten.select.int](args = (%new_zeros, 1, 0), kwargs = {}) | |
# return new_zeros | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://pytorch.org/cppdocs/notes/tensor_indexing.html
python == C++(using namespace torch::indexing)
1: == Slice(1, None)
:3 == Slice(None, 3)
... == "..."