Last active
August 22, 2023 01:39
-
-
Save AmosLewis/c6007c2154fedd51081faaee903a1b2c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import tempfile | |
import torch_mlir | |
class Test(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input_ids, decoder_input_ids): | |
shifted_input_ids = decoder_input_ids.new_zeros(decoder_input_ids.shape) # tensor([[0, 0, 0, 0]]) | |
shifted_input_ids[..., 1:] = decoder_input_ids[..., :-1].clone() # tensor([[6536, 504, 24]]) | |
return shifted_input_ids | |
model = Test() | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]]) | |
decoder_input_ids = torch.tensor([[6536, 504, 24, 1]]) | |
test_inputs = (input_ids, decoder_input_ids) | |
outputs = model(*test_inputs) | |
print("model(test_input): ") | |
print(outputs) | |
fx_g = make_fx( | |
model, | |
decomposition_table=get_decompositions( | |
[ | |
torch.ops.aten.split.Tensor, | |
torch.ops.aten.split_with_sizes, | |
] | |
), | |
)(*test_inputs) | |
# print("fx_g.graph: ") | |
# print(fx_g.graph) | |
# graph(): | |
# %arg0_1 : [#users=0] = placeholder[target=arg0_1] | |
# %arg1_1 : [#users=1] = placeholder[target=arg1_1] | |
# %new_zeros : [#users=2] = call_function[target=torch.ops.aten.new_zeros.default](args = (%arg1_1, [1, 4]), kwargs = {dtype: torch.int64, layout: torch.strided, device: cpu, pin_memory: False}) | |
# %_tensor_constant0 : [#users=1] = get_attr[target=_tensor_constant0] | |
# %lift_fresh_copy : [#users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant0,), kwargs = {}) | |
# %select : [#users=1] = call_function[target=torch.ops.aten.select.int](args = (%new_zeros, 1, 0), kwargs = {}) | |
# %fill_ : [#users=0] = call_function[target=torch.ops.aten.fill_.Tensor](args = (%select, %lift_fresh_copy), kwargs = {}) | |
# return new_zeros | |
fx_g.graph.set_codegen(torch.fx.graph.CodeGen()) | |
fx_g.recompile() | |
def strip_overloads(gm): | |
""" | |
Modifies the target of graph nodes in :attr:`gm` to strip overloads. | |
Args: | |
gm(fx.GraphModule): The input Fx graph module to be modified | |
""" | |
for node in gm.graph.nodes: | |
if isinstance(node.target, torch._ops.OpOverload): | |
node.target = node.target.overloadpacket | |
gm.recompile() | |
strip_overloads(fx_g) | |
ts_g = torch.jit.script(fx_g) | |
# print("ts_g.graph: ") | |
# print(ts_g.graph) | |
# ts_g.graph: | |
# graph(%self : __torch__.torch.fx.graph_module._lambda, | |
# %arg0_1 : Tensor, | |
# %arg1_1.1 : Tensor): | |
# %21 : NoneType = prim::Constant() | |
# %16 : int = prim::Constant[value=-1]() # <eval_with_key>.2:6:49 | |
# %11 : bool = prim::Constant[value=0]() # <eval_with_key>.2:5:144 | |
# %45 : Device = prim::Constant[value="cpu"]() | |
# %4 : int = prim::Constant[value=1]() # <eval_with_key>.2:5:50 | |
# %5 : int = prim::Constant[value=4]() # <eval_with_key>.2:5:53 | |
# %14 : int = prim::Constant[value=0]() # <eval_with_key>.2:6:46 | |
# %25 : int = prim::Constant[value=9223372036854775807]() # <eval_with_key>.2:8:52 | |
# %6 : int[] = prim::ListConstruct(%4, %5) | |
# %new_zeros.1 : Tensor = aten::new_zeros(%arg1_1.1, %6, %5, %14, %45, %11) # <eval_with_key>.2:5:16 | |
# %slice_1.1 : Tensor = aten::slice(%arg1_1.1, %4, %14, %16, %4) # <eval_with_key>.2:6:14 | |
# %clone.1 : Tensor = aten::clone(%slice_1.1, %21) # <eval_with_key>.2:7:12 | |
# %slice_2.1 : Tensor = aten::slice(%new_zeros.1, %4, %4, %25, %4) # <eval_with_key>.2:8:14 | |
# %copy_ : Tensor = aten::copy_(%slice_2.1, %clone.1, %11) # <eval_with_key>.2:9:12 | |
# return (%new_zeros.1) | |
module = torch_mlir.compile( | |
ts_g, | |
(input_ids, decoder_input_ids), | |
torch_mlir.OutputType.RAW, | |
use_tracing=True, | |
verbose=False, | |
) | |
import os | |
mlir_str = module.operation.get_asm() | |
dir=tempfile.gettempdir() | |
with open(os.path.join(dir, "test_slicecopy_torchscript_0327_transformers4.26.0.mlir"), "w") as mlir_file: | |
mlir_file.write(mlir_str) |
test_slicecopy_torchbackend
➜ t5small git:(main) ✗ torch-mlir-opt -pass-pipeline='builtin.module(torchscript-module-to-torch-backend-pipeline{backend-legal-ops=torch.aten.flatten.using_ints,torch.aten.native_layer_norm,torch.aten.linear})' ./test_slicecopy_torchscript_0327_transformers4.26.0.mlir -mlir-print-ir-after-failure -mlir-disable-threading
module attributes {torch.debug_module_name = "_lambda"} {
func.func @forward(%arg0: !torch.vtensor<[1,15],si64>, %arg1: !torch.vtensor<[1,4],si64>) -> !torch.vtensor<[1,4],si64> {
%int4 = torch.constant.int 4
%none = torch.constant.none
%false = torch.constant.bool false
%int-1 = torch.constant.int -1
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%int9223372036854775807 = torch.constant.int 9223372036854775807
%cpu = torch.constant.device "cpu"
%0 = torch.prim.ListConstruct %int1, %int4 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.zeros %0, %int4, %int0, %cpu, %false : !torch.list<int>, !torch.int, !torch.int, !torch.Device, !torch.bool -> !torch.vtensor<[1,4],si64>
%2 = torch.aten.slice.Tensor %arg1, %int1, %int0, %int-1, %int1 : !torch.vtensor<[1,4],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1,3],si64>
%3 = torch.aten.clone %2, %none : !torch.vtensor<[1,3],si64>, !torch.none -> !torch.vtensor<[1,3],si64>
%4 = torch.aten.slice.Tensor %1, %int1, %int1, %int9223372036854775807, %int1 : !torch.vtensor<[1,4],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1,3],si64>
%5 = torch.aten.arange.start_step %int1, %int4, %int1, %none, %none, %none, %none : !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[3],si64>
%6 = torch.prim.ListConstruct %5 : (!torch.vtensor<[3],si64>) -> !torch.list<optional<vtensor>>
%7 = torch.aten._index_put_impl %1, %6, %3, %false, %false : !torch.vtensor<[1,4],si64>, !torch.list<optional<vtensor>>, !torch.vtensor<[1,3],si64>, !torch.bool, !torch.bool -> !torch.vtensor<[1,4],si64>
return %7 : !torch.vtensor<[1,4],si64>
}
}
test_slicecopy_torchscript_0420_transformers4.26.0.mlir
module attributes {torch.debug_module_name = "_lambda"} {
func.func private @__torch__.torch.fx.graph_module._lambda.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">) -> !torch.str {
%1 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.str
return %1 : !torch.str
}
func.func private @__torch__.torch.fx.graph_module._lambda.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,15],si64>}, %arg2: !torch.tensor {torch.type_bound = !torch.vtensor<[1,4],si64>}) -> !torch.tensor {
%int-1 = torch.constant.int -1
%none_0 = torch.constant.none
%false = torch.constant.bool false
%int1 = torch.constant.int 1
%int4 = torch.constant.int 4
%int0 = torch.constant.int 0
%int9223372036854775807 = torch.constant.int 9223372036854775807
%1 = torch.prim.ListConstruct %int1, %int4 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.aten.new_zeros %arg2, %1, %none_0, %none_0, %none_0, %false : !torch.tensor, !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.bool -> !torch.tensor
%3 = torch.aten.slice.Tensor %arg2, %int1, %int0, %int-1, %int1 : !torch.tensor, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.tensor
%4 = torch.aten.clone %3, %none_0 : !torch.tensor, !torch.none -> !torch.tensor
%5 = torch.aten.slice.Tensor %2, %int1, %int1, %int9223372036854775807, %int1 : !torch.tensor, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.tensor
%6 = torch.aten.copy_ %5, %4, %false : !torch.tensor, !torch.tensor, !torch.bool -> !torch.tensor
return %2 : !torch.tensor
}
torch.class_type @__torch__.torch.fx.graph_module._lambda {
torch.attr private "training" : !torch.bool
torch.attr private "_is_full_backward_hook" : !torch.optional<bool>
torch.attr private "_code" : !torch.str
torch.method private "__code_getter", @__torch__.torch.fx.graph_module._lambda.__code_getter
torch.method "forward", @__torch__.torch.fx.graph_module._lambda.forward
}
%true = torch.constant.bool true
%none = torch.constant.none
%str = torch.constant.str "\0A\0A\0Adef forward(self, arg0_1, arg1_1):\0A new_zeros = torch.ops.aten.new_zeros(arg1_1, [1, 4], pin_memory = False)\0A slice_1 = torch.ops.aten.slice(arg1_1, 1, 0, -1); arg1_1 = None\0A clone = torch.ops.aten.clone(slice_1); slice_1 = None\0A slice_2 = torch.ops.aten.slice(new_zeros, 1, 1, 9223372036854775807)\0A copy_ = torch.ops.aten.copy_(slice_2, clone); slice_2 = clone = None\0A return new_zeros\0A "
%0 = torch.nn_module {
torch.slot "training", %true : !torch.bool
torch.slot "_is_full_backward_hook", %none : !torch.none
torch.slot "_code", %str : !torch.str
} : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">
}
index_put.hacked_twin
module attributes {torch.debug_module_name = "_lambda"} {
func.func @forward(%arg0: !torch.vtensor<[1,15],si64>, %arg1: !torch.vtensor<[1,4],si64>) -> !torch.vtensor<[1,4],si64> {
%none = torch.constant.none
%int4 = torch.constant.int 4
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%int-1 = torch.constant.int -1
%false = torch.constant.bool false
%0 = torch.prim.ListConstruct %int1, %int4 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.zeros %0, %int4, %none, %none, %false : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[1,4],si64>
%2 = torch.aten.slice.Tensor %arg1, %int1, %int0, %int-1, %int1 : !torch.vtensor<[1,4],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1,3],si64>
%3 = torch.aten.clone %2, %none : !torch.vtensor<[1,3],si64>, !torch.none -> !torch.vtensor<[1,3],si64>
%4 = torch.aten.arange.start_step %int1, %int4, %int1, %none, %none, %none, %none : !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[3],si64>
%5 = torch.aten.arange.start_step %int0, %int1, %int1, %int4, %none, %none, %none : !torch.int, !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[1],si64>
%6 = torch.aten.unsqueeze %5, %int-1 : !torch.vtensor<[1],si64>, !torch.int -> !torch.vtensor<[1,1],si64>
%7 = torch.prim.ListConstruct %6, %4 : (!torch.vtensor<[1,1],si64>, !torch.vtensor<[3],si64>) -> !torch.list<vtensor>
%8 = torch.aten.index_put.hacked_twin %1, %7, %3, %false : !torch.vtensor<[1,4],si64>, !torch.list<vtensor>, !torch.vtensor<[1,3],si64>, !torch.bool -> !torch.vtensor<[1,4],si64>
return %8 : !torch.vtensor<[1,4],si64>
}
}
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
test_slicecopy_torchscript_0327_transformers4.26.0.mlir